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ON ASYMPTOTICALLY NONEXPANSIVE MAPPINGS
IN HYPERCONVEX METRIC SPACES

M. A. KHAMSI

(Communicated by Jonathan M. Borwein)

Abstract. Since bounded hyperconvex metric spaces have the fixed point
property for nonexpansive mappings, it is natural to extend such a powerful
result to asymptotically nonexpansive mappings. Our main result states that
the approximate fixed point property holds in this case. The proof is based on
the use, for the first time, of the ultrapower of a metric space.

Introduction

The notion of hyperconvexity is due to Aronszajn and Panitchpakdi [AP] who
proved that a hyperconvex space is a nonexpansive absolute retract; i.e., it is a
nonexpansive retract of any metric space in which it is isometrically embedded.
The corresponding linear theory is well developed and associated with the names
of Gleason, Goodner, Kelley and Nachbin (see, for instance, [La]). The nonlinear
theory is still developing. The recent interest in these spaces goes back to the
results of Sine [Sn1] and Soardi [So] who proved independently that the fixed point
property for nonexpansive mappings holds in bounded hyperconvex spaces. Since
then many interesting results have been shown to hold in hyperconvex spaces. For
more on the metric fixed point property, the interested reader may consult [AK]
and [GK] as well as the most recent book [KK].

Recall also that Jawhari, Misane and Pouzet [JMP] were able to show that
Sine and Soardi’s fixed point theorem is equivalent to the classical Tarski’s fixed
point theorem in complete ordered sets. This happens via the notion of generalized
metric spaces. Therefore, the notion of hyperconvexity should be understood and
appreciated in a more abstract formulation.

In opposition to the lack of linearity, hyperconvexity provides us with a very rich
metric structure that leads to a collection of surprising and beautiful results related
to different branches of mathematics such as topology, graph theory, multivalued
analysis, and fixed point theory.

In this work, we investigate some open questions related to the fixed point prop-
erty (fpp) in hyperconvex metric spaces. Historically, nonexpansive mappings have
enjoyed most of the interest, and were at the core of the fpp in hyperconvex metric
spaces. The main motivation for this work was a question by Kirk [Ki2] of whether
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asymptotically nonexpansive mappings have the fpp in bounded hyperconvex met-
ric spaces. This question is still open. But we were able to show that the asymptotic
fixed point property holds in this case. The proof is nonstandard in nature and
uses the notion of ultrapower of a metric space. To the best of our knowledge, this
is the first time that such a notion is considered in the metric setting, which leads
to some positive new results.

Basic definitions

A metric space M is said to be hyperconvex if given any family {xα} of points
of M and any family {rα} of real numbers satisfying

d(xα, xβ) ≤ rα + rβ ,

it is the case that
⋂
αB(xα; rα) 6= ∅.

The fundamental result of [AP] asserts that a metric space M is hyperconvex if
and only if it is injective. Thus M is hyperconvex if given any two metric spaces X
and Y with Y a subspace of X, and any nonexpansive mapping f : Y → M, then
f has a nonexpansive extension f̃ : X → M. Basic results about injective metric
spaces can be found in [Is].

An admissible subset of M is a set of the form⋂
i

B(xi; ri)

where {B(xi; ri)} is a family of closed balls centered at points xi ∈ M with re-
spective radii ri. It is quite easy to see that an admissible subset of a hyperconvex
metric space is hyperconvex. In what follows we use A(M) to denote the family of
all nonempty admissible subsets of M .

The recent interest into hyperconvexity goes back to the results of Sine [Sn1]
and Soardi [So] who proved that if H is a bounded hyperconvex metric space and
T : H → H is nonexpansive, i.e., d(T (x), T (y)) ≤ d(x, y) for any x, y ∈ H , then
there exists a fixed point x ∈ H , i.e., T (x) = x. Moreover, the fixed point set
Fix(T ) is hyperconvex and, consequently, is a nonexpansive retract of H .

Perhaps the most elegant result in this direction belongs to Baillon [Ba], who
proved that the conclusion of the results of Sine and Soardi is still valid when
dealing with any family of commutative nonexpansive mappings. In fact, his proof
is based on the following structural result:

Theorem. Let H be a bounded hyperconvex metric space. If {Hi}i∈I is a decreasing
family of nonempty hyperconvex subsets of H, then we have⋂

i∈I
Hi 6= ∅,

and it is hyperconvex.

