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ON A THEOREM OF FAVARD

ZUOSHENG HU AND ANGELO B. MINGARELLI

(Communicated by Carmen C. Chicone)

Abstract. We obtain sufficient conditions for the existence of almost peri-
odic solutions of almost periodic linear differential equations thereby extending
Favard’s classical theorem. These results are meant to complement previous
results of the authors who have shown by means of a counterexample that
the boundedness of all solutions is not, by itself, sufficient to guarantee the

existence of an almost periodic solution to a linear almost periodic differential
equation.

1. Introduction

This paper is motivated by a previous paper [7] in which the authors show
that there exists a second order real linear differential equation on the line with
almost periodic coefficients for which every solution is bounded but no nontrivial
solution is almost periodic (in the classical sense of H. Bohr). This surprising
phenomenon shows that boundedness, by itself, is not sufficient to guarantee the
existence of almost periodic solutions of even the simplest linear equations. This
is in sharp contrast with the periodic case in which Floquet’s theory applies and
gives the existence of almost periodic solutions in the case of bounded solutions.
The authors’ task of finding sufficient conditions for the existence of almost periodic
solutions of linear systems of ordinary differential equations was undertaken by Jean
Favard [4], a central figure in the theory of almost periodic differential equations
whose work also inspired S. Bochner [1] in his extensions of the theory of almost
periodic functions to Banach space. See [1, 5, 10] for further details. In order to
guarantee the existence of at least one (always assumed nontrivial in the sequel)
almost periodic solution for the system

x′ = A(t)x + f(t),(1)

denoted by (EA,f), Favard [4] established the following condition. If any nontrivial
solution x(t) of the system

(2) x′ = B(t)x

satisfies

(3) inf
t∈R
|x(t)| > 0,
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for every B(t) belonging to the uniform hull of the almost periodic matrix A(t),
where f is also almost periodic and (1) has a bounded solution, then there exists
at least one solution of (1) which is almost periodic. There are results in various
directions in the literature which imply Favard’s Theorem (see [1, 5, 8, 10] and
the references cited therein) but none of these results relax condition (3). A conse-
quence of the results in this paper consists of the relaxation of condition (3) thereby
producing an extension of Favard’s Theorem under an assumption weaker than (3).
R. A. Johnson [9] constructed an example that shows that if condition (3) does not
hold, there does not exist any almost periodic solution of the system (1), but there
may exist an almost automorphic solution. W. Shen and Y. Yi [10] established a
general result on the existence of almost automorphic solutions for general linear
systems. H. Ishii [8] and A. Haraux [6] considered nonlinear contractive almost
periodic processes on a Banach space and, under some assumptions, they both es-
tablished the existence of almost periodic solutions in different ways. In particular,
Ishii [8] mentioned that when A(t) is a skew symmetric n× n matrix for all t ∈ R,
the corresponding result can imply Favard’s Theorem. We will start within the
framework of simple linear almost periodic differential equations because our main
point is that we can weaken condition (3) by requiring instead that

(4) inf
t∈R

(
1
2l

∫ t+l

t−l
|x(s)|ds

)
> 0

where l > 0 is some real number. On the other hand, for the first order equation,
if we assume some uniformity, the weaker condition

(5) inf
t∈R

(
lim inf
l→∞

1
2l

∫ t+l

t−l
|x(s)|ds

)
> 0

also guarantees the existence of an almost periodic solution of the corresponding
differential equation. Our results can be extended to general almost periodic pro-
cesses and these will appear in another paper.

2. Existence of an almost periodic solution

Throughout this paper, Rn denotes an n-dimensional Euclidean space with the
norm | • | and C(R,Rn) denotes the continuous function space with the topology
of uniform convergence. Following Bochner’s definition [2] for an almost periodic
function, we define the almost periodicity of a function as follows: A function
f ∈ C(R,Rn) is called (Bohr) almost periodic or, simply, almost periodic, if
for any sequence {σn} of R there exists a subsequence {σ′n} ⊂ {σn} such that the
sequence {f(t+α′n)} converges to some function g ∈ C(R,Rn) uniformly for t ∈ R.
If f, g ∈ C(R,Rn) and there exists a sequence {αn} ⊂ R such that, for each t ∈ R,

(6) lim
n→∞

f(t+ αn) = g(t),

then we write this as Tαnf = g. If the limit (6) holds uniformly for all t ∈ R, we
write UTαnf = g. We use H(f) to denote the uniform hull of f , i.e.,

(7) H(f) = {g ∈ C(R,Rn)| there exists a sequence αn such that UTαnf = g}.

