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ON THE GENUS OF ELLIPTIC FIBRATIONS

J.-B. GATSINZI

(Communicated by Paul Goerss)

Abstract. A simply connected topological space is called elliptic if both
π∗(X,Q) and H∗(X,Q) are finite-dimensional Q-vector spaces. In this pa-
per, we consider fibrations for which the fibre X is elliptic and H∗(X,Q) is
evenly graded. We show that in the generic cases, the genus of such a fibration
is completely determined by generalized Chern classes of the fibration.

Introduction

In this paper, all topological spaces are supposed to be 1-connected and having
the rational homotopy type of a CW complex of finite type.

The genus of a fibration X → E
p→ B is the least integer n such that B can be

covered by n+1 open subsets, over each of which p is a trivial fibration, in the sense
of fibre homotopy type. We consider here the genus of fibrations whose fibres are
elliptic spaces. For recall that a space X is elliptic if both H∗(X,Q) and π∗(X)⊗Q
are finite-dimensional Q-vector spaces. Through this paper we work over rationals
unless otherwise stated, and we will rely on the theory of Sullivan models.

We establish the following.

Theorem A. Let X → E
p→ B be a fibration where X is a sphere. Such a fibration

is classified by the map f : B → K(Q, 2k). Then the genus of p is the nilpotency
index of α = ImH2k(f), that is, the least r such that αr+1 = 0 (Theorem 2.3).

Theorem B. Given a fibration X → E
p→ B where X is a homogeneous space

G/H, when G and H have the same rank and B is a formal space, the genus of p
is bounded above by nilHeven(B) (Corollary 4.7).

In fact, we prove that the genus of p is equal to the nilpotency index of the
subalgebra of H∗(B,Q) generated by the generalized Chern classes of the fibration.

1. LS category and related invariants

Here we will recall some homotopy invariants of LS category type as well as the
relation between the genus and universal fibrations.
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Definition 1.1. The LS category of a space X , written cat(X), is the least integer
n such that X can be covered by n+ 1 open subsets, each contractible in X .

The original definition of the LS category differs from the one above by 1 (see
[10]), but the definition above has become a standard in homotopy theory, since
cat(X) = 0 if and only if X is contractible. Since a direct computation of cat(X)
is difficult, it is more convenient to approximate it by other invariants.

Definition 1.2. The nilpotency index of a ring R, denoted by nil(R) is the least
integer n such that Rn+1 = 0. If r ∈ R, the nilpotency index of r is the least n
such that rn+1 = 0.

Note that in our definition, nil(R) is one unit less than the usual definition.
We have

(1) cat(X) ≥ nil H̃(X),

where H̃ is the reduced cohomology with any coefficient ring.

Definition 1.3. The category of a map f : X → Y , denoted by cat(f), is the
least integer n such that X can be covered by n+ 1 open subsets Ui, for which the
restriction of f to each Ui is nullhomotopic.

Note that
cat(f) ≤ min{cat(X), cat(Y )}.

Moreover, cat(X) = cat(idX), so that the category of a map is a generalisation of
the LS category of a space. As in Equation (1), we have

(2) cat(f) ≥ nil(Im H̃(f))

where
H̃(f) : H̃(Y )→ H̃(X)

is the induced morphism in reduced cohomology with any coefficient ring.

Definition 1.4. Let p : E → B be a fibration. The sectional category of p, secat(p),
is the least integer n such that B can be covered by n+ 1 open subsets, over each
of which p has a section.

An approximation of secat(p) is given by the inequality [10]

(3) secat(p) ≥ nil(ker H̃(p)).

Definition 1.5. The genus of p is the least integer n such that B can be covered
by n + 1 open subsets, over each of which p is a trivial fibration, in the sense of
fibre homotopy type.

It follows from the definitions above that

(4) secat(p) ≤ genus(p),

and equality holds if p is a principal fibration.
If f : B′ → B is a map, consider p′ : E′ → B′, the fibration induced from p by

f . It is easily seen that secat(p′) ≤ secat(p), and equality holds if f is a homotopy
equivalence. The genus behaves in a similar way.

