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THE ENERGY OF SIGNED MEASURES

KATHRYN E. HARE AND MARIA ROGINSKAYA

(Communicated by David Preiss)

Abstract. We generalize the concept of energy to complex measures of finite
variation. We show that although the energy dimension of a measure can ex-
ceed that of its total variation, it is always less than the Hausdorff dimension of
the measure. As an application we prove a variant of the uncertainty principle.

1. Introduction

The Riesz energy of a finite, positive measure on Rd is defined as

It(µ) =
∫ ∫

|x− y|−tdµ(y)dµ(x)

and is an important concept which has found many interesting applications (cf. [1],
[10], [11] and [12]). The finiteness versus non-finiteness of the energy determines
the energy dimension of the measure

dime(µ) = sup{t : It(µ) <∞}.
In this article we extend the definition of the energy dimension to complex measures
and give an application to a variation of the uncertainty principle.

Of course, it is natural to attempt to extend the definition by using the linearity
of the integral and the decomposition of the complex measure as a linear combina-
tion of (four) finite, positive measures. This approach was successfully studied by
J. Doob in [2, XIII] for complex measures that were linear combinations of positive
measures of finite energy. However, this natural approach can fail when (some of)
these positive measures have infinite energy. Moreover, even if the natural exten-
sion is well defined, it is not obvious that this energy integral will be real, much
less positive.

We introduce a modification of the energy integral which is defined for all finite,
complex measures and is always positive. The exponent at which our modified
energy formula changes from finite to infinite coincides with the energy dimension
for positive measures and hence provides a natural generalization of the definition
of energy dimension. A different approach to this problem, valid for the one-
dimensional torus, can be found in [8].
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Any finite measure and its total variation will have the same Hausdorff dimen-
sion; this is not true for their energy dimensions. In section 3 we present an example
of a signed measure on the one-dimensional torus that has energy dimension one,
but whose total variation measure has energy dimension zero.

However, as is the case for positive measures, the Hausdorff dimension of any
measure is at least as great as its energy dimension. This is established in section
4 and improves upon a classical result of J. P. Kahane and R. Salem [8].

There is a Fourier transform formula for our energy integral (as is known for
positive measures), and this allows us to show that if two measures are concentrated
on sets of small Hausdorff dimension and the difference of their Fourier transforms
belongs to a (suitable) weighted l2-space, then the two measures coincide. The
precise statement and proof of this variant of the uncertainty principle can also be
found in section 4. For further discussion and other illustrations of this principle
the reader is referred to [6].

The main results of this article are obtained by using harmonic analysis tech-
niques and are valid for both Rd and the d-dimensional torus, Td. In each case we
give the proof for only one of these cases; the extension to the other is an exercise
which can be done using the methods of [7].

2. Definition of general energy

By a measure we mean a complex, regular, Borel measure of finite variation on
Rd or Td.

2.1. Measures on Rd. For a measure µ on Rd let us define

(2.1) I∗t,ϕτ (µ) =
∫ ∫

(|.|−t ∗ ϕτ (x− y))dµ(x)dµ(y)

where ϕτ (x) = τ−dϕ(x/τ) is an approximation of the identity based on a positive,
C∞ function ϕ, supported on the unit ball, with positive Fourier transform. Since
| · |−t ∗ϕτ is a continuous, bounded function, the integrals I∗t,ϕτ (µ) are well defined.
Applying Parseval’s formula gives the identity

I∗t,ϕτ (µ) = ct,d

∫
|ξ|t−d|µ̂(ξ)|2ϕ̂τ (ξ)dξ.

Since the integrand is positive and ϕ̂τ converges from below to 1, the limit of
I∗t,ϕτ (µ) as τ tends to zero exists and is independent of the choice of ϕ. Conse-
quently, we can make the following definitions.

Definition 2.1. Define the general energy of order t of a measure µ on Rd by

I∗t (µ) ≡ lim
τ→0

I∗t,ϕτ (µ) = ct,d

∫
|ξ|t−d|µ̂(ξ)|2dξ.

Notice that the general energy of any nonzero measure is positive.