More generally, we say that the pair (B, g) ∈ H (A, f) if there exists a sequence αn
such that UTαnA = B and UTαnf = g. For convenience, we label the equations
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x′ = A(t)x + f(t) and x′ = A(t)x by (EA,f) and (EA), respectively. The following
preliminary results will be used in the sequel and are included for completeness.

Lemma 2.1 (S. Bochner [2]). Let f ∈ C(R,Rn). Then f is almost periodic on R
if and only if for any pair of sequences {αn}, {βn} ⊂ R, there exist two common
subsequences {α′n} ⊂ {αn} , {β′n} ⊂ {βn} such that Tα′n+β′nf, Tα′nf , Tα′n(Tβ′nf) all
exist and Tα′n+β′nf = Tα′n(Tβ′nf).

Lemma 2.2 (A. M. Fink [5]). Let f, g ∈ C(R, Rn). If f is almost periodic on R
and g ∈ H(f), then g is almost periodic on R.

Lemma 2.3 (A. M. Fink [5]). Let x(t) be a bounded solution of (EA,f ). Then,
for any (B, g) ∈ H(A, f), there is a sequence {αn} ⊂ R and a solution y(t) of the
equation (EB,g) such that limn→∞ x(t+ αn) = y(t) pointwise in t ∈ R.

Now for any x(t) ∈ C(R,Rn) and l > 0, we define

Ll(x) = sup
t∈R

(
1
2l

∫ t+l

t−l
|x(s)|2ds

) 1
2

.

Lemma 2.4. If u, v ∈ C(R,Rn) and there exists a sequence {αn} ⊂ R such that
u(t+ αn) converges to v(t) for any t ∈ R, then for any l > 0, Ll(v) ≤ Ll(u).

Proof. For any l > 0, t ∈ R, u(t+ αn) converges to v(t) uniformly on [t− l, t+ l].
Therefore,

lim
n→∞

(
1
2l

∫ t+l

t−l
|u(s+ αn)− v(s)|2ds

) 1
2

= 0.

Using Minkowskii’s inequality, we have(
1
2l

∫ t+l

t−l
|v(s)|2ds

) 1
2

≤
(

1
2l

∫ t+l

t−l
|u(s+ αn)|2ds

) 1
2

+

(
1
2l

∫ t+l

t−l
|u(s+ αn)− v(s)|2ds

) 1
2

≤ sup
t∈R

(
1
2l

∫ t+l

t−l
|u(s)|2ds

) 1
2

+

(
1
2l

∫ t+l

t−l
|u(s+ αn)− v(s)|2ds

) 1
2

.

Letting n→∞, we have(
1
2l

∫ t+l

t−l
|v(s)|2ds

) 1
2

≤ sup
t∈R

(
1
2l

∫ t+l

t−l
|u(s)|2ds

) 1
2

= Ll(u),

and thus Ll(v) ≤ Ll(u). This completes the proof of the lemma.

We assume that for any (B, g) ∈ H (A, f) and (t, x) ∈ R × Rn, the equa-
tion (EB,g) has a continuous solution through (t, x) on R, and that there exists a
(t0, x0) ∈ R×Rn such that the solution x(t, t0, x0), denoted by x0(t), of the equa-
tion (EA,f) is bounded on Rn. From these assumptions, Lemma 2.2 and Lemma
2.3, for any (B, g) ∈ H (A, f) there exists a sequence {αn} and a solution y(t) of
the equation (EB,g) such that UTαnA = B,UTαnf = g and Tαnx0 = y for t ∈ R.
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Now, by way of notation, we define K = clco{x(t, t0,x0)| t ∈ R+} where clco{· · · }
denotes the convex closure of the set {· · · }, and

FB,g = {y(t)| y(t) satisfies (EB,g), and y(t) ∈ K, for all t ∈ R} .
By Lemma 2.3, for any (B, g) ∈ H (A, f), F B,g is not empty.

