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ON A CLASS OF ELLIPTIC FUNCTIONS
ASSOCIATED WITH IMAGINARY QUADRATIC FIELDS

LI-CHIEN SHEN

(Communicated by David E. Rohrlich)

Abstract. Let −D be the field discriminant of an imaginary quadratic field.
We construct a class of elliptic functions associated naturally with the qua-
dratic field Q(

√
−D) which, combined with the general theory of elliptic func-

tions, allows us to provide a unified theory for two fundamental results (one
classical and one due to Ramanujan) about the elliptic functions.

§1. Introduction

Throughout this paper, the following notation will be adopted. The letter D will
always denote a positive integer with the property that −D is a discriminant of a
quadratic field and D× denotes the reduced residue system modulo D. There are
three summation symbols:

∑× denotes the sum over the reduced residue system
D×,

∑
denotes the sum over the set of positive integers and

∑′ denotes the sum
over the set of integers with the zeroth term excluded. Throughout the paper, the
differentiation is always with respect to the variable z. We will always assume that
τ is a complex number such that Im τ > 0 and q = eiπτ . The symbol θ1(z|τ)
denotes the theta function

θ1(z|τ) = 2q
1
4

∑
(−1)n+1qn(n−1) sin(2n− 1)z.

The notation θ′1
θ1

(z|τ) is an abbreviation for θ′1(z|τ)
θ1(z|τ) .

Let −D be the discriminant of an imaginary quadratic field. Let χ be a primitive
character modulo D. Define

Qχ,D(t) =
∑×

χ(k)
tk

1− tD
and if χ(k) = (−D|k), the Kronecker symbol, we simply denote it by QD(t). We
will consider the function

(1.1) ϕ(z|Dτ
2

) = hz +
w

2

∑ 1
n
QD(qn) sin 2nz,

where h and w denote, respectively, the class number and the number of units in the
quadratic field Q(

√
−D). We recall that w = 2 if D ≥ 7; w = 4 for D = 4;w = 6

for D = 3.
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The consideration of ϕ(z|Dτ2 ) is motivated by the following two examples:

ϕ

(
z|3τ

2

)
= z + 3

∑ 1
n

qn

1 + qn + q2n
sin 2nz,

ϕ

(
z|4τ

2

)
= z + 2

∑ 1
n

qn

1 + q2n
sin 2nz.

We remark that ϕ(z| 4τ2 ) is well known and classical and ϕ(z|3τ2 ) is due to Ramanu-
jan (see [3] and [4]). The main result of this work is the following theorem, and its
implication will be discussed in the last section of the paper.

Theorem 1. Let −D be the discriminant of a quadratic field. Then

exp
(
−4iϕ(z|τ)

w

)
= (−1)

φ(D)
2 eiz(φ(D)− 4h

w )
∏
k∈R

θ1(z +
kπτ

D
|τ)

θ1(z − kπτ

D
|τ)

,

where φ(D) is the Euler phi-function which counts the number of elements in D×

and R = {k ∈ D× : (−D|k) = 1}.
Moreover, exp (−2iϕ(z|τ)) is elliptic with periods π and πτ .

For later use we also define N = {n ∈ D× : (−D|n) = −1}. We note that if
D = p, a prime, then R is the set of all the quadratic resides modulo p and N the
set of quadratic non-residues modulo p.

We remark that the function Qχ,D(t) arises naturally from the Dirichlet L series
via the Mellin transform. To see this, we write

(1.2)
∑

χ(n)qn =
∑×∑

χ(kD + n)qkD+n =
∑×

χ(n)qn

1− qD .

With q = e−t, the Dirichlet L series L(s, χ) =
∑ χ(n)

ns is precisely the Mellin
transform of the left-hand side of (1.2) (see [4] for details).

The general properties of the primitive characters can be found in [1, pp. 343-
349]; for this work we only need the following facts:

(A) χ(k) = 0 if (k,D) > 1 and χ(k +D) = χ(k).
(B)

∑× χ(k) = 0.
(C) h = −w2

∑×(−D|k) kD .
(D) Let ς = e

2iπ
D . Define the Gauss sum gk(χ) =

∑× χ(n)ςnk and let g(χ) =
g1(χ). Then gk(χ) = χ(k)g(χ) if (k,D) = 1 and gk(χ) = 0 if (k,D) > 1, where χ
denotes the complex conjugate of χ.

