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DENSITY OF IRREGULAR WAVELET FRAMES

WENCHANG SUN AND XINGWEI ZHOU

(Communicated by David R. Larson)

Abstract. We show that if an irregular multi-generated wavelet system forms
a frame, then both the time parameters and the logarithms of scale param-
eters have finite upper Beurling densities, or equivalently, both are relatively
uniformly discrete. Moreover, if generating functions are admissible, then
the logarithms of scale parameters possess a positive lower Beurling density.
However, the lower Beurling density of the time parameters may be zero. Ad-
ditionally, we prove that there are no frames generated by dilations of a finite
number of admissible functions.

1. Introduction

Wavelet systems that form frames for L2(R) have a wide variety of applications.
An important problem in practice is therefore to determine conditions for wavelet
systems to be frames. Many results, including necessary conditions and sufficient
conditions, have been established during the past ten years. For example, see [3]-
[10], [12]-[13], [15], [17]-[19], and [21]. In [4], Christensen, Deng and Heil studied the
density of Gabor frames and proved that for a Gabor system {eibnxg(x− an) : n ∈
Z} to be a frame for L2(R), the time-frequency parameters (an, bn) must possess a
lower Beurling density no less than 1

2π . For the case of wavelet systems, however,
no similar result has been found.

In this paper, we study density conditions for irregular multi-generated wavelet
systems of the form {s1/2

`,j ψ`(s`,j · −t`,k) : j ∈ J`, k ∈ K`, 1 ≤ ` ≤ r} to be frames,
where r is a fixed positive integer, ψ` ∈ L2(R), s`,j > 0, t`,k ∈ R and J`,K` ⊂ Z.
We call s`,j scale parameters and t`,k time parameters for a wavelet system. For
any 1 ≤ ` ≤ r, let S` = {s`,j : j ∈ J`} and T` = {t`,k : k ∈ K`}. Since S` and T`
are sequences, repetitions of points are allowed. Let S = {s`,j : 1 ≤ ` ≤ r, j ∈ J`},
i.e., S is the sequence obtained by amalgamating S1, . . . , Sr. We write S =

⋃r
`=1 S`

for simplicity. T =
⋃r
`=1 T` is defined similarly. Let lnS = {ln s : s ∈ S}. For any

s > 0, t ∈ R and f ∈ L2(R), define τ(s, t)f = s1/2f(s · −t).
With these symbols, the wavelet system {s1/2

`,j ψ`(s`,j ·−t`,k) : j ∈ J`, k ∈ K`, 1 ≤
` ≤ r} can be denoted by

⋃r
`=1{τ(s, t)ψ` : s ∈ S`, t ∈ T`}. We show that if a
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wavelet system forms a frame for L2(R), then lnS and T are relatively uniformly
discrete, or equivalently, lnS and T have finite upper Beurling densities. Moreover,
we prove that if ψ` are admissible, then lnS possesses a positive lower Beurling
density. We also give an example to show that the lower Beurling density of T may
be zero. Additionally, we prove that there are no frames generated by dilations of
a finite number of admissible functions.

Notation and Definitions. The Fourier transform of f ∈ L2(R) is defined by
f̂(ω) =

∫
R f(x)e−ixωdx.

We call a function ψ ∈ L2(R) admissible if Cψ :=
∫ +∞
−∞

|ψ̂(ω)|2
|ω| dω < +∞.

Cc(R) = {f : f is continuous and compactly supported}.
‖f‖ denotes the L2-norm for any f ∈ L2(R).
#S denotes the number of elements in a set or a sequence S.
bxc = max{n : n ≤ x, n ∈ Z} and dxe = min{n : n ≥ x, n ∈ Z} for any x ∈ R.
A sequence Γ = {γi : i ∈ I} ⊂ R is called δ-uniformly discrete if |γi−γj| ≥ δ > 0

for any i, j ∈ I, i 6= j. Γ is called relatively uniformly discrete if it is a finite union
of uniformly discrete sequences. The lower and upper Beurling densities of Γ are
defined respectively by

D−(Γ) = lim inf
R→+∞

minx∈R#([x −R, x+R] ∩ Γ)
2R

,

D+(Γ) = lim sup
R→+∞

maxx∈R#([x−R, x+R] ∩ Γ)
2R

.

It was shown in [4, Lemma 2.3] that a sequence is relatively uniformly discrete if
and only if it has a finite upper Beurling density.