Lemma 2.5. For any (B, g) ∈ H (A, f) and any l > 0, there exists y0 ∈ F B,g

such that
Ll(y0) = inf

u∈FB,g
Ll(u) ≡ λ.

Proof. From Lemma 2.2 and Lemma 2.3, F B,g is sequentially compact in the
topology of pointwise convergence. Therefore, F B,g is closed under the topology
of uniform convergence on compact subsets. We define

λn = inf
u∈FB,g

 sup
|t|≤n

(
1
2l

∫ t+l

t−l
|u(s)|2ds

) 1
2
 .

Then, λn ≤ λ, and limn→∞ λn = λ. Take un ∈ F B,g such that

sup
|t|≤n

(
1
2l

∫ t+l

t−l
|un(s)|2ds

) 1
2

≤ λn +
1
n
.

Therefore, there exists a y0 ∈ FB,g such that un(t) converges to y0(t) uniformly on
any compact subset of R, i.e., |un(t)− y0(t)| → 0 uniformly on any compact subset
of R. Now, for fixed t ∈ R, there is a positive integer n > 0 such that |t| < n. An
application of Minkowskii’s inequality gives(

1
2l

∫ t+l

t−l
|y0(s)|2ds

) 1
2

≤
(

1
2l

∫ t+l

t−l
|y0(s)− un(s)|2ds

) 1
2

+

(
1
2l

∫ t+l

t−l
|un(s)|2ds

) 1
2

≤
(

1
2l

∫ t+l

t−l
|y0(s)− un(s)|2ds

) 1
2

+ sup
|t|≤n

(
1
2l

∫ t+l

t−l
|un(s)|2ds

) 1
2

≤
(

1
2l

∫ t+l

t−l
|y0(s)− un(s)|2ds

) 1
2

+ λn +
1
n
.(8)

Letting n → +∞, we see that the left-hand side of (8) is bounded above by λ,
independently of t ∈ R, so that

sup
t∈R

(
1
2l

∫ t+l

t−l
|y0(s)|2ds

) 1
2

≤ λ.

Since y0 ∈ F B,g, from the definition of λ we have that Ll(y0) = λ. This completes
the proof of the lemma.

Lemma 2.6. For any (B, g), (D,h) ∈ H (A, f) and any l > 0, we have

inf
u∈FB,g

Ll(u) = inf
u∈FD,h

Ll(u).
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Proof. From Lemma 2.5, we can take yB,g ∈ F B,g and yD,h ∈ F D,h such
that Ll(yB,g) = infu∈FB,g Ll(u) and Ll(yD,h) = infu∈FD,h Ll(u). We show that
Ll(yB,g) = Ll(yD,h). In fact, since (B, g), (D,h) ∈ H (A, f) , we have (D,h) ∈
H (B, g) . From Lemma 2.3 there is a sequence {αn} and a solution ỹD,h(t) of the
equation (ED,h) such that ỹD,h(t) ∈ FD,h and yB,g(t + αn) converges to ỹD,h(t)
pointwise in R. By Lemma 2.4, for any l > 0, Ll(ỹD,h) ≤ Ll(yB,g) and thus
Ll(yD,h) ≤ Ll(yB,g). Similarly, we have Ll(yB,g) ≤ Ll(yD,h). This completes the
proof of the lemma.

Lemma 2.7. Let (B, g) ∈ H(A, f) and let l > 0 be some real number. If any
nontrivial solution y(t) of (EB) satisfies

(9) inf
t∈R

(
1
2l

∫ t+l

t−l
|y(s)|ds)

)
> 0,

then there exists a unique solution yB,g(t) of the equation (EB,g) such that

(10) Ll(yB,g) = inf
u∈FB,g

Ll(u).

