PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 2, Pages 347–352 S 0002-9939(03)07153-3 Article electronically published on June 23, 2003

UNIQUENESS OF EXCEPTIONAL SINGULAR QUARTICS

KAREN A. CHANDLER

(Communicated by Michael Stillman)

ABSTRACT. We prove that given a general collection Γ of 14 points of $\mathbb{P}^4 = \mathbb{P}^4_{\mathcal{K}}$ (\mathcal{K} an infinite field) there is a *unique* quartic hypersurface that is singular on Γ

This completes the solution to the open problem of the dimension of a linear system of hypersurfaces of \mathbb{P}^n that are singular on a collection of general points.

1. Introduction

Let \mathcal{K} be an infinite field and $\mathbb{P}^n = \mathbb{P}^n_{\mathcal{K}}$.

The following problem has aroused a good deal of interest over the last few centuries:

Question 1. Let Γ be a general set of d points in \mathbb{P}^n . Given a degree $m \geq 3$, does the vector space of sections in $H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(m))$ that are singular on Γ have the expected dimension of $\max(0, \dim H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(m)) - (n+1)d)$?

The answer is that the only exceptions are the following 4 cases: (n, m, d) = (2, 4, 5), (3, 4, 9), (4, 4, 14), and (4, 3, 7). This was proved by J. Alexander and A. Hirschowitz ([H], [A], [AH1], [AH2], and [AH3]). (A simpler proof was later given in [Ch2] and [Ch3].)

A correspondence between the question on singularities and the Waring problem for general linear forms was (for char $\mathcal{K}=0$) described by Lasker [L]. Terracini [T2] applied the duality of Macaulay to make this precise. Terracini [T1], as well as Palatini [P], gave a further relation to the study of a secant variety to a Veronese. (See [EI] for an extension to char $\mathcal{K}\neq 0$.) The Waring problem asks: given n,m, what is the minimal d=(n,m) for which the general form of degree m in n+1 variables may be written as a sum of d mth powers of linear forms? The expectation is that $(n+1)d \geq \binom{n+m}{m}$ should suffice (since there are d choices from the (n+1)-dimensional space of linear forms). The exceptional case of (n,m,d)=(2,4,5) was discovered by Clebsch [C], followed by those of (3,4,9), (4,4,14) due to Sylvester [S], and the more subtle case of (4,3,7) presented by Palatini [P].

In each of the exceptional cases we have $(n+1)d \ge \dim H^0(\mathbb{P}^n, \mathcal{O}(\mathbb{P}^n(m)))$ hence no m-ic form is "numerically" expected to be singular at a general collection of d points. However, one may easily find such an m-ic in each of these cases. We consider, therefore, the question of the "next best" possibility:

Received by the editors April 17, 2001 and, in revised form, October 14, 2002. 2000 Mathematics Subject Classification. Primary 14N10; Secondary 14C20.

Question 2. In the exceptional cases, is there a **unique** m-ic singular along d general points?

The affirmative answer for the case of 7 points in \mathbb{P}^4 and degree 3 was given by C. Ciliberto and Hirschowitz [CH]. This is discussed, e.g., in [Ch2].

We consider the exceptional cases in degree 4, namely, 5 points in \mathbb{P}^2 , 9 in \mathbb{P}^3 , and 14 in \mathbb{P}^4 . In each, $d=\dim H^0(\mathbb{P}^n,\mathcal{O}_{\mathbb{P}^n}(2))-1$, so that there is a quadric Q vanishing on d general points, hence Q^2 is singular at each point. Thus we show that Q^2 is the only such quartic. J. Alexander proves this in the cases of \mathbb{P}^2 and \mathbb{P}^3 in [A]. To obtain uniqueness in \mathbb{P}^4 we use *both* of these cases together with a Horace differential argument. This is unlike the usual application of the "méthode d'Horace" in which a codimension 1 result suffices in carrying out the induction. The result is:

Theorem 3. If (n,d) = (2,5), (3,9), or (4,14), there is a unique quartic of \mathbb{P}^n that is singular on d general points of \mathbb{P}^n .

Corollary 4. Suppose that char $K \neq 2$. Take (n,d) = (2,5), (3,9), or (4,14). In the space of homogeneous forms of degree 4 in n+1 variables, the closure of the set of those expressible as a sum of d fourth powers of linear forms has codimension 1.

