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A MULTILINEAR GENERALISATION
OF THE CAUCHY-SCHWARZ INEQUALITY

ANTHONY CARBERY

(Communicated by Andreas Seeger)

Abstract. We prove a multilinear inequality which in the bilinear case re-
duces to the Cauchy-Schwarz inequality. The inequality is combinatorial in
nature and is closely related to one established by Katz and Tao in their work
on dimensions of Kakeya sets. Although the inequality is “elementary” in
essence, the proof given is genuinely analytical insofar as limiting procedures
are employed. Extensive remarks are made to place the inequality in context.

1. Introduction

Let X1, ..., Xn be measure spaces, and let K : X1×...×Xn → R be a nonnegative
measurable function. Define, for 1 ≤ j ≤ n,

Aj(sj) =
∫
K(x1, x2, ..., xj−1, sj , xj+1, ..., xn)dx1...d̂xj ...dxn .

(We use simply dxi, dyi, etc. to denote integration on the measure space Xi, and
the “∧” signifies omission.) Also, for 1 ≤ j ≤ n− 1, define

Bj(sj , sj+1) =
∫
K(x1, x2, ..., xj−1, sj , sj+1, xj+2, ..., xn)dx1dx2...d̂xj d̂xj+1...dxn.

Finally, define the functional Qn by

Qn+1
n (K) =

∫
A1(s1)B1(s1, s2)...Bn−1(sn−1, sn)An(sn)ds1...dsn.

It is more suggestive, but notationally more cumbersome, to write Qn+1
n (K) as

∫
K(s1, x0

2, ..., x
0
j , ..., x

0
n),

K(s1, s2, ..., x
1
j , ..., x

1
n),

...
K(xj1, xj2, ..., sj , sj+1, ..., x

j
n),

...
K(xn−1

1 , xn−1
2 , ..., sn−1, sn),

K(xn1 , xn2 , ..., x
n
n−1, sn),
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where the integration is performed over all visible variables. Briefly, with the
n(n + 1) variables xjk (0 ≤ j ≤ n, 1 ≤ k ≤ n), we contract on the variables
xjj+1 and xj+1

j+1, i.e., we set xjj+1 = xj+1
j+1 = sj+1, 0 ≤ j ≤ n− 1 before integrating.

Our multilinear generalisation of the Cauchy-Schwarz inequality is the following:

Theorem. With K as above and fj : Xj → R nonnegative measurable functions,
then ∫

K(x1, ..., xn)f1(x1)...fn(xn)dx1...dxn ≤ Qn(K) ‖f1‖n+1 ... ‖fn‖n+1 .

Since when n = 1, Q1(K) = ‖K‖2 , we recover the Cauchy-Schwarz inequality;
when n = 2 we obtain∫

K(x1, x2)f1(x1)f2(x2)dx1dx2

≤
(∫

K(s, α)K(s, t)K(β, t)dsdtdαdβ
) 1

3

‖f1‖3 ‖f2‖3

(which is in fact also an elementary inequality). For extensive remarks on the
significance of the functional Qn, comparisons with more standard measures of size
of K, and on the theorem itself, see Section 3 below.

The special case of the theorem corresponding to each Xi being a probability
space, and fi ≡ 1 on Xi, was proved by elementary means in [C]. Upon chasing
normalisations, this gives the theorem when each fi is the characteristic function
of a measurable set; that is, if we replace the Ln+1 norms on the right-hand side
by the Lorentz norms associated to Ln+1,1(see, for example, [SW]). It was also
shown in [C] that the theorem is true when any two consecutive Ln+1,1 spaces are
replaced by their Lebesgue counterparts Ln+1. However, the method there did not
yield the case of two “separated” Ln+1 spaces, still less the case of three or more
Ln+1 spaces. This is what we achieve in this note.

The author would like to thank Bill Beckner for several helpful comments.

2. Proof of Theorem

For the reader’s convenience, and also because it plays an important role in the
full theorem, we first prove the special case when each Xi is a probability space
and fi ≡ 1.

Lemma 1 ([C], see also [KT]). If K : X1×...×Xn → R is a nonnegative measurable
function, and each Xi is a probability space, then∫

K ≤ Qn(K).

Proof. By homogeneity we may assume that Qn(K) = 1. Consider

(1)
∫
B1(s1, s2)B2(s2, s3)...Bn−1(sn−1, sn)

A2(s2)A3(s3)...An−1(sn−1)
ds1...dsn .