We define a similar invariant for G-bundles. If p : E → B is a G-bundle, define
Gcat(p) as the least integer n such that there is a covering of B by n + 1 open
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subsets over each of which p is a trivial bundle. Of course, genus(p) ≤ Gcat(p) and
Gcat(p) = genus(π), where π is the associated principal fibre bundle. Moreover, if
f : B → BG is the classifying map of π, then [10]

(5) Gcat(p) = cat(f).

In view of the relation above, if p is a complex fibre bundle, then Chern classes
may play a role in the estimation of the genus(p). We will pursue this analogy for
fibrations whose fibres are complex projective spaces.

As for Gcat, the genus is closely related to classifying spaces. Recall that fi-
brations with fibre in the homotopy type of X are obtained, up to fibre homotopy
equivalence, as a pull-back of the universal fibration [1]

X → B aut•X → B autX,

where autX denotes the monoid of self-homotopy equivalences of X, aut•X is
the monoid of pointed self-homotopy equivalences of X, and B is the Dold-Lashof
functor from monoids to topological spaces [2].

Letting B̃ autX → B autX be the universal covering, the induced fibration
X → B̃ aut•X → B̃ autX is universal for fibrations with simply connected base
spaces [4, Proposition 4.2].

The genus behaves like Gcat towards universal fibrations. We have

Theorem 1.6. [10] If X → E
p→ B is a fibration, then

(6) genus(p) = cat(f),

where f : B → B autX is the classifying map of p.

Some of the invariants above can also be defined in terms of existence of a section
of a fibrewise join of fibrations. If F1 → E1

p1→ B and F2 → E2
p2→ B are fibrations

with the same base, then the fibrewise join is the fibration p1 ∗ p2 : E1 ∗B E2 → B,
where elements of E1 ∗B E2 are of the form (t1e1, t2e2), t1 + t2 = 1, p1(e1) =
p2(e2), with the restriction that tiei is independent of ei if ti = 0. Naturally
(p1 ∗ p2)(t1e1, t2e2) = p1(e1) = p2(e2). Note that the fibre is the join F1 ∗ F2.

If p is a fibration, p(n) will denote the fibrewise join of n+1 copies of p. Consider
the path fibration γ : PB → B. The total space of the fibrewise join γ(n) will be
denoted by Gn(B) and is often referred to as the nth Ganea space of B. The
fibration Gn(B)→ B is also called the Ganea fibration [7].

Theorem 1.7. Let p : E → B be a fibration and γ : PB → B the path fibration.
cat(B) is the least integer n such that γ(n) : Gn(B)→ B admits a section [7] and
secat(p) is the least integer such that p(n) has a section [10].

In particular, for the path fibration γ : PB → B, cat(B) = secat(γ) = genus(γ).

The category of a map can be defined using the Ganea fibration.

Theorem 1.8. [7] If f : X → Y is a mapping, cat(f) is the least n such that there
is a lifting f̃ of f in the following diagram:

Gn(Y )

γ(n)

��
X

f //

f̃
<<

Y
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If one forms the pull-back

Efn
f̄ //

γ′(n)

��

Gn(Y )

γ(n)

��
X

f // Y

then cat(f) is the least n such that the induced fibration Efn → X possesses a
section.

The rational category of X , denoted by cat0(X), is defined by cat0(X) =
cat(X0). Here X0 denotes the rationalization of X . For a mapping f : X → Y ,
cat0(f) will denote cat(f0), where f0 : X0 → Y0 is the rationalization of f .

From now on, we will assume that Hi(X) is a finite-dimensional Q-vector space,
for each i. Recall that the Sullivan minimal model of X is a free commutative
cochain algebra (ΛZ, d) such that dZ ⊂ Λ≥2Z, with Zn ∼= HomQ(πn(X), Q) (see
[16], [9]). Félix and Halperin showed that the rational category can be computed
using Sullivan models, by exhibiting a model of the Ganea fibration Gn(X)→ X .

Theorem 1.9 ([5]). Let f : X → Y be a mapping and f̄ : ΛV → ΛW its Sullivan
minimal model. Then cat0(f) is the least n such that there is a mapping ρ verifying
f̄ = ρ ◦ i in the following diagram.

ΛV
f̄ //

p

��

i

''NNNNNNNNNNNN ΛW

ΛV/Λ>nV ΛV ⊗ ΛT

ρ

OO

'oo

In particular, if (ΛZ, d) is the Sullivan minimal model of X , then cat0(X) is the
least integer n such that i has a retraction ρ.