Corollary 5. Given n, m, d, let $N = \binom{n+m}{m} - 1$. Let $\nu_m : \mathbb{P}^n \to \mathbb{P}^N$ be the mth Veronese embedding of \mathbb{P}^n . Call $S_{n,m,d}$ the variety of secant (d-1)-planes to $\nu_m(\mathbb{P}^n)$ in \mathbb{P}^N . Then for (n, d) = (2, 5), (3, 9), or $(4, 14), S_{n,m,d}$ is a hypersurface of \mathbb{P}^N .

Let us recall standard definitions in the study of such objects:

Definition 1. Let $p \in \mathbb{P}^n$. The **double point** at p in \mathbb{P}^n is the subscheme of \mathbb{P}^n defined by the square of the ideal sheaf of p.

If $\Phi \subset \mathbb{P}^n$, we denote by Φ^2 the union of the double points supported on Φ .

Hence a homogeneous form in the coordinate ring of \mathbb{P}^n is singular on a set Φ precisely if it vanishes on Φ^2 .

Definition 2. Given a scheme $X \subset \mathbb{P}^n$ and a hyperplane H of \mathbb{P}^n , the Castelnuovo exact sequence is given by

$$(1) 0 \to \mathcal{I}_{\tilde{X}}(-1) \to \mathcal{I}_X \to \mathcal{I}_{X \cap H, H} \to 0,$$

where \tilde{X} (called the **residual** scheme to X with respect to H) is given by the ideal sheaf $\mathcal{I}_{\tilde{X}} = \mathcal{I}_X : \mathcal{O}_{\mathbb{P}^n}(-H)$.

From this, it is straightforward to prove the uniqueness in \mathbb{P}^2 and \mathbb{P}^3 using specialisation, as is done in [A]. But in \mathbb{P}^4 the exact sequence reveals only that there is at most a pencil of quartics through 14 double points. This is because the case of \mathbb{P}^3 is extra-exceptional: although $4\cdot 9 > \dim H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(4))$, there is a quartic singular on 9 general points. Hence the base locus of the system of quartics singular on 8 double points and a point q meets the double point at q in a scheme ρ of degree 3. Applying Castelnuovo to a suitable collection $Z \subset \mathbb{P}^4$ of 13 double points, of which 8 lie on a \mathbb{P}^3 containing a point q, shows that the base locus of quartics through $Z \cup \{q\}$ meets $\{q\}^2$ in the scheme ρ determined by those 8 points on \mathbb{P}^3 . So $Z \cup \{q\}^2$ lies on a pencil of quartics.

To conquer this obstacle, we apply the lemme d'Horace différentielle (Lemma 6) of Alexander and Hirschowitz ([AH1]). The statement extracted from the lemma

is that from such a scheme $Z \cup \{q\}^2$ lying on a pencil of quartics together with base locus scheme ρ , one may find a point p for which $Z \cup \{p\}^2$ is on a unique quartic provided that $\tilde{Z} \cup \rho$ does not lie on a cubic. The idea is to degenerate a point $p \in \mathbb{P}^4 - \mathbb{P}^3$ to q along with a subscheme $\rho' \subset \{p\}^2$ degenerating to ρ . Hence the base locus of quartics through $Z \cup \{p\}$ meets $\{p\}^2$ in a subscheme of ρ' . But then, Castelnuovo's exact sequence may be applied directly to $Z \cup \rho'$, to see that if $\tilde{Z} \cup \rho'$ does not lie on a cubic, then the base locus of quartics through $Z \cup \{p\}$ cannot contain all of ρ' . Hence by upper semicontinuity it suffices that $\tilde{Z} \cup \rho$ does not lie on a cubic.

The uniqueness in \mathbb{P}^4 is therefore accomplished by producing such a scheme $Z \cup \{q\}$ along with base locus scheme ρ determined by $Z \cap \mathbb{P}^3$ for which $\tilde{Z} \cup \rho$ does not lie on a cubic. Just as well, we arrange that ρ has a subscheme ρ_0 of degree 2 whose union with \tilde{Z} does not lie on a cubic. Hence it is desired to have some control over the base locus scheme ρ at q. For this we arrange by further specialisation (analogous to [Ch2], in the initial case of 12 points in \mathbb{P}^5) that ρ has a recognizable such subscheme ρ_0 that does not depend on all the points. Namely, 4 of the points of $Z \cap \mathbb{P}^3$ are put onto a plane containing q, so that the base locus scheme ρ must contain the degree 2 scheme ρ_0 on q given by the conic through the 5 planar points.