A family of functions {fj : j ∈ J} belonging to a separable Hilbert space H is
said to be a frame if there exist positive constants A and B such that A‖f‖2 ≤∑
j∈J |〈f, fj〉|2 ≤ B‖f‖2 for every f ∈ H. The numbers A and B are called the

lower and upper frame bounds, respectively.

Remark. After submitting this paper, we learned that Heil and Kutyniok [12] have
simultaneously derived some interesting results on the density of weighted wavelet
frames of the form {w(a, b)1/2τ(a, b)ψ : (a, b) ∈ Λ}, where w(a, b) is a weight
function and Λ ⊂ R+ × R is a sequence. However, their results are distinct from
ours, and, in particular, we consider multi-generated wavelet systems. We also
studied the density of wavelet frames with arbitrary sampling points in [19].

2. Main results

Theorem 2.1. Let ψ` ∈ L2(R), S` and T` be real sequences, and let S` consist of
positive numbers, 1 ≤ ` ≤ r. Denote

⋃r
`=1 S` and

⋃r
`=1 T` by S and T , respectively.

(1) If
⋃r
`=1{τ(s, t)ψ` : s ∈ S`, t ∈ T`} possesses a finite upper frame bound

for L2(R), then both lnS and T have finite upper Beauling densities, or
equivalently, both are relatively uniformly discrete.

(2) If
⋃r
`=1{τ(s, t)ψ` : s ∈ S`, t ∈ T`} is a frame for L2(R), then supS = +∞.

Moreover, if ψ` is admissible, 1 ≤ ` ≤ r, then

(2.1) inf S = 0, inf T = −∞, supT = +∞,
and there is some constant ∆ > 1 such that

(2.2) #([∆j ,∆j+1]∩S) ≥ 1, ∀j ∈ Z,
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which, in particular, implies that

(2.3) D−(lnS) ≥ 1
ln ∆

.

Corollary 2.2. Let ψ`, S` and T` be defined as in Theorem 2.1. If
⋃r
`=1{τ(s, t)ψ` :

s ∈ S`, t ∈ T`} is a frame for L2(R), then
⋃r
`=1 S` is an infinite sequence.

Moreover, if ψ` is admissible, 1 ≤ ` ≤ r, then
⋃r
`=1 T` is also an infinite sequence.

Remark. Olson and Zalik [16] proved that there does not exist any Riesz basis for
L2(R) generated by translations of a single function. Moreover, Christensen, Deng
and Heil [4] proved that there are no frames for L2(R) generated by translations
of finitely many functions, which coincides with the first part of Corollary 2.2.
The corollary above also shows that if generating functions ψ` satisfy a very weak
condition, i.e., they are admissible, then there are no frames for L2(R) generated
by dilations of finitely many functions.

By (2.3), lnS possesses a positive lower Beurling density. So S cannot be “too
discrete” for

⋃r
`=1{τ(s, t)ψ` : s ∈ S`, t ∈ T`} to be a frame. Does the same thing

occur for T ? The answer is, surprisingly, no! In fact, we have the following.

Theorem 2.3. Suppose that ψ(x) is a nonzero, two times continuously dif-
ferentiable and real-valued function, xψ(x), ψ′(x), xψ′(x), xψ′′(x) ∈ L2(R) and
ψ̂(0) = 0. Then there are increasing sequences {sj : j ∈ Z} and {tk : k ∈ Z} such
that {τ(sj , tk)ψ : j, k ∈ Z} is a frame for L2(R), and

(2.4) D−({tk : k ∈ Z}) = 0.

Remark. It is easy to see that (2.4) is equivalent to supk∈Z(tk+1 − tk) = +∞.
By [14, Lemma 8], (2.4) implies that for {τ(sj , tk)ψ : j, k ∈ Z} to be a frame,
{eitkω : k ∈ Z} may not be a frame for any L2[−r, r], r > 0. The following is an
explicit example.

Example 2.1. Define ψ̂(ω) = |ω| 14 (1 − |ω|) for |ω| ≤ 1 and 0 for others. Let Λ =
{k ∈ Z : k ≤ 2 or 22l ≤ k ≤ 22l+1 for some l ≥ 1}. Then {τ(2j , k2 )ψ : j ∈ Z, k ∈ Λ}
is a frame for L2(R), and D−(1

2Λ) = 0.

3. Proofs of theorems

We need only to prove Theorems 2.1 and 2.3, since Corollary 2.2 is an obvious
consequence of Theorem 2.1.