Proof. Lemma 2.5 implies the existence of yB,g. Now we show the uniqueness of
yB,g. Assuming the contrary, suppose that there exist two distinct trajectories
yB,g and zB,g of the equation (EB,g) satisfying (10). Let w = 1

2 (yB,g + zB,g) and
v = 1

2 (yB,g − zB,g). Then, we have that w is a solution of the equation (EB,g),
w ∈ FB,g, and that v is a solution of the equation (EB) and v(t) 6= 0 for all t ∈ R.
We define

δ = inf
t∈R

(
1
2l

∫ t+l

t−l
|v(s)|ds

)
,

and λ by the inf in Lemma 2.5.

Since v is a nontrivial solution of (EB), we must have δ > 0 by hypothesis (9).
Furthermore, Cauchy’s inequality gives

inf
t∈R

(
1
2l

∫ t+l

t−l
|v(s)|2ds

) 1
2

≥ inf
t∈R

(
1
2l

∫ t+l

t−l
|v(s)|ds

)
,

and so

inf
t∈R

(
1
2l

∫ t+l

t−l
|v(s)|2ds

) 1
2

≥ δ > 0.

Next, (
1
2l

∫ t+l

t−l
|w(s)|2ds

)
+

(
1
2l

∫ t+l

t−l
|v(s)|2ds

)

=

(
1
2l

∫ t+l

t−l

1
2
|yB,g(s)|2ds

)
+

(
1
2l

∫ t+l

t−l

1
2
|zB,g(s)|2ds

)

≤ sup
t∈R

(
1
2l

∫ t+l

t−l

1
2
|yB,g(s)|2ds

)
+ sup
t∈R

(
1
2l

∫ t+l

t−l

1
2
|zB,g(s)|2ds

)
,
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from which we obtain

1
2l

∫ t+l

t−l
|w(s)|2ds ≤ 1

2
L2
l (yB,g) +

1
2
L2
l (zB,g)− inf

t∈R

(
1
2l

∫ t+l

t−l
|v(s)|2ds

)
.

Since Ll(yB,g) = Ll(zB,g) = λ, we have the following inequalities:

L2
l (w) ≤ 1

2
L2
l (yB,g) +

1
2
L2
l (zB,g)− inf

t∈R

(
1
2l

∫ t+l

t−l
|v(s)|2ds

)

≤ 1
2
λ2 +

1
2
λ2 − δ2

< λ2.

This contradicts the definition of λ thereby completing the proof of the lemma.

Theorem 1. Let A(t), f(t) be almost periodic on R. Suppose that there is some
l > 0 such that for every (B, g) ∈ H (A, f), any nontrivial solution y(t) of the
equation (EB) satisfies (9). If there exists a (t0, x0) ∈ R × Rn such that K =
{x(t, t0, x0)|t ∈ R} is bounded in Rn, then for any (B, g) ∈ H (A, f), there exists a
solution of the equation (EB,g) which is almost periodic on R.

Proof. From Lemmas 2.6 and 2.7, for any (B, g) ∈ H (A, f), there exists a unique
solution yB,g(t) of the equation (EB,g) such that yB,g(t) ∈ K for all t ∈ R and

Ll(yB,g) = inf
u∈FB,g

Ll(u).

Now we show that yB,g(t) is almost periodic. From Bochner’s theorem (Lemma
2.1) we have that for any pair of sequences {αn}, {βn} ⊂ R, there exist common
subsequences {α′n} of {αn} and {β′n} of {βn} such that B(t+α′n) converges to some
D ∈ H (A) and g(t + α′n) converges to some h ∈ H(f), and B(t + α′n + β′n) and
D(t+β′n) converge to some E ∈ H (A) and g(t+α′n +β′n) and h(t+β′n) converge
to some e(t) ∈ H(f). By Lemma 2.3, there exist a solution yD,h(t) of the equation
(ED,h), two solutions yE,e(t) and zE,e(t) of the equation (EE,e) such that yD,h ∈
FD,h, yE,e, zE,e ∈ F E,e and such that yB,g(t+α′n) converges to yD,h(t), yD,h(t+β′n)
converges to yE,e(t), and yB,g(t+α′n +β′n) converges to zE,e(t), respectively. From
Lemma 2.4, we have