Hence the problem is reduced to a matter of studying cubics on the union of 5 general double points, 4 simple points on \mathbb{P}^3 (and otherwise set free), with a degree 6 curvilinear subscheme of \mathbb{P}^2 (in linearly general position). Now the four simple points may be further specialised to \mathbb{P}^2 , yielding \mathbb{P}^2 in the base locus. Then it is easy to see that no cubic of \mathbb{P}^4 vanishes on the general union of \mathbb{P}^2 with five double points, which completes the proof.

Notation. For a subscheme $X \subset \mathbb{P}^n$, we write $h_{\mathbb{P}^n}(X, m)$ for the **Hilbert function** of X in degree m: the number of conditions that X imposes on the linear system of hypersurfaces of degree m.

Taking global sections on the Castelnuovo exact sequence (1) then provides the inequality:

$$h_{\mathbb{P}^n}(X,m) \ge h_{\mathbb{P}^n}(\tilde{X},m-1) + h_H(X \cap H,m)$$

where H is a hyperplane and \tilde{X} the residual of X with respect to H.

2. Proof of Theorem 3

Fix a flag $\mathbb{P}^2 \subset \mathbb{P}^3 \subset \mathbb{P}^4$.

We show that there is a unique quartic hypersurface of \mathbb{P}^4 through the union of 14 general double points. To do this, we construct a scheme from the ground up, collecting subschemes with support on \mathbb{P}^2 and on \mathbb{P}^3 and thereby observing uniqueness in dimensions 2 and 3 along the way.

Dimension 2. Suppose that $\Psi \cup \{q\} \subset \mathbb{P}^2$ is a set of 5 points, no three of which are collinear. So $\Psi \cup \{q\}$ lies on a unique conic C (nonsingular and irreducible) defined by a quadric form Q. Suppose F is a quartic form vanishing on Φ^2 . Then F vanishes on a subscheme of C of degree 10, hence Q|F, say $F = G \cdot Q$, deg G = 2. Then G also vanishes on $\Psi \cup \{q\}$ (since C is nonsingular); so, up to constants, we have G = Q and $F = Q^2$. Hence we have uniqueness.

Notice, in particular, that the base locus of quartics through $\Psi^2 \cup \{q\}$ meets $\{q\}^2$ in precisely $\{q\}^2 \cap C$.

Dimension 3. Let $\Phi \subset \mathbb{P}^3 - \mathbb{P}^2$ be a set of 4 points in linearly general position. Then it is easy to see (e.g. straight from the ideal) that

$$h_{\mathbb{P}^3}(\Phi^2,3) = 16$$

and

$$h_{\mathbb{P}^3}(\Phi^2 \cup \mathbb{P}^2, 3) = 20$$

(i.e., Φ^2 does not lie on a quadric). So we may find a (general) set $\Psi \subset \mathbb{P}^2$ of 4 points so that $\Phi^2 \cup \Psi$ does not lie on a cubic. Now choose $q \in \mathbb{P}^2$ so that $\Psi \cup \{q\}$ is in linearly general position (with respect to \mathbb{P}^2). Then $(\Psi^2 \cup \{q\}^2) \cap \mathbb{P}^2$ lies on a unique quartic of \mathbb{P}^2 . Hence by (1) there is a unique quartic that is singular on the collection $\Phi \cup \Psi \cup \{q\}$ of 9 points of \mathbb{P}^3 .

Further,

$$h_{\mathbb{P}^2}(\Psi^2 \cup \{q\}, 4) = 13$$

so

$$h_{\mathbb{P}^3}(\Phi^2 \cup \Psi^2 \cup \{q\}, 3) \ge 20 + 14 = 4 \cdot 8 + 1,$$

so that equality holds here. Therefore the system of quartics through $\Phi^2 \cup \Psi^2 \cup \{q\}$ has base locus meeting $\{q\}^2$ in precisely a scheme ρ of degree 3.

Let C be the conic through $\Psi \cup \{q\}$ in \mathbb{P}^2 and $\rho_0 = \{q\}^2 \cap C$. As we have seen, $\rho_0 \subset \rho$.