Proof of Theorem 2.1(1). Let B be the upper frame bound. We will prove that
lnS and T are relatively uniformly discrete. It suffices to show that lnS` and T`
are relatively uniformly discrete for any 1 ≤ ` ≤ r.

Fix some 1 ≤ ` ≤ r, s0 ∈ S`, and t0 ∈ T`. Let f = ατ(s0, t0)ψ`, where the
constant α is chosen so that ‖f‖ = 1. Then

c := |〈f, τ(s0, t0)ψ`〉|2 > 0.

It is easy to check that 〈f, τ(s, t)ψ`〉 is continuous with respect to s and t. Hence
there is some a` > 1 such that

(3.1) |〈f, τ(ss0, t0)ψ`〉|2 >
c

2
, ∀a−1

` < s < a`.
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For any j ∈ Z, we have

B = B‖τ(aj`/s0, 0)f‖2 ≥
∑

s∈S`, t∈T`

|〈τ(aj`/s0, 0)f, τ(s, t)ψ`〉|2

≥
∑
s∈S`

|〈τ(aj`/s0, 0)f, τ(s, t0)ψ`〉|2 =
∑
s∈S`

|〈f, τ(ss0/a
j
`, t0)ψ`〉|2.

It follows from (3.1) that #{s ∈ S` : 1
a`
< s

aj`
< a`} ≤ p := b 2B

c c. Hence there

are at most p elements of S` in each interval [aj` , a
j+1
` ), j ∈ Z. Therefore, we

can split S` into at most 2p subsequences S`,n, 1 ≤ n ≤ 2p, such that S`,2n−1 ⊂⋃
j∈Z[a2j−1

` , a2j
` ), S`,2n ⊂

⋃
j∈Z[a2j

` , a
2j+1
` ), and #(S`,n ∩ [aj` , a

j+1
` )) ≤ 1, ∀j ∈ Z. It

follows that
| ln s− ln s′| ≥ ln a`, ∀s, s′ ∈ S`,n, s 6= s′.

Hence lnS`,n is ln a`-uniformly discrete, and so lnS` is relatively uniformly discrete.
Next we will prove that T` is relatively uniformly discrete. By continuity, there

is some b` > 0 such that

(3.2) |〈f, τ(s0, t0 + t)ψ`〉|2 >
c

2
, |t| < b`.

For any k ∈ Z, let xk ∈ R be such that s0xk + kb` = t0. We have

B = B‖f(·+ xk)‖2 ≥
∑

s∈S`, t∈T`

|〈f(·+ xk), τ(s, t)ψ`〉|2

≥
∑
t∈T`

|〈f(·+ xk), τ(s0, t)ψ`〉|2 =
∑
t∈T`

|〈f, τ(s0, s0xk + t)ψ`〉|2

=
∑
t∈T`

|〈f, τ(s0, t0 + (t− kb`))ψ`〉|2.

By (3.2), we have #{t ∈ T` : |t − kb`| < b`} ≤ q := b 2B
c c. Hence we can split T`

into at most 2q subsequences T`,m, 1 ≤ m ≤ 2q such that

T`,2m−1 ⊂
⋃
k∈Z

[(2k − 1)b`, 2kb`), T`,2m ⊂
⋃
k∈Z

[2kb`, (2k + 1)b`),

and
#(T`,m

⋂
[kb`, (k + 1)b`)) ≤ 1, ∀k ∈ Z.

Hence T` is relatively uniformly discrete. �

Before proving Theorem 2.1(2), we introduce some preliminary results.

Lemma 3.1. For any b > 0, there is some constant Cb > 0 such that for any c < d,
any f ∈ L2[c, d], and any b-uniformly discrete sequence {tk : k ∈ Z},

(3.3)
∑
k∈Z

∣∣∣ ∫ d

c

f(x)eitkxdx
∣∣∣2 ≤ 4π2dd− ceCb

∫ d

c

|f(x)|2dx.