(ΛZ, d)

p

�� i
''OOOOOOOOOOOO

(ΛZ/Λ>nZ, d̄) ΛZ ⊗ ΛT

ρ
jj

'oo

Since genus(p) is the category of the classifying map, we recall here the construc-
tion of a model of B̃ autX . If (ΛZ, d) is a Sullivan model of X , then a Lie model
of B̃ autX is obtained using derivations on (ΛZ, d).

Precisely we define the differential Lie algebra (DerΛZ,D) as follows [16]: in
degree k > 1, take the derivations of ΛZ decreasing the degree by k. In degree
one, we only consider the derivations θ that decrease the degree by one and verify
dθ + θd = 0. The Lie bracket is defined by [θ, θ′] = θθ′ − (−1)|θ||θ

′|θ′θ and the
differential D is defined by Dθ = [d, θ].

Theorem 1.10 ([16]). The graded differential Lie algebra (DerΛZ, D) is a Lie
model of B̃ autX.

A model of B̃ autX from the Quillen model of X is found in [13], [18], and [17].
A Sullivan model of the universal fibration is given by the KS extension

C∗(L)→ (C∗(L)⊗ ΛZ,D)→ (ΛZ, d)
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where L = (DerΛZ, D). The explicit formula for D is given in [18]. Roughly
speaking, for z ∈ Z, Dz = dz +

∑
i biθi(z) where θi are those derivations vanishing

on generators of degree greater than |z| and the bi’s are their duals in C∗(L).

2. Spherical fibrations

We use Theorem 1.10 to compute a model of B̃ autX , when X is a sphere. We
have the following.

Proposition 2.1. If X = S2n−1, then (B̃ aut X)0 ' K(Q, 2n) and if X = S2n,
then (B̃ aut X)0 ' K(Q, 4n).

Proof. If X = S2n−1, then the Sullivan model of X is (Λx, 0), where |x| = 2n− 1.
Hence

Der(Λx, 0) = (Q.α, 0)

where α is the derivation taking x to 1. Hence B̃ autX has the rational homotopy
type of K(Q, 2n). For X = S2n, the Sullivan model is (Λ(x, y), d) where |x| = 2n,
|y| = 4n − 1, dx = 0, and dy = x2. If a is a generator of Λ(x, y), let (a, b) denote
the derivation of Λ(x, y) taking a to b and vanishing on the other generator. Here
the Lie algebra (L, δ) = Der(Λ(x, y), d) is generated (as a vector space) by the
derivations

α2n−1 = (y, x), α2n = (x, 1), α4n−1 = (y, 1)

and the differential is given by δα2n−1 = δα4n−1 = 0, δα2n = 2α2n−1. Therefore
Hi(L, δ) = Q for i = 4n− 1 and vanishes in all other degrees. �

If X = S2n−1, a straightforward computation shows that a model of the universal
fibration X → B̃ aut•X → B̃ autX is given by the KS extension

(Λy2n, 0)→ (Λy2n ⊗ Λx2n−1, d)→ (Λx2n−1, 0)

where dy2n = 0, dx2n−1 = y2n. Since (Λy2n⊗Λx2n−1, d) is trivial, X → B̃ aut•X →
B̃ autX is rationally equivalent to the path fibration. Therefore every fibration of
fibre S2n−1 is rationally a principal fibration.

The sectional category of fibrations of fibre a sphere has been determined by D.
Stanley, who proved, among other things, the following.

Theorem 2.2 ([15, Theorem 2.3]). Given a fibration S2n−1 → E
p→ B with clas-

sifying map f : B → K(Q, 2n), if α = ImH2n(f), then secat(p) = nil α, that is,
the least r such that αr+1 = 0.

Since (B̃ aut X)0 ' K(Q, 2n) for X = S2n−1 and (B̃ aut X)0 ' K(Q, 4n) for
X = S2n (Proposition 2.1), we can generalize Stanley’s result as follows.

Theorem 2.3. Let X → E
p→ B be a fibration such that B̃ autX is rationally

homotopic to K(Q, 2k). If f : B → K(Q, 2k) is the classifying map of p, then
genus(p) = nil α, where α = ImH2k(f).