Definition 2.2. Define the energy dimension of a measure µ on Rd by

dime(µ) = sup{t < d : I∗t (µ) <∞} = sup{t < d :
∫
|ξ|t−d|µ̂(ξ)|2dξ <∞}.

Since the t-energy of a positive measure satisfies the same Fourier transform
formula,

It(µ) = ct,d

∫
|ξ|t−d|µ̂(ξ)|2dξ
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(cf. [9, p. 162]), our definitions of the general energy and energy dimension coincide
with the classical definitions of the Riesz energy and energy dimension when the
measure is positive.

We also remark that if µ = ν1 + iν2 where ν1 and ν2 are real-valued measures,
then because ν̂(ξ) = ν̂(−ξ) for any real-valued measure ν it follows that

|µ̂(ξ)|2 + |µ̂(−ξ)|2 = 2|ν̂1(ξ)|2 + 2|ν̂2(ξ)|2.
Thus

I∗t (µ) = ct,d

∫
|ξ|t−d|µ̂(ξ)|2dξ = ct,d

∫
|ξ|t−d 1

2
(|µ̂(ξ)|2 + |µ̂(−ξ)|2)dξ

= ct,d

∫
|ξ|t−d

(
|ν̂1(ξ)|2 + |ν̂2(ξ)|2

)
dξ = I∗t (Re(µ)) + I∗t (Im(µ)).

2.2. Measures on Td. In [7] it was shown that for a positive measure µ on the
d-dimensional torus the classical energy integral given by

It(µ) =
∫
Td

∫
Td

dist(x, y)−tdµ(x)dµ(y)

(where dist(·, ·) denotes the usual metric on the torus) is comparable to∑
n∈Zd�{0}

|n|t−d |µ̂(n)|2 + |µ̂(0)|2 .

This was done by establishing the existence of a function Ft defined on the torus,
which is positive, integrable, satisfies F̂t(n) ∼ |n|t−d for n 6= 0, is comparable to
|x|−t near the origin and has the property that for positive measures µ,

It(µ) ∼
∫
Td

∫
Td
Ft(x− y)dµ(x)dµ(y).

Motivated by this, for a complex measure µ on the d-dimensional torus we define

I∗t,ϕτ (µ) =
∫
Td

∫
Td
Ft ∗ ϕτ (x− y)dµ(x)dµ(y)

where Ft is the function found in [7] and ϕτ is as in the previous section. Since
Ft ∗ ϕτ is a continuous function, Parseval’s theorem implies that for all complex
measures µ,

I∗t,ϕτ (µ) ∼
∑

n∈Zd�{0}

|n|t−d ϕ̂τ (n) |µ̂(n)|2 + F̂t(0) ‖µ‖2 .

Since ϕ̂τ (n) tends to 1 from below, the finiteness/non-finiteness of lim supτ I∗t,ϕτ (µ)
is independent of the choice of ϕ (and Ft), and is determined, as in the classical
case for It(µ), by the finiteness/non-finiteness of∑

n∈Zd�{0}
|n|t−d |µ̂(n)|2 .

Thus we can similarly generalize the energy dimension to complex measures on
Td by defining

dime(µ) = sup{t < d : lim sup
τ

I∗t,ϕτ (µ) <∞}

= sup{t < d :
∑

n∈Zd�{0}

|n|t−d |µ̂(n)|2 <∞}
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where ϕ can be any function as described in 2.1.
As with measures on Rd, the energy dimension of a measure is the minimum of

the energy dimensions of its real and imaginary parts.
It is shown in [7, Sec. 3.3] that any positive measure on Td can be lifted to a

measure on Rd with the same Hausdorff and energy dimensions. Similar arguments
apply to complex measures.

3. The counterexample

Since I∗t,ϕτ (µ) ≤ I∗t,ϕτ (|µ|), the energy dimension of µ is always at least as great
as the energy dimension of |µ|. The next example shows that the energy dimension
of µ can be strictly larger.

Although our example of a measure µ with dime µ = 1 and dime |µ| = 0 is
on the torus T, the corresponding example on R can be easily obtained by the
lifting method mentioned above. By taking the product of our measure on T with
Lebesgue measure on Td−1 one can obtain a similar example on Td.