Proof. By [1, Lemma 42], there is some constant Cb such that for any b-uniformly
discrete sequence {tk : k ∈ Z} and f ∈ L2[0, 1],∑

k∈Z

∣∣∣ ∫ 1

0

f(x)eitkxdx
∣∣∣2 ≤ 4π2Cb

∫ 1

0

|f(x)|2dx.
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If d − c ≤ 1, then (3.3) follows by a change of variable of the form x→ x+ c. For
the case of d− c > 1, let n = dd− ce. Then ∆ := (d− c)/n ≤ 1. Hence∑

k∈Z

∣∣∣ ∫ d

c

f(x)eitkxdx
∣∣∣2 =

∑
k∈Z

∣∣∣ n−1∑
l=0

∫ c+(l+1)∆

c+l∆

f(x)eitkxdx
∣∣∣2

≤
∑
k∈Z

n

n−1∑
l=0

∣∣∣ ∫ c+(l+1)∆

c+l∆

f(x)eitkxdx
∣∣∣2 ≤ n n−1∑

l=0

4π2Cb

∫ c+(l+1)∆

c+l∆

|f(x)|2dx

= dd− ce · 4π2Cb

∫ d

c

|f(x)|2dx. �

Lemma 3.2. Let ψ ∈ L2(R), let a > 1, b > 0 be constants, and let Cb be defined as
in Lemma 3.1. Let f ∈ L2(R) be such that supp f̂ ⊂ [1, a] and ‖f̂‖∞ <∞. Then∑

sj>M, k∈Z
|〈f, τ(sj , tj,k)ψ〉|2 ≤ aCb‖f̂‖2∞

∫ a
M

0

|ψ̂(ω)|2
ω

dω,(3.4)

∑
sj<

1
M , k∈Z

|〈f, τ(sj , tj,k)ψ〉|2 ≤ 2(a− 1)Cb‖f̂‖2∞
∫ +∞

M

|ψ̂(ω)|2dω,(3.5)

whenever {ln sj : j ∈ Z} is ln a-uniformly discrete, {tj,k : k ∈ Z} is b-uniformly
discrete, M > a− 1 for (3.4) and M > 1

a−1 for (3.5).

Proof. Since supp f̂ ⊂ [1, a] and a
sj
− 1

sj
≤ a−1

M < 1 for any sj > M > a − 1, we
derive from Lemma 3.1 that∑

sj>M, k∈Z
|〈f, τ(sj , tj,k)ψ〉|2 =

∑
sj>M, k∈Z

∣∣∣∣ 1
2π

∫ +∞

−∞
f̂(ω)s−

1
2

j ψ̂(
ω

sj
)eitj,ks

−1
j ωdω

∣∣∣∣2

=
∑

sj>M, k∈Z

∣∣∣∣∣ 1
2π

∫ a
sj

1
sj

s
1
2
j f̂(sjω)ψ̂(ω)eitj,kωdω

∣∣∣∣∣
2

≤
∑
sj>M

Cb

∫ a
sj

1
sj

∣∣∣s 1
2
j f̂(sjω)ψ̂(ω)

∣∣∣2 dω ≤ ∑
sj>M

Cb

∫ a
sj

1
sj

a

ω
‖f̂‖2∞|ψ̂(ω)|2dω.

Since {ln sj : j ∈ Z} is ln a-uniformly discrete, the intervals [ 1
sj
, asj ) are mutually

disjoint. Hence (3.4) holds.
Noting that da−1

sj
e ≤ 2(a−1)

sj
for any sj < 1

M < a− 1, using Lemma 3.1 again, we
have ∑

sj<
1
M , k∈Z

|〈f, τ(sj , tj,k)ψ〉|2 =
∑

sj<
1
M , k∈Z

∣∣∣∣∣ 1
2π

∫ a
sj

1
sj

s
1/2
j f̂(sjω)ψ̂(ω)eitj,kωdω

∣∣∣∣∣
2

≤
∑
sj<

1
M

2(a− 1)
sj

Cb

∫ a
sj

1
sj

∣∣∣s1/2
j f̂(sjω)ψ̂(ω)

∣∣∣2 dω
≤

∑
sj<

1
M

2(a− 1)Cb
∫ a

sj

1
sj

‖f̂‖2∞|ψ̂(ω)|2dω ≤ 2(a− 1)Cb‖f̂‖2∞
∫ +∞

M

|ψ̂(ω)|2dω.

This completes the proof. �
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For any f, ψ ∈ L2(R), define

(Tψf)(s, t) = 〈f, |s|1/2ψ(s · −t)〉, s, t ∈ R.

Since (Tψf)(s, t) = 〈|s|− 1
2 f( ·+ts ), ψ〉 for any s 6= 0, we see from wavelet theory that

if f is admissible, then

(3.6)
∫∫
R2

1
s2
|(Tψf)(s, t)|2dt ds = Cf‖ψ‖2 < +∞.