Performing the integration with respect to s1 yields a factor A2(s2), cancelling with
the same factor in the denominator; similarly, integration with respect to s2, s3, etc.
in turn, up to and including sn−2, leaves one with∫

Bn−1(sn−1, sn)dsn−1dsn =
∫
K.
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Hence,

∫
K =

∫ n−1∏
i=1

Bi(si, si+1)

n−1∏
i=2

Ai(si)
ds1...dsn

≤ 1
n+ 1

∫ n−1∏
i=1

Bi(si, si+1)

n−1∏
i=2

Ai(si)

{
A1(s1)...An(sn) +

1
A1(s1)

+ ...+
1

An(sn)

}
ds1...dsn

(by the geometric-arithmetic mean inequality)

:=
1

n+ 1
{I0 + I1...+ In} .

Now I0 = Qn(K)n+1 = 1. To calculate In observe that it is the same as (1) with
an extra An(sn) in the denominator. Thus,

In =
∫
Bn−1(sn−1, sn)

An(sn)
dsn−1dsn =

∫
1dsn = 1

since Xn is a probability space.
To calculate I1 observe that it is the same as (1) with an extra A1(s1) in the

denominator. Thus, proceeding as in the evaluation of (1) but with the ordering
sn, sn−1, ..., we see that

I1 =
∫
B1(s1, sn)
A1(s1)

ds2ds1 =
∫

1ds1 = 1.

Finally, to calculate Ij , which is the same as (1) with the factor Aj(sj) in the
denominator replaced by Aj(sj)2, we proceed as in the evaluation of (1), arriving
at ∫

Bj−1(sj−1, sj)...Bn−1(sn−1, sn)
Aj(sj)2Aj+1(sj+1)...An−1(sn−1)

dsj−1...dsn

=
∫

Bj−1(sj−1, sj)...Bn−1(sn−1, sn)
Aj(sj)2Aj+1(sj+1)...An−1(sn−1)

dsn...dsj−1

=
∫
Bj−1(sj−1, sj)Bj(sj , sj+1)

Aj(sj)2
dsj+1dsjdsj−1

=
∫
Aj(sj)2/Aj(sj)2dsj = 1.

Thus, Ij = 1 for 0 ≤ j ≤ n, and so
∫
K ≤ 1 = Qn(K) as required. �

Corollary. If X1, ..., Xn are general measure spaces and E1, ..., En are measurable
subsets of X1, ..., Xn respectively, then∫

K(x1, ..., xn)χE1(x1)...χEn(xn)dx1...dxn ≤ Qn(K) |E1|1/(n+1)
... |En|1/(n+1)

,

where |·| denotes measure on Xi.

Proof. Apply Lemma 1, taking Xi = Ei with normalised measure.
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Lemma 2. Suppose fi : Xi → R is a simple function, and that fi ≥ 1 on
supp fi. Then ∫

K(x1, ..., xn)f1(x1)...fn(xn)dx1...dxn

≤ CnQn(K)
n∏
i=1

‖fi‖n+1

n∏
i=1

(log[2 ‖fi‖∞])
n
n+1

(where Cn depends only on n).

Proof. Let Eik =
{
x ∈ Xi | 2k−1 ≤ fi(x) < 2k

}
. Then fi(x) ≤

∞∑
k=1

2kχEik(x). So

∫
K(x)

n∏
i=1

fi(xi)dxi

≤
∞∑

k1,...,kn=1

2k1 ...2kn
∫
K(x)

n∏
i=1

χEiki
(xi)dxi

≤
∞∑

k1,...,kn=1

2k1 ...2knQn(K)
n∏
i=1

∣∣Eiki ∣∣ 1
n+1

(by the Corollary)

= Qn(K)
n∏
i=1

( ∞∑
k=1

2k
∣∣Eik∣∣ 1

n+1

)
.

Now

M∑
k=1

2k
∣∣Eik∣∣ 1

n+1 ≤
(
M∑
k=1

2k(n+1)
∣∣Eik∣∣) 1

n+1

M
n
n+1 ,

and so
∞∑
k=1

2k
∣∣Eik∣∣ 1

n+1 ≤ Cn ‖fi‖n+1 (log[2 ‖fi‖∞])
n
n+1 ,

yielding the result. �

Lemma 2 looks like a fatally flawed version of the theorem we wish to prove;
nonetheless, as we shall now see, in the presence of product structure, the situation
can be rescued. We may continue to assume, without loss of generality, that each
fi is simple, and that fi ≥ 1 on supp fi (otherwise multiply through by suitable
constants).