Ll(yD,h) ≤ Ll(yB,g), Ll(yE,e) ≤ Ll(yD,h), and Ll(zE,e) ≤ Ll(yB,g).
Lemmas 2.6 and 2.7 together imply that

yE,e(t) = zE,e(t),

for all t ∈ R. By Lemma 2.1, we have that yB,g(t) is almost periodic on R. This
completes the proof of Theorem 1.

3. A special case

In this section, we discuss the simplest equation, the first order differential equa-
tion

x′ = a(t)x + f(t),
where a(t) and f(t) are scalar functions defined on R. We denote this equation by
(Ea,f ). We always assume that a(t) and f(t) are almost periodic on R. First, using
Theorem 1, we can specify the condition on a(t) that will guarantee the existence
of an almost periodic solution.
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Theorem 2. Assume that the equation (Ea,f) has a bounded solution. If there is
an l > 0 such that for any b(t) ∈ H(a) we have that

inf
t∈R

1
2l

∫ t+l

t−l
e
∫
s
0 b(u)duds > 0,

then (Eb,g) has an almost periodic solution.

At the same time, if we assume some uniformity in the function a(t), we can
extend Favard’s theorem under slightly weaker conditions than those presented in
the previous section. To this end, we define

L(u) = sup
t∈R

 lim
l→∞

(
1
2l

∫ t+l

t−l
|u(s)|2ds

) 1
2


and establish an integral condition on the function a(t) and f(t).

Integral Condition. We say that a and f satisfy the Integral Condition if the
following two conditions hold:

(1) For any b ∈ H(a), there is a real number M > 0 such that, for all t ∈ R,

lim
l→∞

(
1
2l

∫ t+l

t−l
e2
∫ s
0 b(λ)dλds

)
≤M.

(2) Let (b, g) ∈ H(a, f) and (d, h) ∈ H(b, g). Let u(t) and v(t) be solutions
of (Eb,g) and (Ed,h), respectively. If u(t) is bounded on R and, for some
{αn} ⊂ R, u(t + αn) → v(t) pointwise for t ∈ R as n → ∞, then, for any
t ∈ R,

lim
n→∞

 lim
l→∞

(
1
2l

∫ t+l

t−l
|u(s+ αn)− v(s)|2ds

) 1
2
 = 0.

Lemma 3.1. Let a and f satisfy the Integral Condition, (b, g) ∈ H(a, f) and
{vn(t)} ⊆ Fb,g. Then there is a subsequence, denoted by {vn(t)} again, and a
solution v(t) of (Eb,g) such that v(t) ∈ Fb,g and, for any t ∈ R,

lim
n→∞

 lim
l→∞

(
1
2l

∫ t+l

t−l
|vn(s)− v(s)|2ds

) 1
2
 = 0.

Proof. Since Fb,g is sequentially compact, there is a function v(t) and a subsequence
of {vn(t)}, denoted by {vn(t)} again, such that v(t) ∈ Fb,g and vn(t) → v(t)
pointwise as n→∞. Now,

vn(s)− v(s) = e
∫ s
0 b(u)du(vn(0)− v(0)).

So, by (1) of the Integral Condition,

lim
n→∞

 lim
l→∞

(
1
2l

∫ t+l

t−l
|vn(s)− v(s)|2ds

) 1
2
 = 0 for any t ∈ R.

Lemma 3.2. Let a, f satisfy the Integral Condition, (b, g) ∈ H(a, f). If u(t) is a
bounded solution of (Ea,f), then there exists a bounded solution v(t) of (Eb,g) such
that L(v) ≤ L(u).
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Proof. By Lemma 2.3, there exists a bounded solution v(t) of (Eb,g) and a sequence
{αn} such that a(t+ αn)→ b(t), f(t+ αn)→ g(t) uniformly for t ∈ R as n→ ∞
and u(t+ αn)→ v(t) pointwise for t ∈ R as n→∞. From the Integral Condition,
we have that for any t ∈ R,

(11) lim
n→∞

(
lim
l→∞

1
2l

∫ t+l

t−l
|u(s+ αn)− v(s)|2ds

) 1
2

= 0.