The following lemma is a consequence of the Wirtinger inequality [11].

Lemma 3.3. If f(x) is differentiable on [a, b], f, f ′ ∈ L2[a, b] and there is some
c ∈ [a, b] such that f(c) = 0, then

∫ b
a |f(x)|2dx ≤ (2 max{c−a, b−c}

π )2
∫ b
a |f ′(x)|2dx.

Lemma 3.4. Suppose that f̂(ω) is compactly supported and continuously differen-
tiable and that f̂(0) = 0. For any ψ ∈ L2(R), ε, b > 0 and M,a > 1, there is some
constant N = N(ε,M, a, b, ψ, f) > 0 such that∑

sj∈[ 1
M ,M ]

∑
|tj,k|>N

∣∣∣〈f, s1/2
j ψ(sj · −tj,k)〉

∣∣∣2 < ε

for any sj and tj,k for which {ln sj : j ∈ Z} is ln a-uniformly discrete and {tj,k :
k ∈ Z} is b-uniformly discrete.

Proof. Since f̂ is compactly supported, f ∈ C∞. Noting that

(Tψf)(s, t) = 〈s− 1
2 f(
·+ t

s
), ψ〉,

we have
∂

∂t
(Tψf)(s, t) =

1
s

(Tψf ′)(s, t),
∂

∂s

1
s

(Tψf)(s, t) = − 1
s2

(Tψf̃)(s, t), s > 0, t ∈ R,

where f̃(x) = 3
2f(x) + xf ′(x).

For any j, k ∈ Z, let Qj,k = [sja−1/2, sja
1/2] × [tj,k − sjb

2M , tj,k + sjb
2M ]. Then

the Lebesgue measure of Qj,k ∩ Qj′,k′ equals zero whenever (j, k) 6= (j′, k′) and
sj , sj′ ≤M . It follows from Lemma 3.3 that for any N > 0,∑

sj∈[ 1
M ,M ]

∑
|tj,k|>N

∫∫
Qj,k

1
s2
|(Tψf)(s, t)− (Tψf)(s, tj,k)|2dt ds

=
∑

sj∈[ 1
M ,M ]

∑
|tj,k|>N

∫ sja
1
2

sja
− 1

2

ds

s2

∫ tj,k+
sjb

2M

tj,k−
sjb

2M

|(Tψf)(s, t)− (Tψf)(s, tj,k)|2dt

≤
∑

sj∈[ 1
M ,M ]

∑
|tj,k|>N

∫ sja
1
2

sja
− 1

2

ds

s2
·
s2
jb

2

π2M2

∫ tj,k+
sjb

2M

tj,k−
sjb

2M

1
s2
|(Tψf ′)(s, t)|2dt

≤
∑

sj∈[ 1
M ,M ]

∑
|tj,k|>N

ab2

π2M2

∫∫
Qj,k

1
s2
|(Tψf ′)(s, t)|2dt ds

≤ ab2

π2M2

∫∫
s∈[ 1

M
√
a
,M
√
a], |t|>N−b

1
s2
|(Tψf ′)(s, t)|2dt ds.
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Hence, ∑
sj∈[ 1

M ,M ]

∑
|tj,k|>N

∫∫
Qj,k

1
s2
|(Tψf)(s, tj,k)|2dt ds(3.7)

≤
∑

sj∈[ 1
M ,M ]

∑
|tj,k|>N

∫∫
Qj,k

2
s2

(
|(Tψf)(s, t)|2+|(Tψf)(s, t)− (Tψf)(s, tj,k)|2

)
dt ds

≤
∫∫

s∈[ 1
M
√
a
,M
√
a], |t|>N−b

(
2
s2
|(Tψf)(s, t)|2 +

ab2

π2M2
· 2
s2
|(Tψf ′)(s, t)|2

)
dt ds

:= P.