Under the hypotheses of Theorem 2.3, suppose that X is an odd sphere. Then
the resulting fibration is principal and genus(p) = secat(p) = nil α. We hence
recover Theorem 2.2.
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Proof of Theorem 2.3. The proof of Theorem 2.3 is based on the characterisation of
cat(f) given by Theorem 1.9. Let X → E

p→ B be a fibration where (B̃ aut X)0 '
K(Q, 2k) and (ΛV, d) → (ΛV ⊗ ΛW,D) → (ΛW, D̄) is a KS model of p. The KS
extension above is classified by a mapping f : (Λz, 0) → (ΛV, d) with |z| = 2k.
Take α = [f(z)] ∈ H2k(ΛV, d). Suppose that r is the smallest integer such that
αr+1 = 0. Since cat(f) ≥ nil Im H(f) [10], we conclude that cat(f) ≥ r.

On the other hand, consider the following diagram:

Λz
f //

&&NNNNNNNNNNNN

p

��

(ΛV, d)

Λz/(zr+1) (Λ(z, t), d)'oo

ρ

OO

where dt = zr+1. We define ρ by ρ(z) = f(z) and ρ(t) = β where dβ = (f(z))r+1.
Therefore cat(f) = genus(p) = r. �

One can also prove Theorem 2.2 using the fibrewise join process. If S2n−1 →
E

p→ B and S2m−1 → E′
p′→ X are fibrations, then one can describe a model of

p ∗ p′ as follows. Consider the KS extensions B ı→ (B ⊗Λa, d) and B → (B ⊗Λb, d)
of p and p′ respectively. Note that da is a zero cohomology class in H(B) if and
only if p is a trivial fibration. We use the method outlined by Doeraene in [3] to
compute a model of the fibre join p ∗ p′. Consider the push-out

B // ı //



��

(B ⊗ Λa, d)

̄

��
(B ⊗ Λb, d) // ı̄ // (B ⊗ Λ(a, b), d)

Since ̄ is not surjective, we form (B ⊗ Λa, d) '→ (B ⊗ Λ(a, c, c̄), d) with dc = c̄ and
dc̄ = 0, which is a quasi-isomorphism. We define f : B ⊗ Λ(a, c, c̄) → B ⊗ Λ(a, b)
that extends ̄ by setting f(c) = b and f(c̄) = db.

Now we form the pull-back

A ı̃ //

f̄
����

B ⊗ Λ(a, c, c̄)

f
����

(B ⊗ Λb, d) // ı̄ // (B ⊗ Λ(a, b), d)

There is a natural mapping B → A that is a commutative model of p ∗ p′.
Recall that A = {(x, y) ∈ (B ⊗ Λb) ⊕ (B ⊗ Λ(a, c, c̄)) | ı̄(x) = f(y)}. Hence a

model of the join is the inclusion b 7→ (b, b). Since we know that the homotopic
fibre of the fibrewise join is S2n−1 ∗ S2m−1 = S2(m+n)−1, its model is Λz where
|z| = |a| + |b| + 1. If da = α and db = β, then (αβ, αβ) ∈ A is a boundary in A,
since d(αb, αc+ a(β − c̄)) = (αβ, αβ). Therefore the relative Sullivan model of the
fibre join is

B //
$$

$$JJJJJJJJJ A

(B ⊗ Λz, d)

'

OO
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with dz = αβ. In particular, p ∗ p′ is a nontrivial fibration if and only if αβ is a
nonvanishing cohomology class in H(B).

Working by induction, we can then deduce the following.

Proposition 2.4. Let S2n−1 → E
p→ B be a fibration and B → (B ⊗ Λz, d) its

KS-extension, where dz = b ∈ B. Then a model of the n-fibrewise join p(n) =
p ∗ · · · ∗ p︸ ︷︷ ︸

(n+1) factors

is given by the KS-extension B → (B⊗Λw, d) with dw = bn+1. In par-

ticular, secat(p) is the least n such that bn+1 is coboundary in B (see Theorem 2.2).