Using Minkowskii’s inequality and suppressing some variables for ease of expo-
sition, we have(

1
2l

∫ t+l

t−l
|v(s)|2

) 1
2

≤
(

1
2l

∫ t+l

t−l
|u(s+ αn)|2

) 1
2

+

(
1
2l

∫ t+l

t−l
|u(s+ αn)− v(s)|2

) 1
2

,

(12)

from which(
lim
l→∞

1
2l

∫ t+l

t−l
|v(s)|2 ds

) 1
2

≤
(

lim
l→∞

1
2l

∫ t+l

t−l
|u(s+ αn)|2

) 1
2

+

(
lim
l→∞

1
2l

∫ t+l

t−l
|u(s+ αn)− v(s)|2

) 1
2

≤ sup
t∈R

(
lim
l→∞

1
2l

∫ t+l

t−l
|u(s)|2

) 1
2

+

(
lim
l→∞

1
2l

∫ t+l

t−l
|u(s+ αn)− v(s)|2

) 1
2

.

Letting n→∞, we get

(13)

(
lim
l→∞

1
2l

∫ t+l

t−l
|v(s)|2

) 1
2

≤ sup
t∈R

(
lim
l→∞

1
2l

∫ t+l

t−l
|u(s)|2

) 1
2

= L(u),

and thus L(v) ≤ L(u). This completes the proof of the lemma.

Lemma 3.3. Let a, f satisfy the Integral Condition. For any (b, g) ∈ H(a, f), there
exists u0 ∈ Fb,g such that L(u0) = infu∈Fb,g L(u).

Proof. Since F b,g is sequentially compact in the topology of pointwise convergence,
F b,g is closed under the topology of uniform convergence on compact subsets. We
define λ, as usual, by

λ = inf
u∈Fb,g

L(u)

and

λn = inf
u∈Fb,g

 sup
|t|≤n

(
lim sup
l→∞

1
2l

∫ t+l

t−l
|u(s)|2 ds

) 1
2
 .

Then, λn ≤ λ and limn→∞ λn = λ. Take un ∈ F b,g such that

sup
|t|≤n

(
lim
l→∞

1
2l

∫ t+l

t−l
|un(s)|2ds

) 1
2

≤ λn +
1
n
.
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From Lemma 3.1, there exists a u0 ∈ F b,g such that, for any t ∈ R,

lim
n→∞

 lim
l→∞

(
1
2l

∫ t+l

t−l
|un(s)− u0(s)|2ds

) 1
2
 = 0.

Now, for fixed t ∈ R, there is a positive integer n > 0 such that |t| < n. Minkowskii’s
inequality implies(

1
2l

∫ t+l

t−l
|u0(s)|2ds

) 1
2

≤
(

lim
l→∞

1
2l

∫ t+l

t−l
|u0(s)− un(s)|2ds

) 1
2

+

(
lim
l→∞

1
2l

∫ t+l

t−l
|un(s)|2ds

) 1
2

≤
(

lim
l→∞

1
2l

∫ t+l

t−l
|u0(s)− un(s)|2ds

) 1
2

+ sup
|t|≤n

(
lim
l→∞

1
2l

∫ t+l

t−l
|un(s)|2ds

) 1
2

≤
(

lim
l→∞

1
2l

∫ t+l

t−l
|u0(s)− un(s)|2ds

) 1
2

+ λn +
1
n
.(14)

Therefore,(
lim
l→∞

1
2l

∫ t+l

t−l
|u0(s)|2ds

) 1
2

≤
(

lim
l→∞

1
2l

∫ t+l

t−l
|u0(s)− un(s)|2ds

) 1
2

+ λn +
1
n
.