The measure µ we construct was motivated by an example given in [4] and will
be of the form

µ =
∞∑
m=1

2−m(fmµm − fmλT)

where fm are positive, trigonometric polynomials, µm are Riesz product measures
that are singular and mutually singular, and λT is Lebesgue measure on the torus.

We begin by choosing a suitable Féjer kernel fm, for each m = 1, 2, . . . , so that∑
n6=0

∣∣∣f̂m(n)
∣∣∣2 |n|−1 > 8m. Assume that suppf̂m = {−Nm, . . . , Nm}.

Choose disjoint infinite subsets Φm of {33n}∞n=1 such that for each m the mini-
mum element of Φm exceeds 2Nm. We let µm be the Riesz product based on Φm
and the constant sequence 1/(2Nm + 1), i.e.,

µm =
∏
n∈Φm

(
1 +

2 cosnx
2Nm + 1

)
.

Such measures are known to be singular and mutually singular (cf. [5, 7.2.1]).
(a) Correctness. We start by checking that the sum defining the measure µ is

convergent.
Given Φ ⊆ N we let Ω(Φ) denote the set of words

N∑
j=1

εjnj : nj ∈ Φ, εj = 0,±1 and N ∈ N

 .

Since Φm ⊂ {33n}∞n=1 and the minimal element of Φm is more than 2Nm,

Ω(Φm) ∩ (Ω(Φm) + {−Nm, . . . ,−1, 1, . . . , Nm})
is empty.

This ensures that for each integer k and m there is at most one choice of j with
f̂m(k− j) µ̂m(j) 6= 0. Thus if f̂mµm(k) 6= 0, then there is a unique choice of j with

f̂mµm(k) =
∑
i

f̂m(k − i)µ̂m(i) = f̂m(k − j)µ̂m(j) 6= 0.

In particular, if k ∈ supp f̂m, then f̂mµm(k) = f̂m(k)µ̂m(0) = f̂m(k).
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Of course, this implies that the measure norm of the positive measure, fmµm, is
f̂mµm(0) = f̂m(0) = 1. Since the measure norm of fmλT is 1 as well (being the L1

norm of the Féjer kernel fm) µ =
∑

2−m(fm(µm − λT)) is a finite measure.
(b) dime(|µ|) = 0. The singularity and mutual singularity of the measures µm

imply that |µ| is equal to
∑

2−m(fm(µm + λT)).
Notice that if ν and ν′ are positive measures, then It(ν + ν′) ≥ It(ν). Thus for

any 0 < t < 1, the Fourier transform formula for energy implies that

It(|µ|) ≥ It(2−mfmλT) ≥ c2−2m
∑
n6=0

∣∣∣f̂m(n)
∣∣∣2 |n|t−1 ≥ c2m.

Hence the energy dimension of |µ| is zero.
(c) dime(µ) = 1. Fix ε > 0. We have already observed that if k ∈ suppf̂m,

then f̂mµm(k) = f̂m(k), and if k /∈ suppf̂m, then there is a unique j = jk with
f̂mµm(k) = f̂m(k − jk)µ̂m(jk). Thus

(3.1)
∑
k 6=0

|k|−ε
∣∣∣∣(fm(µm − λT)

)∧
(k)
∣∣∣∣2 =

∑
k/∈suppf̂m

|k|−ε
∣∣∣f̂m(k − jk)µ̂m(jk)

∣∣∣2 .
Since k− jk ∈ suppf̂m and jk ∈ Ω(Φm) for any nonzero term in the sum above, the
definition of Ω(Φm) ensures that |k| ≥ |jk| /2. Since any j ∈ Ω(Φm) can occur as
jk for at most

∣∣∣suppf̂m
∣∣∣ = 2Nm + 1 choices of k, it follows that (3.1) is bounded by

(2Nm + 1)
∑

j∈Ω(Φm)�{0}
|j/2|−ε |µ̂m(j)|2 .