3. The universal fibration of CP(n)

We consider here fibrations with fibre CP(n) of which the Sullivan model is
(Λ(a, b), d) with da = 0 and db = an+1, |a| = 2 and |b| = 2n+ 1. To compute the
rational homotopy type of B̃ autX we consider the derivations α2i+1 = (b, an−i)
of Λ(a, b) for i = 0, 1, . . . , n and α2 = (a, 1) (subscripts indicate the degree). As a
vector space, the Lie algebra L of derivations of (Λ(a, b), d) is

L =
n⊕
i=0

Qα2i+1 ⊕Qα2.

A straightforward computation shows that δα2i+1 = 0 for all 0 ≤ i ≤ n and
δα2 = (n + 1)α1. Hence for 1 ≤ i ≤ n, α2i+1 represents a nonzero homology class
in H∗(L, δ). Therefore

H∗(L, δ) =
n⊕
i=1

Qα2i+1.

This implies that the Sullivan minimal model of B̃ autX is given by (Λ(y4, y6, . . . ,

y2n+2), 0) (see also [16, §11]). Note that B̃ autX has the rational homotopy type
of BSU(n+ 1).

A model for the universal fibration is given by the KS extension

(Λ(y4, y6, . . . , y2n+2), 0)→ (Λ(y4, y6, . . . , y2n+2)⊗ Λ(a, b), D)→ (Λ(a, b), d)

with

Da = 0, Db = an+1 +
n−1∑
i=0

aiy2(n+1−i).

Let X → E
p→ B be a fibration and (B, d) a Sullivan model of B. The KS model

of p,
B → (B ⊗ (a, b), D)→ (Λ(a, b), d),

is classified by a mapping

f : (Λ(y4, y6, . . . y2n+2), 0)→ (B, d).

Put c4 = [f(y4)], c6 = [f(y6)], . . . , c2n+2 = [f(y2n+2)] ∈ H∗(B). We call c4, c6, . . . ,
c2n+2 generalized Chern classes of the fibration p. Denote by r4, r6, . . . , r2n+2 their
respective nilpotency indexes, that is, rk is the least positive integer such that
crk+1
k = 0.

We turn to fibrations for which the base is formal. For recall that a space X is
formal if there is a morphism (ΛZ, d) → H∗(ΛZ, d) that induces an isomorphism
in cohomology, where (ΛZ, d) is the Sullivan minimal model of X .
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Theorem 3.1. Let CP (n)→ E
p→ B be a fibration where B is a formal space. The

genus of p is equal to the nilpotency index of ImH(f), where f is the classifying
map of p. In particular, if m = max{ri} and s = r4 + r6 + · · · + r2n+2, then
m ≤ genus(p) ≤ s.

Proof. Since B is formal, there is a morphism (ΛZ, d)→ H∗(B) inducing an isomor-
phism in homology. Consider the classifying map f : Λ(y4, y6, . . . , y2n+2)→ H∗(B).
Let k be the nilpotency index of Im f . Since cat(f) ≥ k by Equation 2, we need
only to prove that cat(f) ≤ k. It is then sufficient to check that f factors through
Λ(y4, y6, . . . , y2n+2)/Λ>k(y4, y6, . . . , y2n+2). If t ∈ Λ>k(y4, y6, . . . , y2n+2), then t is
a finite sum of monomials of the form

syβ4
4 yβ6

6 . . . y
β2n+2
2n+2 , s ∈ Q

where βi ≥ 0 and
∑
βi > k. As a result, there is i such that βi ≥ ri + 1. Therefore

f(t) = 0 and the result follows. �

4. Spaces verifying the Halperin conjecture

Definition 4.1. Let X be an elliptic space. The integer

χπ =
∑
i

(−1)i dim πi(X)⊗Q

is called the homotopy Euler characteristic of X .

Theorem 4.2 ([8]). If X is an elliptic space, then the following statements are
equivalent:

(1) χπ = 0;
(2) H∗(X,Q) is concentrated in even degrees.

Conjecture 4.3 (Halperin). Let X i→ E
p→ B be a fibration for which X ver-

ifies one of the equivalent conditions of Theorem 4.2. Then the (rational) Serre
spectral sequence collapses at the E2 level or, equivalently, the morphism H∗(i) :
H∗(E,Q)→ H∗(X,Q) is surjective.

This conjecture has been verified in the following cases: if H∗(X,Q) is generated
by at most 3 generators [11], [19], if X is a flag manifold [12], and if X is a
homogeneous space [14]. In [12] Meier reformulated the conjecture in terms of
homotopy groups of classifying spaces.