The content of this work is organized as follows. Theorem 1 is proved in Section
2. In Section 3, we derive an identity relating σ1(n) (the sum of the divisors of n)
with the evaluation of the Weierstrass elliptic function at the rational points of its
period parallelogram. In Section 4, we introduce the notion of an elliptic function
associated with the imaginary quadratic fields and discuss the relevance of the two
above-mentioned classical and Ramanujan functions within this framework.

The reader’s familiarity with the basic properties of the theta functions is as-
sumed (see Chapter 21 of [6]).
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§2. Proof of Theorem 1

We begin with a lemma connecting the logarithmic derivative θ′1/θ1 with the
derivative of the function ϕ defined in (1.1). For the purpose of later use, we will
prove a more general result involving the character χ.

Lemma 2.1. If χ(−1) = −1, then∑×
χ(k)

θ′1
θ1

(z +
kπτ

2
|Dτ

2
) = 4

∑
Qχ,D(qn) cos 2nz.

Proof. The proof is based on the identity:

(2.1) i
θ′1
θ1

(z|τ) = 1 + 2
∑′ e2inz

1− q2n
,

where the complex number z satisfies the requirement: |q| < |eiz| < 1.
Before applying (2.1), we establish some crucial properties first.
Recall that

(2.2) θ1(z + πτ |τ) = −q−1e−2izθ1(z|τ).

Then
θ′1
θ1

(z + πτ |τ) = −2i+
θ′1
θ1

(z|τ).

Hence

(2.3)
θ′1
θ1

(z + (D − k)
πτ

2
|Dτ

2
) = −2i+

θ′1
θ1

(z − kπτ

2
|Dτ

2
).

We also need the following identity:∑×
χ(k)

q−nk

1− q−nD = −
∑×

χ(k)
qn(D−k)

1− qnD

=
∑×

χ(D − k)
qn(D−k)

1− qnD (since χ(−1) = −1)

=
∑×

χ(k)
qnk

1− qnD ,

(2.4)

and the fact that the left-hand side of Lemma 2.1 is even:∑×
χ(k)

θ′1
θ1

(−z +
kπτ

2
|Dτ

2
)

= −
∑×

χ(k) θ
′
1
θ1

(z − kπτ
2 |

Dτ
2 ) (since θ′1

θ1
is odd)

=
∑×

χ(−k) θ
′
1
θ1

(z − kπτ
2 |

Dτ
2 ) (since χ(−1) = −1)

=
∑×

χ(D − k) θ
′
1
θ1

(z + (D − k)πτ2 |
Dτ
2 ) (from (A), (B) and (2.3))

=
∑×

χ(k) θ
′
1
θ1

(z + kπτ
2 |

Dτ
2 ).

(2.5)

If we replace z with z + kπτ
2 and τ with Dτ

2 , then (2.1) becomes

(2.6) i
θ′1
θ1

(z +
kπτ

2
|Dτ

2
) = 1 + 2

∑′
e2inz qkn

1− qDn .
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Hence

i
∑×

χ(k)
θ′1
θ1

(z +
kπτ

2
|Dτ

2
) = 2

∑′
Qχ,D(qn)e2inz (from (B))

= 2
∑′

Qχ,D(qn) cos 2nz (from (2.5))

= 4
∑

Qχ,D(qn) cos 2nz (from (2.4)).

This completes the proof of Lemma 2.1.
We now come to the proof of Theorem 1.
Choose χ(n) = (−D|n) in Lemma 2.1. Then

(2.7)

ϕ′(z|Dτ
2

) = h+ w
∑

QD(qn) cos 2nz = h+
wi

4

∑×
(−D|n)

θ′1
θ1

(z +
nπτ

2
|Dτ

2
).

Integrating (2.7) and replacing Dτ
2 by τ , we obtain, after exponentiation,

(2.8) e−4iϕ(z|τ)/w = e4ihz/w

∏
k∈R θ1(z +

kπτ

D
|τ)/θ1(

kπτ

D
|τ)∏

n∈N θ1(z +
nπτ

D
|τ)/θ1(

nπτ

D
|τ)

.