Dimension 4. Take $\Phi \subset \mathbb{P}^3$, $\Psi \cup \{q\} \subset \mathbb{P}^2$, ρ_0, ρ just as in the case of dimension 3. Consider a set $\Sigma \subset \mathbb{P}^4 - \mathbb{P}^3$ of 5 points in linearly general position and Z = $\Sigma^2 \cup \Phi^2 \cup \Psi^2$.

We apply the following:

Lemma 6 ([AH1]). Choose a hyperplane $H \subset \mathbb{P}^n$. Let $X \subset \mathbb{P}^n$ be a union of double and simple points of \mathbb{P}^n and \tilde{X} its residual with respect to \mathbb{P}^{n-1} . Let Υ be a subscheme of a double point supported at a point $q \in H$.

Assume that:

- $\deg X \cup \Upsilon = \binom{n+m}{m}$, $(X \cup \Upsilon) \cap H$ does not lie on an m-ic of H, and
- if ρ is the intersection of $\Upsilon \cap H$ with the base locus of m-ics through $(X \cup \{1\})$ $\{q\}$) $\cap H$, then $\tilde{X} \cup \rho$ does not lie on an (m-1)-ic of \mathbb{P}^n .

Then there is a translation Υ' of Υ so that $X \cup \Upsilon'$ does not lie on an m-ic hypersurface of \mathbb{P}^n .

To use the lemma, let us start by taking a general point $r \in \mathbb{P}^3$ so that $(Z \cup \{r\} \cup \{r\})$ $\{q\}^2$) $\cap \mathbb{P}^3$ does not lie on a quartic (by the uniqueness in \mathbb{P}^3) and set $X = Z \cup \{r\}$.

Next, let us choose $\Upsilon \subset \{q\}^2 \subset \mathbb{P}^4$ of degree 4 and satisfying $\Upsilon \cap \rho = \rho_0$ (so $\deg X \cup \Upsilon = 70$). Then $(X \cup \Upsilon) \cap \mathbb{P}^3$ does not lie on a quartic of \mathbb{P}^3 (by virtue of the choice $\rho \not\subset \Upsilon$). The base locus of quartics through $(X \cup \{q\}) \cap \mathbb{P}^3$ then meets Υ in precisely ρ_0 . Hence in order to apply Lemma 6 to X and Υ , we see that the scheme $\tilde{X} \cup \rho_0 = \Sigma^2 \cup \Phi \cup \Psi \cup \rho_0$ does not lie on a cubic.

We have $\Psi \cup \rho_0 \subset \mathbb{P}^2$ and $h_{\mathbb{P}^2}(\Psi \cup \rho_0, 3) = 6$ (since $h_{\mathbb{P}^2}(C, 3) = 7 > 6$).

Since ρ_0 does not depend on Φ we may degenerate Φ to a set $\Phi_0 \subset \mathbb{P}^2$, so that

$$h_{\mathbb{P}^2}(\Phi_0 \cup \Psi \cup \rho_0, 3) = 10;$$

that is, no cubic of \mathbb{P}^2 vanishes on $\Phi_0 \cup \Psi \cup \rho_0$.

Consider, then, a set of 5 points $\Sigma \subset \mathbb{P}^4$. If $\Sigma^2 \cup \mathbb{P}^2$ does not lie on a cubic of \mathbb{P}^4 , then neither does $\Sigma^2 \cup \Phi_0 \cup \Psi \cup \rho_0$, and hence by upper semicontinuity $\Sigma^2 \cup \Phi \cup \Psi \cup \rho_0$ is not on a cubic, as desired.

Thus we are left with finding Σ , so that $h_{\mathbb{P}^4}(\Sigma^2 \cup \mathbb{P}^2, 3) = 35$.

Let us take $\Sigma \subset \mathbb{P}^4 - \mathbb{P}^3$ to be a set of 5 points in linearly general position.

Then Σ^2 does not lie on a quadric of \mathbb{P}^4 , that is,

$$h_{\mathbb{P}^4}(\Sigma^2, 2) = 15.$$

Further, any cubic through Σ^2 must vanish on the union $\operatorname{Sec}\Sigma$ of lines between pairs of points of Σ . We have (see, e.g., [Ch1])

$$h_{\mathbb{P}^3}(\operatorname{Sec}\Sigma\cap\mathbb{P}^3,3)=10.$$

Hence

$$h_{\mathbb{P}^n}(\Sigma^2 \cup \mathbb{P}^2, 3) = h_{\mathbb{P}^n}(\Sigma^2 \cup \operatorname{Sec} \Sigma \cup \mathbb{P}^2, 3)$$