Let xi = (x1
i , ..., x

m
i ) ∈ Xi × ...×Xi for a suitable m ∈ N. Let

Fi(xi) = fi(x1
i )...fi(x

m
i ) = fi ⊗ ...⊗ fi(xi),

and let

κ(x1, ...,xn) = K ⊗ ...⊗K(x1, ...,xn).
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Then, trivially, Qn(κ) = Qn(K)m and ‖Fi‖p = ‖fi‖mp . By Lemma 2,∫
κ(x1, ...,xn)

n∏
i=1

Fi(xi)dxi

≤ CnQn(κ)
n∏
i=1

‖Fi‖n+1

n∏
i=1

(log[2 ‖Fi‖∞])
n
n+1

= CnQn(K)m
n∏
i=1

‖fi‖mn+1

n∏
i=1

(m log[2 ‖fi‖∞])
n
n+1

= Cnm
n2
n+1

{
Qn(K)

n∏
i=1

‖fi‖n+1

}m( n∏
i=1

log[2 ‖fi‖∞]
) n
n+1

.

Hence, ∫
K(x1, ..., xn)

n∏
i=1

fi(xi)dxi

=
{∫

κ(x1, ...,xn)
n∏
i=1

Fi(xi)dxi

} 1
m

≤ C
1
m
n m

n2
m(n+1)Qn(K)

n∏
i=1

‖fi‖n+1

{
n∏
i=1

log[2 ‖fi‖∞]
} n
m(n+1)

.

As m→∞, C
1
m
n → 1, m

n2
m(n+1) → 1 and (log[2 ‖fi‖∞])

n
m(n+1) → 1. Thus,∫

K(x1, ..., xn)fi(xi)...fn(xn)dx1...dxn

≤ Qn(K) ‖f1‖n+1 ... ‖fn‖n+1 ,

as desired. �

3. Remarks

1. This work grew out of an attempt to understand a certain combinatorial
lemma employed by Katz and Tao, [KT], in their study of estimates for the dimen-
sions of Kakeya sets in Rn. Their lemma is as follows, and is (essentially) equivalent
(see [C]) to our Lemma 1.

Lemma ([KT]). Let X and A1, ..., An be finite sets and gj : X → Aj . Then

#{(x0, ..., xn) ∈ Xn+1 | gi(xi−1) = gi(xi), 1 ≤ i ≤ n} ≥ (#X)n+1

#A1...#An
.

Thus one sees the “contraction along the main and subdiagonal” feature of the
definition of Q(K) as a reflection of the formulation of the Katz-Tao lemma, which
had a specific application in mind. Of course there are many potential combinatorial
questions and inequalities similar to the one above, each with its own “integral”
formulation as a multilinear form on a product of Lp-spaces. See Remark 3.8 below.

2. The lemma of Katz and Tao, although a statement about a finite number
of functions between finite sets, also used product structure in its proof [KT]. The
argument of Lemma 1 above gives an “elementary” alternative since it uses only
the geometric-arithmetic mean inequality. However, when n ≥ 3, the proof of the
theorem at present needs the product structure: the author knows of no proof, save
by enumeration of cases, even of the special case of the theorem where X1 = X2 =
X3 is a 2-point probability space and K and f1, f2, f3 take values in {1, 2, ...10}. It
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would seem to be an interesting challenge for the automatic theorem provers to give
a direct and elementary proof of the theorem in this case.

3. The gist of the argument presented above is that if a general nonnegative
multilinear form on Lp-spaces possesses a structure that is preserved under tensor
products, then the inequality on probability spaces with each fi ≡ 1 (equivalently
on Lorentz-spaces) automatically self-improves to Lebesgue spaces Lp, with the
same constant. (Lemma 2 says that ‖f‖p,1 ≤ Cp ‖f‖p (log[2 ‖f‖∞])

1
p′ if f ≥ 1, and

the product structure allows us to kill the Cp and log ‖fi‖∞ terms.) The Lp norms

are stable under tensor product in the sense that
∥∥f⊗N∥∥ 1

N

p,q
→ ‖f‖p as N →∞, 1 ≤

q ≤ ∞. For examples see Remark 3.5 below.
4. Of course exploitation of product structure has a long history in analysis,

especially in Functional Analysis (the spectral radius formula in Banach Algebras
comes immediately to mind) and Complex Analysis but also in Harmonic Analysis
(the Cotlar-Stein lemma and similar “almost-orthogonality” arguments, and the
study of the Young and Hausdorff-Young inequalities [Be1] and more recent work
by Beckner ([Be2, Be3, Be4])). It may already have been noticed by the experts that
Lorentz space inequalities exhibiting a product structure automatically improve to
Lp-estimates: the argument of [BL, pp. 155-156] is rather similar to the one we
have presented here. (In connection with the Cotlar-Stein lemma, it is an amusing
exercise to show that if S and T are bounded operators on a Hilbert space with
‖S‖ , ‖T ‖ ≤ 1 and ST ∗ = S∗T = 0, then ‖S + T ‖ ≤ 2