The proof is nonintuitive and very complicated.
When H is not bounded, then a nonexpansive mapping may not have a fixed

point. But it is not hard to see that the nonexpansive mapping T always has an
approximate fixed point, i.e.,

inf{d(x, T (x)); x ∈ H} = 0 .
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When a map satisfies the above, we say that T satisfies the approximate fixed point
property. In this case, the set

Hε = {x ∈ H ; d(x, T (x)) ≤ ε}

is not empty for any ε > 0. In fact, Sine [Sn2] proved that Hε is hyperconvex.
Next, we discuss convexity in hyperconvex metric spaces. Historically there are

two approaches to this. One is based on Penot’s ideas [Pe], which were based on the
notion of convexity structures and which gave the first interesting generalization
of the classical Kirk’s fixed point theorem [Ki1] in metric spaces. The other one
mimics linear convexity. Here we will use that one. In order to better understand
it, we will use a natural embedding of any metric space M in the Banach space
l∞(M) (see [EK] for more on this). So, if H is hyperconvex, then there exists a
nonexpansive retract R : l∞(H)→ H . For any x, y ∈ H , we write

tx⊕ (1 − t)y = R(tx+ (1− t)y)

for any t ∈ [0, 1]. Here we are using the linear convexity of l∞(H). It is not hard
to check that for any z ∈ H we have

d(z, tx⊕ (1− t)y) ≤ td(z, x) + (1− t)d(z, y)

for any t ∈ [0, 1].

Ultrapower of metric spaces

Let (M,d) be a bounded metric space and U a nontrivial ultrafilter on the natural
numbers. Consider the cartesian product M =

∏
n≥1

M . Define the equivalence

relation ∼ on M by

(xn) ∼ (yn) if and only if lim
U
d(xn, yn) = 0.

The limit over U exists since M is bounded. Then we consider the quotient set M̃ .
An element x̃ ∈ M̃ is a subset of M. If (xn) ∈ x̃, then (yn) ∈ x̃ if and only if
lim
U
d(xn, yn) = 0. On M̃ define the metric d̃ by

d̃(x̃, ỹ) = lim
U
d(xn, yn)

where (xn) (resp. (yn)) is any element in x̃ (resp. ỹ). It is easy to see that d̃ defines
a metric on M̃ which has many nice properties similar to the linear ultrapower of
a Banach space. For example, it is obvious that M is isometric to a subset of M̃ .
Indeed, let

Ṁ = {(̃xn);xn = x for any n ≥ 1} .
Then it is easy to show that M and Ṁ are isometric. In the sequel we will use the
notation M = Ṁ and see x ∈ M as an element of M̃ as well. Also, it is worth
mentioning that if M is complete, then M̃ is complete. The proof is similar to the
linear one. In the linear case it is known that if X is a finite-dimensional Banach
space, then X̃ is also a finite-dimensional Banach space with the same dimension
as X . The analogue of this is the following result.

Proposition 1. If M is compact, then M̃ is also compact and isometric to M .
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Proof. Since M is compact, then for any sequence (xn) ∈ M the limit lim
U
xn = x

exists (in M) since U is an ultrafilter. So we have

lim
U
d(xn, x) = 0,

or, equivalently, (̃xn) = x. Hence M̃ is a subset of Ṁ , i.e., M̃ = Ṁ . Therefore, M̃
is isometric to M and must be compact. �

Clearly, one may then ask, what if M is not compact. In this case it is natural
to use measures of noncompactness. The most commonly used were introduced by
Hausdorff and Kuratowski (see [ADL] for more details).

Definition 1. Let (M,d) be a metric space and let B(M) denote the collection of
nonempty, bounded subsets of M .

(1) The Kuratowski measure of noncompactness α : B(M)→ [0,∞) is defined
by

α(A) = inf{ε > 0; A ⊂
i=n⋃
i=1

Ai with Ai ∈ B(M) and diam(Ai) ≤ ε} .

(2) The Hausdorff (or ball) measure of noncompactness χ : B(M) → [0,∞) is
defined by

χ(A) = inf{r > 0; A ⊂
i=N⋃
i=1

B(xi, r) with xi ∈M} ,

where B(x, r) denotes the closed ball centered at x with radius r.

We have the following more general result:

Proposition 2. Let A be a bounded subset of M . Set Ã = {(̃xn); xn ∈ A}. Then
we have

χ(A) = χ(Ã) .

Proof. Let ε > χ(A) and δ > 0. Then by definition of χ, there exists a finite set
D = {x1, x2, · · · , xN} such that

A ⊂
i=N⋃
i=1

B(xi, ε) .