Letting n→ +∞ we have, for any t ∈ R,(
lim
l→∞

1
2l

∫ t+l

t−l
|u0(s)|2ds

) 1
2

≤ λ,

so that

sup
t∈R

(
lim
l→∞

1
2l

∫ t+l

t−l
|u0(s)|2ds

) 1
2

≤ λ.

From the definition of λ and since u0 ∈ F b,g, we have that L(u0) = λ. This
completes the proof of the lemma.

Lemma 3.4. Let a, f satisfy the Integral Condition. For any (b, g), (d, h) ∈ H
(a, f), we have

inf
u∈Fb,g

L(u) = inf
u∈Fd,h

L(u).

Proof. From Lemma 3.3, we can take yb,g ∈ F b,g and yd,h ∈ F d,h such that
L(yb,g) = infu∈Fb,g L(u) and L(yd,h) = infu∈Fd,h L(u). We show that L(yb,g) =
L(yd,h). In fact, since (b, g), (d, h) ∈ H (a, f), we have (d, h) ∈ H (b, g) . From
Lemma 2.3 there is a sequence {αn} and a solution ỹd,h(t) of the equation (Ed,h)
such that ỹd,h(t) ∈ Fd,h and yb,g(t + αn) converges to ỹd,h(t) pointwise in R. By
Lemma 3.2, L(ỹd,h) ≤ L(yb,g) and thus L(yd,h) ≤ L(yb,g). Similarly, we have
L(yb,g) ≤ L(yd,h). This completes the proof of the lemma.

Using the above three lemmas and an argument similar to that in Lemma 2.7,
we can prove this final lemma.
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Lemma 3.5. Let a, f satisfy the Integral Condition. If (b, g) ∈ H(a, f) are such
that for any t0 ∈ R,

(15) inf
t∈R

(
lim inf
l→∞

1
2l

∫ t+l

t−l
e
∫
t0+s
t0

b(η)dη
ds

)
> 0,

then there exists a unique solution vb,g of (Eb,g) such that L(vb,g) = infu∈Fb,g L(u).

For this special case, we can now formulate the following theorem in which
Favard’s condition is replaced by the weaker condition (15), where t0 ∈ R is arbi-
trary but fixed.

Theorem 3. Let a, f satisfy the Integral Condition. Suppose that for any b ∈ H(a),
(15) holds. If (Ea,f ) has a bounded solution, then for any (b, g) ∈ H(a, f), (Eb,g)
has an almost periodic solution on R.

The proof of this theorem is similar to that of Theorem 1, so we omit it.

4. Example

Next, we construct a simple example in which Favard’s condition (3) does not
hold, but the key condition of Theorem 3 holds and the system has an almost
periodic solution. Consider the first order linear differential equation (Ea,f ), where
a(t), f(t) : R → R are almost periodic functions. Let x(t, τ, x0) be the solution
through (τ, x0) of (Ea,f) for any τ, x0 ∈ R. For any b(t) ∈ H (a) and g(t) ∈ H (f),
there exists a solution y(t, τ, y0) of the equation (Eb,g) through (τ, y0). We assume
that the function a(t) satisfies the following three conditions:

(i) a(t) is almost periodic on R,
(ii)

∫ t
0 a(s)ds < 0 for all t ∈ R, and

(iii) there is a sequence {tn} such that limn→∞
∫ tn

0 a(s)ds = −∞.

Consider the special differential equation (Ea,−a)

x′ = a(t)(x − 1).