1
2 , 2

1
4 , ..., 1 by taking products

successively.)
5. (a) Let X be a measure space, E1, ..., En ⊆ X. Since obviously we have∫

χE1 ...χEn = |E1 ∩ ... ∩En| ≤ |E1|α1 ... |En|αn

when 0 ≤ αi ≤ 1 and α1 + ...+ αn = 1, and since this inequality possesses product
structure, we immediately deduce Hölder’s inequality∫

f1(x)...fn(x)dx ≤ ‖f1‖p1
... ‖fn‖pn

where 1
p1

+ ...+ 1
pn

= 1, 1 ≤ pi ≤ ∞.
(b) Let X1, ..., Xn be measure spaces and let Ai ⊆ X1× ...× X̂i× ...×Xn. Then

the Loomis-Whitney inequality

(2)
∫

n∏
i=1

χAi(x1, ..., x̂i, ..., xn)dxi ≤
n∏
i=1

|Ai|
1

n−1

possesses product structure, and so we automatically obtain

(3)
∫

n∏
i=1

fi(x1, ..., x̂i, ..., xn)dxi ≤
n∏
i=1

‖fi‖n−1

for fi defined on X1 × ...× X̂i × ...×Xn. If now g is defined on X1 × ...×Xn and

Pig(x1, ..., x̂i, ..., xn) := sup
xi

|g(x1, ..., xn)| , we have g
n
n−1 ≤

n∏
i=1

Pi

(
g

1
n−1

)
, and so
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applying (3) we get ∫
g

n
n−1 ≤

n∏
i=1

∥∥∥Pi (g 1
n−1

)∥∥∥
n−1

=
n∏
i=1

‖Pig‖
1

n−1
1 .

Thus

(4) ‖g‖ n
n−1
≤

n∏
i=1

‖Pig‖
1
n
1 ,

which, if g ∈ C1
c (Rn), can in turn be dominated by

n∏
i=1

∥∥∥ ∂g∂xi∥∥∥1
, thus yielding the

Gagliardo-Nirenberg inequality. Of course (2) (and likewise (3) and (4) directly)
can be obtained by repeated use of Hölder’s inequality.

(c) The best constant A in Beckner’s sharp Young’s convolution inequality
([Be1])

(5)
∫
R2n

f(x)g(x− y)h(y)dxdy ≤ A ‖f‖p1
‖g‖p2

‖h‖p3

is given by A = Anp1p2p3
:=

(
3∏
i=1

p
1
pi

i /p′i
1
p′i

)n
when 1

p1
+ 1

p2
+ 1

p3
= 2 (and if

1
p1

+ 1
p2

+ 1
p3
6= 2, the inequality fails.) This value for A is obtained by testing (5)

on (radial) Gaussians. We observe here that A can also be obtained by testing (5)
on characteristic functions of balls: that is, A = Dn

p1p2p3
, where

(6) Dp1p2p3 = sup
m

sup
a,b,c>0

{∫
R2m χB

(
x
a

)
χB
(
x−y
b

)
χB
(
y
c

)
dxdy∥∥χB ( ·a)∥∥p1

∥∥χB ( ·b)∥∥p2

∥∥χB ( ·c)∥∥p3

} 1
m

(and where B denotes the unit ball in Rm). Indeed, in order to prove (5) with
A given by Dn

p1p2p3
it suffices, by the product structure of the inequality, to prove

it for characteristic functions of sets in all higher dimensions m; since we have the
Hardy-Littlewood-Riesz-Sobolev rearrangement inequality∫

R2m

f(x)g(x− y)h(y)dxdy ≤
∫
R2m

f∗(x)g∗(x− y)h∗(y)dxdy,

it suffices to prove it for balls. (Here, f∗, etc. denotes the radial equimeasurable
rearrangement of f , etc.) Thus the expression in (6), raised to the power n, gives
an upper bound for A. On the other hand,

A ≥

∫
R2n

χB
(
x
a

)
χB
(
x−y
b

)
χB
(
y
c

)
dxdy∥∥χB ( ·a)∥∥p1

∥∥χB ( ·b)∥∥p2

∥∥χB ( ·c)∥∥p3

and since it is easy to see that A, as a function of n, is given by A(n) = A(1)n, we
obtain A(1) ≥ Dp1,p2,p3 . Hence A = Dn

p1,p2,p3
.