Assume that Φm = {n(m)
j }∞j=1. The structure of the Riesz product shows that the

expression above is majorized by

4(2Nm + 1)
∑
j

∣∣∣∣∣n
(m)
j

4

∣∣∣∣∣
−ε ∣∣∣µ̂m(n(m)

j )
∣∣∣2 j−1∏
k=1

(
1 + 2

∣∣∣µ̂m(n(m)
k )

∣∣∣2) .
Since µ̂m(n(m)

k ) = (2Nm + 1)−1 and n
(m)
j ≥ 33j , this is easily seen to be bounded

by a constant C(ε) that is independent of m.
To complete the argument we use the elementary inequality |

∑
aj |2 ≤

∑
2j |aj |2.

Thus

∑
k 6=0

|k|−ε |µ̂(k)|2 =
∑
k 6=0

|k|−ε
∣∣∣∣∣
∞∑
m=1

2−m
(
fm(µm − λT)

)∧
(k)

∣∣∣∣∣
2

≤
∑
k 6=0

|k|−ε
∞∑
m=1

2m2−2m

∣∣∣∣(fm(µm − λT)
)∧

(k)
∣∣∣∣2

≤
∞∑
m=1

2−mC(ε) <∞.

Since ε > 0 was arbitrary, the energy dimension of µ is one.
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4. Energy and Hausdorff dimension

The Hausdorff dimension of a complex measure µ, defined as

dimH(µ) = inf{dimH(E) : µ(E) 6= 0},
coincides with the Hausdorff dimension of its total variation. It is known that for
a nonzero, positive measure µ, dimH µ ≥ dime µ ([3, 4.3]). In this section we show
that this relationship is true for complex measures as well. The proof is presented
for the Rd case. The technique of 3.3 in [7] again allows us to obtain the same
result for measures on Td.

One can compare our result with a classical result of Kahane and Salem ([8,
III.V]) which states that the support of a distribution on the circle has Hausdorff
dimension not less than the energy dimension of the distribution. Theorem 4.1
improves this classical result for the case of measures, even on the one-dimensional
torus, since the Hausdorff dimension of the support of a measure is always at least
as great as the Hausdorff dimension of the measure.

Theorem 4.1. Suppose µ is a nonzero measure on Rd and I∗t µ < ∞. Then
dimH(µ) ≥ t.

For the proof we need the following lemmas. We use the notation B(ξ, τ) to
denote the closed ball of radius τ , centered at ξ.

Lemma 4.2. Let µ1 and µ2 be two finite, positive, mutually singular measures in
Rd. For any constants C, c, ε > 0 there exists a Borel set K = K(C, c, ε) such that
µ1(Rd \K) < ε and cµ1(B(ξ, τ)) ≥ Cµ2(B(ξ, τ)) for all ξ ∈ K and τ ≤ ρ = ρ(ε).

Proof. Since the measures are mutually singular, we can choose two disjoint sets
A1 and A2 such that µj(Rd \ Aj) = 0 for j = 1, 2. Choose two compact sets K1

and K2 such that Kj ⊂ Aj and µj(Rd \Kj) < c′ε, where the constant c′ depends
on c, C and d and will be specified later. Let ρ = 1

2 dist(K1,K2).
Let us denote by K ′ the Borel set

K ′ = {ξ ∈ K1 : cµ1(B(ξ, τ)) < Cµ2(B(ξ, τ)) for some τ ≤ ρ}.
We wish to estimate µ1(K ′). By definition, for each point x ∈ K ′ there exists a ball
Bx centered at x that does not intersect K2 and for which cµ1(Bx) < Cµ2(Bx).
By the Besicovitch covering theorem we can choose a covering {Bk} of K ′ by such
balls, with the property that each point of K ′ belongs to at most b(d) balls. Then,

µ1(K ′) ≤
∑

µ1(Bk) ≤
∑

c−1Cµ2(Bk) ≤ c−1Cb(d)µ2(
⋃
Bk).

Since the balls Bk are disjoint from K2, we obtain

µ1(K ′) ≤ c−1Cb(d)µ2(Rd \K2) < c−1Cb(d)c′ε.

If we choose c′ = min (1/2, c/(2Cb(d))), then the set K = K1 \ K ′ satisfies the
required conditions. �

Lemma 4.3. Let ϕ be a positive function supported by the unit ball B(0, 1) and
having positive Fourier transform. There exist constants A,B > 0 such that the
functions ψτ = |.|−t ∗ ϕτ satisfy the estimates

Aψτ (x) < min{|x|−t, τ−t} < Bψτ (x)

for all τ .