Therefore,∑
sj∈[ 1

M ,M ]

∑
|tj,k|>N

∫∫
Qj,k

∣∣∣∣1s (Tψf)(s, tj,k)− 1
sj

(Tψf)(sj , tj,k)
∣∣∣∣2 dt ds(3.8)

=
∑

sj∈[ 1
M ,M ]

∑
|tj,k|>N

∫ tj,k+
sjb

2M

tj,k−
sjb

2M

dt

∫ sja
1
2

sja
− 1

2

∣∣∣∣1s (Tψf)(s, tj,k)− 1
sj

(Tψf)(sj , tj,k)
∣∣∣∣2 ds

≤
∑

sj∈[ 1
M ,M ]

∑
|tj,k|>N

4s2
j(
√
a− 1)2

π2

∫∫
Qj,k

1
s4
|(Tψf̃)(s, tj,k)|2dt ds

≤
∑

sj∈[ 1
M ,M ]

∑
|tj,k|>N

4a(
√
a− 1)2

π2

∫∫
Qj,k

1
s2
|(Tψf̃)(s, tj,k)|2dt ds

≤
∫∫

s∈[ 1
M
√
a
,M
√
a]

|t|>N−b

8a(
√
a− 1)2

π2
· 1
s2

(
|(Tψf̃)(s, t)|2 +

ab2

π2M2
|(Tψ(f̃)′)(s, t)|2

)
dt ds

:= Q,

where (3.7) is used in the last inequality. Putting (3.7) and (3.8) together, we get∑
sj∈[ 1

M
,M]

|tj,k|>N

|〈f, τ(sj , tj,k)ψ〉|2 =
M
√
a

b(a− 1)

∑
sj∈[ 1

M
,M]

|tj,k|>N

∫∫
Qj,k

1
s2
j

|(Tψf)(sj , tj,k)|2dt ds

=
M
√
a

b(a− 1)

∑
sj∈[ 1

M
,M]

|tj,k|>N

∫∫
Qj,k

∣∣∣∣1s (Tψf)(s, tj,k)−
(1
s

(Tψf)(s, tj,k)− 1
sj

(Tψf)(sj , tj,k)
)∣∣∣∣2dtds

≤ M
√
a

b(a− 1)
(2P + 2Q).

Since f̂ is continuously differentiable and f̂(0) = 0, it is easy to check that all
of f, f ′, f̃ , and (f̃)′ are admissible. By (3.6), all of 1

s (Tψf)(s, t), 1
s (Tψf ′)(s, t),

1
s (Tψf̃)(s, t), and 1

s (Tψ(f̃)′)(s, t) are square integrable on R2. Hence

lim
N→+∞

(P +Q) = 0,

which completes the proof. �
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Proof of Theorem 2.1 (2). Let A and B be the lower and upper frame bounds,
respectively. By (i), there exist constants a` > 1, b` > 0 and positive integers p
and q such that S` =

⋃2p
n=1 S`,n, T` =

⋃2q
m=1 T`,m, lnS`,n is ln a`-uniformly discrete

and T`,m is b`-uniformly discrete. Let a = min1≤`≤r a` and b = min1≤`≤r b`. Then
lnS`,n is ln a-uniformly discrete and T`,m is b-uniformly discrete for any 1 ≤ ` ≤ r,
1 ≤ n ≤ 2p, and 1 ≤ m ≤ 2q.

Put f̂(ω) = 1√
a−1

χ[1,a](ω). If α = supS < +∞, then (3.5) implies that for δ
small enough,∑

s∈S`,n, t∈T`,m

|〈f, τ(sδ, t)ψ`〉|2 ≤ 2Cb
∫ +∞

1
δα

|ψ̂`(ω)|2dω, ∀`, n,m.

Hence

A‖f‖2 = A‖τ(1/δ, 0)f‖2 ≤
r∑
`=1

∑
s∈S`, t∈T`

∣∣∣〈τ(
1
δ
, 0)f, τ(s, t)ψ`〉

∣∣∣2
=

r∑
`=1

2p∑
n=1

2q∑
m=1

∑
s∈S`,n, t∈T`,m

|〈f, τ(sδ, t)ψ`〉|2 ≤ 8pqCb
r∑
`=1

∫ +∞

1
δα

|ψ̂`(ω)|2dω.

By letting δ → 0, we get A = 0, which is impossible. Hence supS = +∞.
In what follows we assume that ψ` is admissible, 1 ≤ ` ≤ r.
Assume that β = inf S > 0. By (3.4), for any 0 < δ < β

a−1 , we have

A‖f‖2 = A‖τ(δ, 0)f‖2 ≤
r∑
`=1

∑
s∈S`, t∈T`

|〈τ(δ, 0)f, τ(s, t)ψ`〉|2

=
r∑
`=1

2p∑
n=1

2q∑
m=1

∑
s∈S`,n, t∈T`,m

|〈f, τ(s/δ, t)ψ`〉|2 ≤ 4pq · aCb
a− 1

r∑
`=1

∫ δa
β

0

|ψ̂`(ω)|2
|ω| dω.