Consider D̃. Our previous result implies that D̃ is compact. So there exists a finite
set {x̃1, x̃2, · · · , x̃K} such that

D̃ ⊂
i=K⋃
i=1

B(x̃i, δ) .

From here it is easy to see that

Ã ⊂
i=K⋃
i=1

B(x̃i, ε+ δ),

which implies
χ(Ã) ≤ ε+ δ .
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Since δ was chosen arbitrarily, then we have χ(Ã) ≤ ε, which implies

χ(Ã) ≤ χ(A) .

In order to complete our proof, we need to show that χ(A) ≤ χ(Ã). Let ε > 0. Set
r = χ(Ã) + ε. Then there exist x̃i (i = 1, · · · ,K) in Ã such that

Ã ⊂
i=K⋃
i=1

B(x̃i, r) .

Set x̃i = ˜(xi(n)), for i = 1, · · · ,K, with xi(n) ∈ A. We claim that for any δ > 0
there exists n0 ≥ 1 such that

A ⊂
i=K⋃
i=1

B(xi(n0), r + δ) .

Assume not. Then there exists δ0 > 0 such that for any n ≥ 1, there exists xn ∈ A
that satisfies

xn 6∈
i=K⋃
i=1

B(xi(n), r + δ0) .

Set x̃ = (̃x(n)) ∈ Ã. Then

d̃(x̃, x̃i) = lim
U
d(xn, xi(n)) ≥ r + δ0

for i = 1, · · · ,K. Clearly, we have

x̃ 6∈
i=K⋃
i=1

B(x̃i, r),

which is our desired contradiction. So letting δ > 0, we know that there exists
n0 ≥ 1 such that

A ⊂
i=K⋃
i=1

B(xi(n0), r + δ) .

This clearly implies
χ(A) ≤ r + δ = χ(Ã) + ε+ δ .

Since ε and δ were chosen arbitrarily positive, we conclude that

χ(A) ≤ χ(Ã) ,

which completes the proof of our proposition. �
When M is not compact, more can be said about the ultrapower.

Proposition 3. Assume M is not compact. Then M̃ is not separable.

Proof. Assume M is not compact. Then there exists a bounded sequence (xn)
with no convergent subsequence. In particular, lim

U
xφ(n) does not exist for any

subsequence (xφ(n)) of (xn). Moreover, we can assume that there exists ε > 0 such
that

sep(xn) = inf{d(xn, xm); n 6= m} ≥ ε .
For any subsequence (xφ(n)) of (xn) set x̃φ = ˜(xφ(n)). Clearly, we have

d̃(x̃φ, x̃α) = lim
U
d̃(xφ(n), xα(n)) ≥ ε .
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Since any sequence has uncountably many subsequences, the above result implies
that M̃ has an uncountable ε-separated set. Therefore, M̃ is not separable. �

It is quite an amazing result since a linear version of it is also known.
Next we discuss how Lipschitzian mappings extend naturally to the ultrapower.

Indeed, let T : M →M be a Lipschitzian mapping with L as a constant of Lipschitz,
i.e.,

d(T (x), T (y)) ≤ L d(x, y) for x, y ∈M.

Then
lim
U
d(xn, yn) = 0 implies lim

U
d(T (xn), T (yn)) = 0 .

This obviously implies that T̃ : M̃ → M̃ defined by

T̃ ((̃xn)) = ˜(T (xn))

is well defined. It is easy to check that T̃ is Lipschitzian with L as a constant of
Lipschitz. We also have

T̃ (x) = T (x) for any x ∈M .

Before we jump to the next section where the main result of this work will be
stated, it is worth mentioning that hyperconvexity is not a super-property; i.e., the
ultrapower of a hyperconvex metric space is not necessarily hyperconvex.

For more on ultrapowers and nonstandard techniques, the interested reader is
advised to consult [AK] and [Sm].

Main result

Before we state the main result of this work, we will need some definitions. Let M
be a metric space. A map T : M →M is said to be asymptotically nonexpansive if
there exists a sequence of positive numbers {kn}, with lim

n→∞
kn = 1, such that

d(T n(x), T n(y)) ≤ knd(x, y) for any x, y ∈M and n = 1, 2, · · · .
The main result of our work goes as follows:

Theorem. Let H be a bounded hyperconvex metric space and T : H → H an
asymptotically nonexpansive mapping. Then T has approximate fixed points, i.e.,

inf{d(x, T (x)); x ∈ H} = 0 .