$$\geq h_{\mathbb{P}^4}(\Sigma^2, 2) + h_{\mathbb{P}^3}((\operatorname{Sec} \Sigma \cap \mathbb{P}^3) \cup \mathbb{P}^2, 3)$$

$$\geq h_{\mathbb{P}^4}(\Sigma^2, 2) + h_{\mathbb{P}^3}(\operatorname{Sec} \Sigma \cap \mathbb{P}^3, 3) + h_{\mathbb{P}^2}(\mathbb{P}^2, 3)$$

$$= 15 + 10 + 10 = 35.$$

By Lemma 6 there is a point $p \in \mathbb{P}^4$ for which

$$h_{\mathbb{P}^4}(\Sigma^2 \cup \Phi^2 \cup \Psi^2 \cup \{p\}^2 \cup \{r\}, 3) = 70.$$

Thus, there is a unique quartic of \mathbb{P}^4 that is singular on the collection $\Sigma \cup \Phi \cup \Psi \cup \{p\}$ of 14 points.

References

- [A] J. Alexander, Singularités imposables en position générale aux hypersurfaces de \mathbb{P}^n , Compositio Math. **68** (1988), 305-354. MR **89k**:14085
- [AH1] J. Alexander and A. Hirschowitz, Un lemme d'Horace différentiel: application aux singularités hyperquartiques de \mathbb{P}^5 , J. Algebraic Geom. 1 (1992), no. 3, 411-426. MR 93e:14004
- [AH2] J. Alexander and A. Hirschowitz, La méthode d'Horace éclatée: application à l'interpolation en degré quatre, Invent. Math. 107, 585-602 (1992). MR 93d:13017
- [AH3] J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, J. Algebraic Geom. 4 (1995), no. 2, 201-222. MR 96f:14065
- [Ch1] K. Chandler, Geometry of dots and ropes, Trans. Amer. Math. Soc. 347 (1995), no. 3, 767-784. MR 95f:14054
- [Ch2] K. Chandler, A brief proof of a maximal rank theorem for generic double points in projective space, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1907-1920. MR 2002i:14046
- [Ch3] K. Chandler, Linear systems of cubics singular at generic points of projective space, Compositio Math. 134 (2002), no. 3, 269-282.
- [CH] C. Ciliberto and A. Hirschowitz, Hypercubiques de \mathbb{P}^4 avec sept points singuliers génériques, C. R. Acad. Sci. Paris Sér. I Math. **313** (1991), no. 3, 135-137. MR **92g**:14043
- [C] A. Clebsch, Über Curven vierter Ordnung, Journal für die Reine und Angewandte Mathematik (Crelle), Bd. 59 (1861), 125-145.
- [EI] J. Emsalem and A. Iarrobino, Inverse system of a symbolic power I, J. Algebra 174 (1995), 1080-1090. MR 96i:13017
- [H] A. Hirschowitz, La méthode d'Horace pour l'interpolation à plusieurs variables,
 Manuscripta Math. 50 (1985), 337-388. MR 86j:14013
- [IK] A. Iarrobino and V. Kanev, Power sums, Gorenstein algebras, and determinantal loci. Appendix C by Iarrobino and Steven L. Kleiman. Lecture Notes in Mathematics, 1721. Springer-Verlag, Berlin, 1999. MR 2001d:14056
- [L] E. Lasker, Zur Theorie die kanonischen Formen, Math. Annalen 58 (1904), 434-440.
- [P] F. Palatini, Sulla rappresentazione delle forme ed in particolare della cubica quinaria con la somma di potenze di forme lineari, Atti Acad. Torino 38, (1903), 43-50.

- [S] J. J. Sylvester, Sur une extension d'un théorème de Clebsch relatif aux courbes du quatrième degré. Comptes Rendus CII. (1886) 1532-1534.
- [T1] A. Terracini, Sulle V_k per cui la varieta degli $S_h(h+1)$ -seganti ha dimensione minore dell'ordinario, Rend. Circ. Mat. Palermo **31** (1911), 527-530.
- [T2] A. Terracini, Sulla rappresentazione delle coppie di forme ternarie mediante somme di potenze di forme lineari, Annali di Mat. Pura Appl. Serie III, 24 (1915), 1-10.

Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556 $E\text{-}mail\ address:\ kchandle@noether.math.nd.edu$