By letting δ → 0 we get A = 0, which is a contradiction. Hence inf S = 0.
Next we will prove that inf T = −∞. Choose some f 6= 0 such that f̂ is continu-

ously differentiable and supp f̂ ⊂ [1, a]. Since lnS`,n is ln a-uniformly discrete and
sx + T`,m := {sx + t : t ∈ T`,m} is b-uniformly discrete for any `, n,m and sx, it
follows from Lemma 3.2 that for any M > max{a− 1, 1

a−1},∑
s∈S`,n\[ 1

M ,M ]

∑
t∈T`,m

|〈f, τ(s, sx+ t)ψ`〉|2

≤ aCb‖f̂‖2∞
∫ a

M

0

|ψ̂`(ω)|2
ω

dω + 2(a− 1)Cb‖f̂‖2∞
∫ +∞

M

|ψ̂`(ω)|2dω.

Hence, there is some M > 1 such that∑
s∈S`,n\[ 1

M ,M ]

∑
t∈T`,m

|〈f, τ(s, sx + t)ψ`〉|2 <
1

4pqr
· A

2
‖f‖2, ∀x, l,m, n.

Therefore,
r∑
`=1

∑
s∈S`\[ 1

M ,M ]

∑
t∈T`

|〈f, τ(s, sx + t)ψ`〉|2 <
A

2
‖f‖2, ∀x ∈ R.
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But
r∑
`=1

∑
s∈S`

∑
t∈T`

|〈f, τ(s, sx + t)ψ`〉|2 =
r∑
`=1

∑
s∈S`

∑
t∈T`

|〈f(·+ x), τ(s, t)ψ`〉|2 ≥ A‖f‖2.

Hence,

(3.9)
r∑
`=1

∑
s∈S`∩[ 1

M ,M ]

∑
t∈T`

|〈f, τ(s, sx+ t)ψ`〉|2 >
A

2
‖f‖2, ∀x ∈ R.

On the other hand, by Lemma 3.4, there is some N > 0 such that∑
s∈S`,n∩[ 1

M ,M ]

∑
t∈T`,n∩{|sx+t|>N}

|〈f, τ(s, sx + t)ψ`〉|2 <
1

4pqr
· A

2
‖f‖2, ∀x, `,m, n.

Hence,
r∑
`=1

∑
s∈S`∩[ 1

M ,M ]

∑
t∈T`∩{|sx+t|>N}

|〈f, τ(s, sx+ t)ψ`〉|2 <
A

2
‖f‖2, ∀x.

If t0 := inf T > −∞, then there is some x0 > 0 such that x0
M + t0 > N. Thus

sx0 + t ≥ x0
M + t0 > N for any s ≥ 1

M and t ∈ T . By setting x = x0 in the inequality
above, we have

r∑
`=1

∑
s∈S`∩[ 1

M ,M ]

∑
t∈T`

|〈f, τ(s, sx0 + t)ψ`〉|2 <
A

2
‖f‖2,

which contradicts (3.9). Similarly we can prove that supT = +∞.
At last, we will prove (2.2). We argue by contradiction and assume that for any

∆ > 1, there is some j0 ∈ Z such that #(S ∩ [∆j0 ,∆j0+1]) = 0. Let α = ∆j0+1/2.
Then s

α > ∆1/2 or s
α < ∆−1/2 for any s ∈ S.

Let f̂(ω) = 1√
a−1

χ[1,a](ω). It follows from Lemma 3.2 that for ∆ large enough,

A‖f‖2 ≤
r∑
`=1

∑
s∈S`
t∈T`

|〈τ(α, 0)f, τ(s, t)ψ`〉|2 =
r∑
`=1

∑
1≤n≤2p
1≤m≤2q

∑
s∈S`,n
t∈T`,m

|〈f, τ(
s

α
, t)ψ`〉|2

≤
r∑
`=1

4pq
( aCb
a− 1

∫ a

∆1/2

0

|ψ̂`(ω)|2
|ω| dω + 2Cb

∫ +∞

∆1/2
|ψ̂`(ω)|2dω

)
.