We note that if χ(−1) = −1, then χ(D − n) = χ(−n) = −χ(n). Thus, for χ(n) =
(−D|n), as n runs through N,D − n runs through R. From this fact and (2.2), it
is easy to see that

∏
n∈N

θ1(z +
nπτ

D
|τ)

θ1(
nπτ

D
|τ)

= (−1)φ(D)/2e−iφ(D)z
∏
k∈R

θ1(z − kπτ

D
|τ)

θ1(
kπτ

D
|τ)

.

Substituting this into (2.8), we obtain

(2.9) u(z|τ) := e−4iϕ(z|τ)/w = (−1)φ(D)/2eiz(φ(D)−4h/w)
∏
k∈R

θ1(z +
kπτ

D
|τ)

θ1(z − kπτ

D
|τ)

.

We claim that πτ is a period of u(z|τ). To see this we note that, from (2.2),

u(z + πτ) = u(z) exp

{
−4
∑
k∈R

k

D
+ φ(D)− 4h

w

}
and from (C),

−2h
w

=
∑×

(−D|k)
k

D

=
∑
k∈R

k

D
−
∑
n∈N

n

D

=
∑
k∈R

k

D
−
∑
k∈R

(D − k)
D

= 2
∑
k∈R

k

D
− φ(D)

2
.

(2.10)

Hence u(z+ πτ |τ) = u(z|τ) and clearly, from (1.1), exp{−2iϕ(z|τ)} = (u(z|τ))
w
2 is

of period π.
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This completes the proof of Theorem 1.
Remark 1. We mention another class of elliptic functions connected to the qua-

dratic fields in a similar fashion. Let p ≥ 7 be a prime and p ≡ 3 mod 4. Hence −p
is a discriminant of the imaginary quadratic field Q(

√−p). Based on a fact that if
p is prime, the class number of the quadratic field Q(

√−p) is odd [2, p. 187], we
prove that

v(z) =

∏
k∈R θ1(z + kπ

p |τ)

(θ1(z|τ))
p−1

2

is elliptic and of periods τ and πτ .
We note that since θ1(z|τ) is of period π, v(z) is of period π. So we need to show

that v is also of period πτ .
From (2.2),

θ1(z + kπ
p + πτ |τ)

θ1(z + πτ |τ)
= e

2ikπ
p

θ1(z + kπ
p |τ)

θ1(z|τ)
.

Hence v(z) is of period πτ if 2
∑
k∈R(k/p) is even. To show this, we observe that

since p ≥ 7, w = 2, and so from (2.10),

(2.11) 2
∑
k∈R

k

p
=
p− 1

2
− h,

and since p ≡ 3 mod 4 and h is odd, (2.11) is even.
Remark 2. We begin with an observation:∑′

(−3|n)
nqn

1− q3n
=
∑

(−3|n)
n(qn − q2n)

1− q3n

=
∑

(−3|n)n
∑

q(3k−2)n − q(3k−1)n

=
∑

(−3|n)n
∑

(−3|m)qmn

=
∑∑

(−3|n)(−3|m)nqmn

=
∑

(−3|k)qk
∑
n|k

n

=
∑

(−3|k)σ1(k)qk,

(2.12)

where σ1(n) is the sum of the divisors of n.
Differentiating ϕ(z|Dτ2 ) twice, we obtain

ϕ′′(z|Dτ2 ) = iw4

∑×
(−D|k)

(
θ′1
θ1

)′
(z + kπτ

2 |
Dτ
2 )

= −2w
∑

nQD(qn) sin 2nz.

For D = 3, we have (
θ′1
θ1

)′
(z + πτ

2 |
3τ
2 )−

(
θ′1
θ1

)′
(z + 2πτ

2 |
3τ
2 )

= 8i
∑

n(qn−q2n)
1−q3n sin 2nz

= 8i
∑′

nqn

1−q3n sin 2nz.

(2.13)
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Recall the additive formula:

(2.14)
(
θ′1
θ1

)′
(x)−

(
θ′1
θ1

)′
(y) =

θ′1(0)θ1(x− y)θ1(x+ y)
θ2

1(x)θ2
1(y)

.

This formula is equivalent to the well-known identity [6, p. 451]:

℘(x)− ℘(y) =
σ(x + y)σ(x− y)

σ2(x)σ2(y)
,

where σ(x) is the sigma function of Weierstrass.
Choose z = π

3 in (2.13). Then sin 2nπ
3 = (−3|n)

√
3

2 ; and using Jacobi’s triple
product identity, we obtain an identity from (2.12), (2.13) and (2.14) with x =
π
3 + πτ

2 and y = π
3 + 2πτ

2 :

(2.15)
∑

(−3|n)σ1(n)qn =
∑′

(−3|n)
nqn

1− q3n
=
q(q9, q9)3

∞(q, q)3
∞

(q3, q3)2
∞

,

where (a, q)∞ =
∏∞
n=1(1− aqn).