Proof. In order to prove the above conclusion, we need to show that for any ε > 0,
there exists x ∈ H such that

d(x, T (x)) ≤ ε.
Using the metric convexity of H , we define the map

Tn =
1
kn
T n ⊕

(
1− 1

kn

)
x0

where x0 is a fixed point inH and kn is the Lipschitz constant of T n. The maps {Tn}
are nonexpansive. Consider the ultrapower H̃ of H , over a nontrivial ultrafilter U .
Define the operators T̂ and T̃ by

T̂ (x̃) = T̂ ((̃xn)) = ˜(T n(xn)) and T̃ (x̃) = T̃ ((̃xn)) = ˜(T (xn)) .
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Since T is an asymptotically nonexpansive mapping, the map T̂ is nonexpansive.
Moreover, we have

T̂ ((̃xn)) = ˜(Tn(xn)) .

Since Tn is nonexpansive, Sine and Soardi’s fixed point theorem implies the exis-
tence of a fixed point xn (of Tn). The point x̃ = (̃xn) is a fixed point of T̂ . Hence
the fixed point set Fix(T̂ ) is a nonempty subset of H̃ . Since the two operators T̂
and T̃ commute, then T̃ leaves invariant the set Fix(T̂ ). It is easy to show that T̃
restricted to Fix(T̂ ) is in fact an isometry (in particular, it is nonexpansive). Fix

ε > 0. Let x̃i ∈ Fix(T̂ ), i = 1, .., N . If x̃i = ˜(xn(i)), for i = 1, · · · , N , set

εn = max
1≤i≤N

d
(
xn(i), Tn(xn(i))

)
.

Then we have
lim
U
εn = 0 .

Set
Hn = {x ∈ H ; d(x, Tn(x)) ≤ εn} .

Then Hn 6= ∅ because xn(i) ∈ Hn, for i = 1, .., N . Since Tn is nonexpansive, Sine
[Sn2] proved that Hn is hyperconvex. Therefore, there exists

zn(i) = εxn(1)⊕ (1− ε)xn(i) ∈ Hn

for i = 1, .., N . Consider, the point

z̃i =
(̃
zn(i)

)
,

which we will denote εx̃1 ⊕ (1− ε)x̃i. Then we have z̃i ∈ Fix(T̂ ), and

d(z̃i, z̃j) ≤ (1 − ε)d(x̃i, x̃j)

for i, j = 2, .., N . Back to our maps T̂ and T̃ . Let x̃ ∈ Fix(T̂ ). Write x̃ = x̃1. Then
from the above ideas, there exists x̃2 ∈ Fix(T̂ ) such that

x̃2 = εx̃1 ⊕ (1− ε)T̃
(
x̃1

)
.

By induction, we will construct a sequence (x̃n) of points in Fix(T̂ ) defined by

x̃n+1 = εx̃1 ⊕ (1− ε)T̃
(
x̃n

)
.

We have for any n < m,

d(x̃n, x̃m) ≤ (1− ε)d
(
T̃
(
x̃n−1

)
, T̃
(
x̃m−1

))
and, since T̃ is nonexpansive when restricted to Fix(T̂ ), we get

d(x̃n, x̃m) ≤ (1− ε)d
(
x̃n−1, x̃m−1

)
.

This clearly implies that the sequence (x̃n) is a Cauchy sequence. Hence it converges
to ω̃ ∈ Fix(T̂ ). Moreover, we have

d
(
ω̃, T̃ (ω̃)

)
= lim

n→∞
d
(
x̃n+1, T̃ (x̃n)

)
≤ ε lim

n→∞
d
(
x̃1, T̃ (x̃n)

)
.
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If we set δ = diameter(H), we get

d
(
ω̃, T̃ (ω̃)

)
≤ εδ .

Therefore, we have proved that for any ε > 0, there exists ω̃ε ∈ Fix(T̂ ), such that

d
(
ω̃ε, T̃ (ω̃ε)

)
≤ ε .

From this it is easy to extract xε ∈ H such that

d
(
xε, T (xε)

)
≤ ε

for any ε > 0. �
Remark. Recall that Kirk’s original question was about the existence of a fixed
point for such mappings. This problem is still open. But one may use a simple
embedding of any metric space M into l∞(M) (see [EK] for more on this), to show
that, in fact, the main problem described here is equivalent to the same problem
for the unit ball of l∞. It is worth mentioning that the existence of a fixed point
for asymptotically nonexpansive mappings is closely related to the existence of a
fixed point for k-uniformly Lipschitzian mappings in the linear case (see [KX] for
more on this).

The author wishes to thank the referee for valuable comments on the final version
of this work.
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