Theorem 4.4. Let X be an elliptic space such that H∗(X,Q) is concentrated in
even degrees. The following statements are equivalent.

(1) The Serre spectral sequence for each fibration X
i→ E

p→ B collapses at the
E2 level.

(2) There is no nonzero negative derivation on the algebra H∗(X,Q).
(3) If (ΛZ, d) is a Sullivan model of X, then H∗(Der(ΛZ, d)) is concentrated

in odd degrees.
(4) π∗(B̃ autX)⊗Q is concentrated in even degrees.

Example 4.5. The space X of which a Sullivan commutative model is of the form
Λx1/(xn1

1 )⊗ · · · ⊗ Λxr/(xnrr ), where |xi| is even, satisfies the Halperin conjecture.
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Consider a fibration of which the fibre is a homogeneous space X = G/H ,
G and H having the same rank. The Sullivan minimal model of X is of the
form (Λ(x1, . . . , xr, y1, . . . , yr), d) where |xi| is even, |yi| is odd and dyi = fi ∈
Λ(x1, . . . , xr). In [14], Shiga and Tezuka proved that this space verifies the Halperin
conjecture, and hence

L = H∗(Der(Λ(x1, . . . , xr, y1, . . . , yr), d))

is concentrated in odd degrees. Hence the Lie bracket is trivial and B̃ autX has the
rational homotopy type of a product of K(Q, 2k). Take the derivations θ1, . . . , θn
representing homology classes in L. The Sullivan model of B̃ autX is then given
by

C∗(L) = (Λ(z1, . . . , zn), 0),

where the zi are of even degree and duals of θi. We denote this model simply by
ΛZ. A model of the universal fibration is given by

ΛZ → (ΛZ ⊗ (x1, . . . , xr, y1, . . . , yr), D)
p→ (Λ(x1, . . . , xr, y1, . . . , yr), d)

with Dyi = dyi+
∑

j zjθj(yi) and Dxi = 0 because p is surjective in homology. Let
X → E → B be a fibration and

(B, d)→ (B ⊗ Λ({xi, yi}), D)→ (Λ({xi, yi}), d)

its KS extension. We have the following push-out, where f is the classifying map
of the fibration p.

ΛZ // i //

f

��

(ΛZ ⊗ Λ({xi, yi}), D) //

��

Λ({xi, yi})

(B, d) // i′ // (B ⊗ Λ({xi, yi}), D′) // Λ({xi, yi})

Moreover, D′(yi) = fi +
∑
j f(zj)θj(yi), where [f(zj)] ∈ H∗(B, d). If B is formal,

then cat(f) = nilH(f), and therefore the genus of p is equal to the nilpotency index
of the subalgebra of H∗(B) generated by {f(zj)}. Hence we get the following.

Proposition 4.6. Let X → E
p→ B be a rational fibration, where B is a formal

space and X has the rational homotopy type of a homogeneous space G/H, G and H
having the same rank. The genus of the rationalization of p is equal to the nilpotency

index of the subalgebra Im[H∗(B̃ autX)
ξ∗→ H∗(B)] where ξ : B → B̃ autX is the

classifying map of p.

Corollary 4.7. Under the hypotheses of the above proposition, the genus of p :
E → B is bounded above by the nilpotency index of Heven(B).

Remark 4.8. It is not clear how to obtain an upper bound of the sectional category
using the index of nilpotency of some cohomology classes. Consider for instance
the fibration p of which the KS extension is

Λz2
i→ (Λz2 ⊗ Λ(x2, x5), d) with dx5 = x3

2 − z3
2 .

The mapping i admits a retraction r defined by r(x2) = r(z2) = z2, r(x5) = 0.
Hence the sectional category of p is zero, while its genus is infinite by Proposi-
tion 3.1.
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Société Mathématique de France, 1989. MR 91c:55016

[6] Y. Félix and S. Halperin, Rational LS category and its applications, Trans. Amer. Math. Soc.
273 (1982), 1− 37. MR 84h:55011

[7] T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967),
417− 427. MR 37:4814

[8] S. Halperin, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230
(1977), 173− 199. MR 57:1493

[9] S. Halperin, Lectures on minimal models, Mémoire de la Société Mathématique de France,
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