§3. An identity involving the Weierstrass ℘ function and σ1(n)

The main goal of this section is to evaluate a certain sum of σ1(n) in terms
of the values of the ℘ function at the rational points of the period parallelogram:
{kπD + nπτ

D : 1 ≤ k, n ≤ D − 1}. We will denote the ℘ function of periods π and πτ
by ℘(z|τ). The method used in deriving (2.12) can be generalized without changes
to give the following identity:

(3.1)
∑

kmχ(k)Qχ,D(qk) =
∑

χ(k)σm(k)qk

for any character χ modulo D, where σm(k) =
∑

n|k n
m. This identity leads natu-

rally to the consideration of the function

ϕχ(z|Dτ
2

) = hz +
w

2

∑ 1
n
Qχ,D(qn) sin 2nz.

First, we need a simple lemma.

Lemma 3.1. If χ(−1) = −1, then∑×
χ(k) sin 2n(z +

kπ

D
) = −ig(χ)χ(n) cos 2nz.

Proof.∑×
χ(k) sin2n(z +

kπ

D
) = − i

2

∑×
χ(k)(e2inze

2iknπ
D − e−2inze

−2iknπ
D )

= − i
2
g(χ)χ(n)(e2inz − e−2inzχ(−1)) (from (D))

= −ig(χ)χ(n) cos 2nz.

Hence,∑×
χ(k)ϕ′′χ(z +

kπ

D
|Dτ

2
) = −2w

∑
nQχ,D(qn)

∑×
χ(k) sin 2n(z +

kπ

D
)

= 2iwg(χ)
∑

nχ(n)Qχ,D(qn) cos 2nz,
(3.2)

and from Lemma 2.1 we have

(3.3) ϕ′′χ(z|Dτ2 ) = iw4

∑×
χ(n)

(
θ′1
θ1

)′
(z + nπτ

2 |
Dτ
2 ).
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Substituting (3.3) into (3.2) and setting z = 0, we derive the following identity:

(3.4)
∑×∑×

χ(n)χ(k)
(
θ′1
θ1

)′
(kπD + nπτ

2 ) = 8g(χ)
∑

χ(n)σ1(n)qn.

Recall the relation between θ(z|τ) and ℘(z|τ):

(3.5) ℘(z|τ) = −
(
θ′1
θ1

)′
− 1

3E2,

where

E2 = 1− 24
∑ nq2n

1− q2n
.

Using (B) and (3.5), we derive the following theorem.

Theorem 2. Let −D be the discriminant of an imaginary quadratic field, and let
χ be a primitive character modulo D. Then∑×∑×

χ(n)χ(k)℘(kπD + nπτ
2 |

Dτ
2 ) = 8g(χ)

∑
χ(n)σ1(n)qn.

We note that the first half of the identity (2.15) is a special case of Theorem 2
corresponding to D = 3.

§4. Elliptic function theory associated with the imaginary

quadratic field

In view of the crucial role played by the class number formula (C), we can regard
ϕ′(z|Dτ2 ) and exp(−2iϕ(z|Dτ2 )) as elliptic functions associated with the imaginary
quadratic field of discriminant −D. Furthermore, it should be pointed out that
ϕ′(0|Dτ2 ) possesses an interesting arithmetic property connecting quadratic forms,
the Kronecker symbol and the class number in a single Lambert series:

aD := ϕ′(0|Dτ2 ) = h+ w
∑

QD(qn)

= h+ w
∑

(−D|n) qn

1−qn

=
∑
Q

∞∑
m,n=−∞

qQ(m,n),

where Q runs through h inequivalent quadratic forms of discriminant −D. See [5,
p. 123, Theorem 4] for the proof of this fact.

Thus, for D = 3 and 4, we have

a3 =
∞∑

m,n=−∞
qm

2+mn+n2
= 1 + 6

∑
(−3|n) qn

1−qn ,

a4 =
∞∑

m,n=−∞
qm

2+n2
= 1 + 4

∑
(−4|n) qn

1−qn .