THE ENERGY OF SIGNED MEASURES 403

Proof. First, we prove that the constants A and B exist for τ = 1 (ϕ1 = ϕ), i.e.,
we want to show

A|.|−t ∗ ϕ(x) ≤ min{|x|−t, 1} ≤ B|.|−t ∗ ϕ(x)

for all x ∈ Rn.
We consider two cases: |x| ≤ 2 and |x| > 2. It is enough to find that suitable

constants exist for each case separately.
Case |x| ≤ 2. Then 2−t ≤ min{|x|−t, 1} ≤ 1. The function |.|−t ∗ ϕ(x) is

continuous being a convolution of a test function and a locally summable one, and
is strictly positive being the convolution of two positive functions, one of which is
strictly positive. Hence on the compact set B(0, 2), |.|−t ∗ ϕ(x) is bounded above
and below from zero by, say, C and c respectively. We can take A = C−12−t and
B = c−1.

Case |x| > 2. Here we will use the fact that min{|x|−t, 1} = |x|−t. Since ϕ is
supported on the unit ball

|.|−t ∗ ϕ(x) =
∫
Rn

|x− y|−tϕ(y)dy =
∫

B(0,1)

|x− y|−tϕ(y)dy.

When |x| > 2, then 1
2 |x| < |x− y| < 2|x| for any y ∈ B(0, 1), and since

∫
ϕ = 1,

2−t|x|−t ≤ |.|−t ∗ ϕ(x) ≤ 2t|x|−t.

Thus we can choose A = 2−t and B = 2t.
The claim can be proved for arbitrary τ by noting that

|.|−t ∗ ϕτ (x) = τ−t|.|−t ∗ ϕ(
x

τ
)

and

min{|x|−t, τ−t} = τ−t min{|x
τ
|−t, 1}.

�

Proof of the Theorem. First, observe that there is no loss of generality in assuming
that the measure µ is real-valued.

It is enough to prove that under the given condition |µ| can be approximated in
the strong sense by positive measures of finite t-energy (note that an approximation
in the weak sense is not enough). Let us decompose the measure as µ+ − µ−,
where µ+ and µ− are two positive, mutually singular measures. We can assume
that µ+, µ− are both nonzero measures; for otherwise we can use the classical
result. We will use Lemma 4.2 to prove that an approximation exists for µ+. The
approximation for µ− can be constructed in the same way and together they give
the approximation for |µ|.

Let ψτ = |.|−t ∗ ϕτ where ϕ is as in section 2.1 and let K = K(C, c, ε) be the
set given by Lemma 4.2 for c = B−1/2, C = 2A−1 (A,B as in Lemma 4.3) and
arbitrary ε > 0. Let ρ = ρ(ε). Denote µ+|K by µρ and let µs = µ+ − µρ.
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Since I∗t (µ) <∞, for some fixed number M we have

M ≥
∫
ψτ (x− y)dµ(x)dµ(y)

=
∫
ψτ (x− y) (dµ+(x)dµ+(y) + dµ−(x)dµ−(y)− 2dµ+(x)dµ−(y))

≥
∫
ψτ (x− y) (dµρ(x)dµ+(y)− 2dµρ(x)dµ−(y))

+
∫
ψτ (x− y) (dµs(x)dµs(y) + dµ−(x)dµ−(y)− 2dµs(x)dµ−(y)) .

Observe that the final integral in the expression above is positive since by Parseval’s
formula it equals

ct,d

∫
|ξ|t−d|(µs − µ−)∧(ξ)|2ϕ̂τ (ξ)dξ.

Thus

M ≥
∫
ψτ (x − y) (dµρ(x)dµ+(y)− 2dµρ(x)dµ−(y))

=
∫

|x−y|≥ρ

ψτ (x − y)((dµ+(y)− 2dµ−(y))dµρ(x))

+
∫

|x−y|<ρ

ψτ (x− y) (dµ+(y)− 2dµ−(y)) dµρ(x).