Obviously, this equation has an almost periodic solution x(t) ≡ 1, but the unper-
turbed equation, x′ = a(t)x, does not satisfy Favard’s condition (3). However, we
will show that this system satisfies the key condition of Theorem 3 for a special
function a(t). In order for the key condition of Theorem 3 to hold, we construct
a(t) as follows:

g1(t) =
{
− 1

2 t, t ∈ [0, 2],
t− 3, t ∈ [2, 3],

g2(t) =


− 1

32−21
2
2 t, t ∈ [0, 32 − 21],

− 1
22−2 , t = 8,

linear, t ∈ [32 − 21, 32 − 21 + 1] ∪ [32 − 1, 32],

gn(t) =


− 1

3n−2n−1 × 2
n t, t ∈ [0, 3n − 2n−1],

− 1
2n−2 , t ∈ [3n − 2n−1 + 1, 3n − 1],

linear, t ∈ [3n − 2n−1, 3n − 2n−1 + 1] ∪ [3n − 1, 3n].
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Extend gn(t) to be odd and periodic with period 2× 3n. Then gn(t) satisfies the
following conditions:∫ t

0

gn(s)ds ≤ 0, for all t ∈ R;

sup
t∈R
|gn(t)| = n

2n−2
;

∫ t

0

gn(s)ds ≥ − 1
n
,

(16)

for all t /∈ [k · 2 · 3n − 2n−1, k · 2 · 3n + 2n−1], k = 0,±1,±2, . . ., and∫ 3n

0

gn(s)ds ≤ −1,

for each n ∈ Z+. Letting an(t) = 1
ngn(t), we see that an(t) is a periodic function

for each n, |an(t)| ≤ (n2n−2)−1, and setting a(t) =
∑∞

n=1 an(t), it follows that a(t)
is almost periodic on R. According to the definition of an(t) and a(t), we have that

A(t) =
∫ t

0

a(s)ds =
∞∑
n=1

∫ t

0

an(s)ds ≤ 0.

We let

J = R \
∞⋃
n=2

∞⋃
k=−∞

[3n + k · 2 · 3n − 2n−1, 3n + k · 2 · 3n + 2n−1].

Then, it is easy to show that for any l > 0, the length of J ∩ [−l, l] ≥ l. Therefore,
for any t ∈ R, we can take l > 0 such that the length of [t− l, t+ l] ∩ J ≥ l. Thus,

1
2l

∫ t+l

t−l
eA(s)ds ≥ 1

2l

∫
J∩[t−l,t+l]

eA(s)ds ≥ 1
2
e−δ

where δ =
∑∞

n=1 n
−2. Therefore, for any nontrivial solution x(t) = x0e

A(t) of (Ea),
we have that

(17) inf
t∈R

(
lim inf
l→∞

1
2l

∫ t+l

t−l
|x(s)|ds

)
≥ |x0|

2
e−δ > 0.

It is easy to show that for any b ∈ H (a) the solution y(t) of (Eb) also satisfies an
inequality similar to (17).

Since a is almost periodic and
∫ t

0
a(s)ds ≤ 0, its mean value m {a} ≤ 0. Thus,

for t0 ∈ R, by the uniformity of this mean value, cf. [3], we obtain

lim
t→∞

1
t

∫ t0+t

t0

a(s)ds ≤ 0.

So, for any b ∈ H (a), we can show that
∫ t

0 b(s)ds ≤ 0 and, therefore, for all t ∈ R,

lim
l→∞

(
1
2l

∫ t+l

t−l
e2
∫
s
0 b(λ)dλds

)
≤ 1.

Now, let u(t) and v(t) be bounded solutions of (Ea,−a), and (Eb,−b), respectively
and let {αn} ⊂ R such that a(t + αn) → b(t) uniformly and u(t + αn) → v(t)
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pointwise on R as n→∞. Then

u(t+ αn)− v(t) = e
∫ t+αn
αn

a(s)ds

(
u(αn) +

∫ αn+t

αn

e−
∫ s
αn

a(λ)dλa(s)ds
)

−e
∫
t
0 b(s)ds

(
v(0) +

∫ t

0

e−
∫
s
0 a(λ)dλa(s)ds

)
= e

∫
t
0 a(s+αn)ds(u(αn) + 1)− e

∫
t
0 b(s)ds(v(0) + 1).

Hence, we can prove that, for any t ∈ R,

lim
n→∞

(
lim
l→∞

1
2l

∫ t+l

t−l
|u(s+ αn)− v(s)|2ds

) 1
2

= 0.

Thus the pair a,−a satisfies the Integral Condition.
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