It is well known, from the general theory of elliptic functions, that any two elliptic
functions f and g (of the same periods) are algebraically dependent; that is, there
exists a polynomial P (X,Y ) such that P (f, g) = 0. Therefore, from the Implicit
Function Theorem, g(z) = F (f(z)) for some algebraic function F .
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Choose f = fD and g = gD as follows:

fD(z) = sin2 ϕ(z|Dτ
2

) =
1
2
− 1

4
{exp(2iϕ(z|Dτ

2
)) + exp(−2iϕ(z|Dτ

2
))}

gD(z) =
1
aD

ϕ′(z|Dτ
2

).

Then gD(0) = 1 and from Theorem 1, fD is elliptic for every D. We choose
these two functions for study primarily because when D = 3, 4, they correspond,
respectively, to the Ramanujan and classical cases; and when D ≥ 7, they have
the same poles and all the poles are of order one and thus might lead to a simpler
polynomial equation.

We now consider the cases for D = 3 and 4. By comparing the poles of fD (= X)
and gD (= Y ), for D = 3 and 4, we deduce that they satisfy, respectively, the
polynomials

(4.1) 4− Y 3 − 3Y 2 = 4k3X

and

(4.2) Y 2 = 1− k4X.

See [4] for the details and exact values of k3.
For the case D = 4, clearly a4 = (θ3(0|τ))2 and it is well known that [6, p. 492]

k4 = k2 (k is called the modulus of the elliptic function). From (4.2), we see that
ϕ(z| 4τ2 ) is the unique solution of the differential equation:

ϕ′

a4
= (1− k4 sin2 ϕ)

1
2 and ϕ(0) = 0.

Then

(4.3) a4z =
∫ ϕ

0

(1− k4 sin2 x)−
1
2 dx =

∫ ϕ

0
2F1(1

2 ,
1
2 ; 1

2 ; k4 sin2 x)dx.

Here we use the hypergeometric series to write: (1− z)−
1
2 = 2F1(1

2 ,
1
2 ; 1

2 ; z).
We have derived the following theorem.

Theorem A. Define

a4z =
∫ ϕ

0
2F1(1

2 ,
1
2 ; 1

2 ; k4 sin2 x)dx.

Then

ϕ(z) = ϕ(z|4τ
2

) = z + 2
∑ 1

n

qn

1 + q2n
sin 2nz.

To see the connection of Theorem A with the classical Jacobi elliptic functions,
we let t = sinx in (4.3). Then we obtain the well-known elliptic integral from which
sn(z, k) is defined [6, p. 492]:

z =

sn(z,k)∫
0

(1− t2)−
1
2 (1− k2t2)−

1
2 dt.

Therefore, from this perspective, we can regard the classical Jacobi elliptic func-
tions as the class of elliptic functions associated with the imaginary quadratic field
Q(
√
−1).
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In the case of D = 3, it is observed in [3] and [4] that

Y (X) =
1

2F1(1
3 ,

2
3 ; 1

2 ;X2)

is the unique solution of (4.1) with Y (0) = 0. Therefore, with X = f3 and Y = g3,
we see that ϕ(z| 3τ2 ) is the unique solution of the differential equation:

a3 = 2F1(1
3 ,

2
3 ; 1

2 ; k3 sin2 ϕ)ϕ′, ϕ(0) = 1.

From this, we derive a remarkable statement of Ramanujan.

Theorem B. Define

a3z =

ϕ∫
0

2F1(
1
3
,

2
3

;
1
2

; k3 sin2 x)dx.

Then
ϕ(z|3τ

2
) = z + 3

∑ 1
n

qn

1 + qn + q2n
sin 2nz.

Therefore, we can view this theorem of Ramanujan as a result of the elliptic
function theory associated with the quadratic field Q(

√
−3).

We now apply the general theory of elliptic functions to fD and gD. Then
ϕ(z|Dτ2 ) satisfies a differential equation:

aD = FD(sin2 ϕ)ϕ′, ϕ(0) = 1

for some algebraic function FD. Hence, in theory, for every imaginary quadratic
field, there exists an analogue of Theorems A and B:

Theorem 3. Define

aDz =

ϕ∫
0

FD(sin2 x)dx.

Then ϕ(z) = hz + w
2

∑ 1
nQD(qn) sin 2nz.
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