By letting ∆→ +∞, we get A = 0, which contradicts the hypotheses. �

Lemma 3.5 ([18, Theorem 2.4]). Let ψ be defined as in Theorem 2.3. Let a >
1, b > 0 be constants such that

∆ :=
2b
π
C

1
2
ψ′ +

2(a− 1)
π

C
1
2

ψ̃
+

4b(a− 1)
π2

C
1
2

(ψ̃)′
< C

1
2
ψ ,

where ψ̃(x) = 3
2ψ(x) + xψ′(x). Then {τ(sj,k, tj,k)ψ : j, k ∈ Z} is a frame for L2(R)

with bounds 1
2b(a−1) (C

1
2
ψ −∆)2 and a2

2b(a−1) (C
1
2
ψ +∆)2 for any sj,k and tj,k satisfying

( 1
sj,k

,
tj,k
sj,k

) ∈ [a−j, a−j+1]× [a−jkb, a−j(k + 1)b].
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Proof of Theorem 2.3. Let a, b,∆ be defined as in Lemma 3.5. Take some integer
n1 >

1
a−1 . Let

(3.10) n2l = ban2l−1c, n2l+1 = dan2le, l ≥ 1.

It is easy to check that nl+1 > nl for any l ≥ 1 and n2l−n2l−1 > (a−1)n2l−1−1→
+∞ as l→ +∞. Let

(3.11) Λ = {k ∈ Z : k ≤ n1 or n2l ≤ k ≤ n2l+1 for some l ≥ 1}.

Then we have D−(a−1bΛ) = 0. To prove this theorem, it suffices to prove that
{τ(aj−1, a−1bk)ψ : j ∈ Z, k ∈ Λ} is a frame for L2(R).

For any k ∈ Z, if k 6∈ Λ, then there is some l ≥ 1 such that n2l−1 < k < n2l. Since
n2l
a ≤ n2l−1 < n2l ≤ n2l+1

a thanks to (3.10), there is a unique mk ∈ [n2l, n2l+1] ∩ Λ
such that

mk

a
∈ (k, k +

1
a

] ⊂ (k, k + 1).

Obviously, mk 6= mk′ if k 6= k′. Let

(sj,k, tj,k) =
{

(aj−1, a−1bk), j ∈ Z, k ∈ Λ,
(aj , a−1mkb), j ∈ Z, k 6∈ Λ.

Then ( 1
sj,k

,
tj,k
sj,k

) ∈ [a−j , a−j+1] × [a−jbk, a−jb(k + 1)] for any j, k ∈ Z. It follows
from Lemma 3.5 that

2
∑

j∈Z,k∈Λ

|〈f, τ(aj−1, a−1bk)ψ〉|2

=
∑

j∈Z,k∈Λ

|〈f, τ(aj−1, a−1bk)ψ〉|2 +
∑

j∈Z,k∈Λ

|〈f, τ(aj , a−1bk)ψ〉|2

≥
∑
j,k∈Z

|〈f, τ(sj,k, tj,k)ψ〉|2 ≥ 1
2(a− 1)b

(C
1
2
ψ −∆)2‖f‖2, ∀f ∈ L2(R).

Since Λ ⊂ Z, using Lemma 3.5 again, we get
∑

j∈Z,k∈Λ |〈f, τ(aj−1, a−1kb)ψ〉|2 ≤
a2

2(a−1)b (C
1
2
ψ + ∆)2‖f‖2. Hence {τ(aj−1, a−1kb)ψ : j ∈ Z, k ∈ Λ} is a frame for

L2(R).

To conclude this paper, let us check Example 2.1. Since ψ̂ is absolutely contin-
uous and compactly supported, it is easy to see that ψ meets the hypotheses of
Theorem 2.3. Moreover, it can be checked that

Cψ =
32
15
, Cψ′ =

32
315

, Cψ̃ =
6
5
, C(ψ̃)′ =

18
35
,

and ∆ < C
1
2
ψ for a = 2 and b = 1. Let nl = 2l, l ≥ 1. Then (3.11) turns

out to be Λ = {k ∈ Z : k ≤ 2 or 22l ≤ k ≤ 22l+1 for some l ≥ 1}. Hence
{τ(2j−1, k2 )ψ : j ∈ Z, k ∈ Λ} and so {τ(2j , k2 )ψ : j ∈ Z, k ∈ Λ} are frames for
L2(R).
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[10] K. Gröchenig, Irregular sampling of wavelet and short-time Fourier transforms, Constr.

Approx., 9 (1993), 283–297. MR 94m:42077
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