Lemma 4.3 implies that for τ ≤ ρ the integral over the region {(x, y) : |x− y| ≥
ρ} dominates ∫

|x−y|≥ρ

ψτ (x− y)dµ+(y)dµρ(x)− 2A−1‖µ−‖‖µρ‖ρ−t.

The integral over {(x, y) : |x− y| < ρ} can be estimated from below as follows:
Lemma 4.3 again shows that∫
|x−y|<ρ

ψτ (x− y)(dµ+(y)− 2dµ−(y)) ≥
∫

|x−y|<ρ

B−1 min{|x− y|−t, τ−t}dµ+(y)

−
∫

|x−y|<ρ

2A−1 min{|x− y|−t, τ−t}dµ−(y),

which after passing to polar coordinates and integrating simplifies to

B−1

ρ−tµ+(B(x, ρ)) + t

ρ∫
τ

ω−t−1µ+(B(x, ω))dω

(4.1)

−2A−1

ρ−tµ−(B(x, ρ)) + t

ρ∫
τ

ω−t−1µ−(B(x, ω))dω

 .

But the choice of K and ρ ensures that

B−1

2
µ+(B(x, ω)) ≥ 2A−1µ−(B(x, ω))
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for any ω ≤ ρ and x ∈ K. Thus for µρ a.e. x expression (4.1) dominates

1
2
B−1

ρ−tµ+(B(x, ρ)) + t

ρ∫
τ

ω−t−1µ+(B(x, ω))dω


=

1
2
B−1

∫
|x−y|<ρ

min{|x− y|−t, τ−t}dµ+(y)

≥ 1
2
AB−1

∫
|x−y|<ρ

ψτ (x− y)dµ+(y).

Consequently, ∫ ∫
|x−y|<ρ

ψτ (x− y) (dµ+(y)− 2dµ−(y)) dµρ(x)

≥ 1
2
AB−1

∫ ∫
|x−y|<ρ

ψτ (x− y)dµ+(y)dµρ(x).

Since all the estimates are independent of τ and dµ+ ≥ dµρ, these arguments
imply

M ≥ min(1, 1
2AB

−1)I∗t (µρ)− 2A−1‖µ−‖‖µρ‖ρ−t,
and therefore I∗t (µρ) <∞. To conclude, note that by construction µρ → µ+ in the
strong sense as ε→ 0. �

The Fourier transform formula for the energy dimension and an application of
Hölder’s inequality gives the following corollary, which was previously obtained for
positive measures in [7].

Corollary 4.4. If µ is a nonzero measure on Td and µ̂ ∈ lp(Zd) for some p > 2,
then dimH µ ≥ 2d/p.

Remark 4.5. The capacity dimension of a Borel set A is defined as

dimc(A) = sup{t : ∃µ ∈M+(A) such that It(µ) <∞}

and is known to equal the Hausdorff dimension of A ([10, 8.9] or [3, 4.3]). In [8,
p. 40] Kahane and Salem showed that for a compact subset of T to have capacity
dimension of order at least α it is sufficient for the set to support a distribution of
finite α-energy. Our result shows that, in fact, for any Borel set A we have

dimc(A) = sup{t : ∃µ ∈M(Rn) with |µ|(A) 6= 0 and It(µ) <∞}.

Theorem 4.1 also allows us to prove the variant of the uncertainty principle
mentioned in the introduction.

Proposition 4.6. If two measures µ1 and µ2 are concentrated on sets of Hausdorff
dimension less than t and∑

n∈Zd�{0}

|n|t−d|µ̂1(n)− µ̂2(n)|2 <∞,

then the two measures coincide.
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Proof. The assumption on the Fourier transforms implies that the energy dimension
of µ1 − µ2 is at least t. Hence if µ1 − µ2 is nonzero, then its Hausdorff dimension
is at least t. But since µ1 and µ2 are concentrated on sets of Hausdorff dimension
less than t, so is their difference and this is clearly a contradiction. �
Remark 4.7. For measures on Rd the corresponding result states:

If measures µ1 and µ2 are concentrated on sets of Hausdorff dimension less than
t and ∫

|ξ|t−d |µ̂1(ξ)− µ̂2(ξ)|2 <∞,

then the two measures coincide.
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