Finally, one can relate directly Dp1,p2,p3 to the constant Ap1,p2,p3 obtained by
testing on radial Gaussians: clearly Ap1,p2,p3 ≤ Dp1,p2,p3 , and the reverse inequality
can be obtained once again by a product argument and domination of characteristic
functions of balls by Gaussians. See [BL], especially Proposition 3 on p. 155.
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(d) While the general version of the Brascamp-Lieb inequality in [L] does not
seem accessible to these methods, nevertheless a restricted version that contains
Beckner’s Young’s inequality, does follow as in (c). Let α1, ..., αM ∈ Rk, with
k,M fixed and set, for n ∈ N,

Λn(f1, ..., fM ) =
∫
Rn×..×Rn︸ ︷︷ ︸
k times

M∏
i=1

fi(αi · x)dx

where, for x = (x1, ..., xk) ∈ Rn × ... × Rn and β = (β1, ..., βk) ∈ Rk, β · x :=
β1x1 + ...+ βkxk ∈ Rn. Then, the best constant in the inequality

Λn(f1, ..., fM ) ≤ A ‖f1‖p1
... ‖fM‖pM

is given by

A = sup
m

sup
a1,...,aM>0


Λm

(
χB

(
·
a1

)
, ..., χB

(
·
aM

))
M∏
i=1

∥∥∥χB ( ·ai)∥∥∥Lpi (Rm)


n
m

as well as by the more familiar testing over Gaussians. The inequality exhibits prod-
uct structure, and the Brascamp-Lieb-Luttinger rearrangement inequality [BLL]
allows us to argue as in (c) above. Note that this method gives no information as
to extremals.

6. Conditions for equality, n ≥ 2
The condition for equality in Lemma 1 is easily read off from the proof: it is that

the Aj(sj) are all identically equal almost everywhere to Qn(K). When n = 2, the
proof given in [C] shows that, under the normalisation Q(K) = ‖f1‖3 = ‖f2‖3 =
1, we get strict inequality in the main theorem unless

A1(s1)A2(s2) =
f3

1 (s1)
A1(s1)

=
f3

2 (s2)
A2(s2)

almost everywhere, which clearly forces A1, A2, f1 and f2 to be constant almost
everywhere. Thus, in general, when X1 and X2 are finite measure spaces, A1(s1) =
Q(K)µ2(X)

1
3 /µ1(X)

2
3 a.e., A2(s2) = Q(K)µ1(X)

1
3 /µ2(X2)

2
3 a.e. and f1 and

f2 are constants a.e., we have equality; otherwise strict inequality. For n ≥ 3 condi-
tions similar to the above give equality, but we do not know if this is the only way
in which equality may be achieved.

7. Comparison of Q(K) with other quantities
Since ∫

K(x1, ..., xn)f1(x1)...fn(xn)dx1...dxn

≤ ‖K‖n+1
n
‖f1 ⊗ ...⊗ fn‖n+1

= ‖K‖n+1
n
‖f1‖n+1 ... ‖fn‖n+1 ,(7)

it is obviously useful to relate Qn(K) to the Lp-norms and to ‖K‖n+1
n

in particular.
When n = 1 they coincide. When n = 2, we have

Q2(χE) ≤ ‖χE‖ 3
2
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since ∫
χE(s, α)χE(s, t)χE(β, t)dsdtdαdβ

≤
∫
χE(s, α)χE(β, t)dsdtdαdβ

= |E|2 .
More generally, when n is even, n ≥ 4, and we are on a product of probability
spaces,

Qn+1
n (K) =

∫
A1(s1)B1(s1, sn)...Bn−1(sn−1, sn)An(sn)ds1...dsn

≤ ‖B1‖∞ ‖B3‖∞ ...

∫
A1(s1)B2(s2, s3)B4(s4, s5)...ds1dsn

≤ ‖K‖
n
2
∞ ‖K‖

n+2
2

1

so that Qn(χE) ≤ |E|
n+2

2(n+1) . Note that n+2
2(n+1) goes to 1

2 as n→∞, and indeed we
also have, for ‖K‖2 = 1, on a product of probability spaces,

Qn+1
n (K) =

∫
OE ≤ 1

2

∫
(O2 + E2)

=
1
2

(1 + 1) = 1 = ‖K‖n+1
2

where O, E denote the product of the odd/even rows respectively appearing in the
expression for Qn.

Examples show that these conclusions are sharp. Let

E =
⋃

j odd

{x ∈ [0, 1]n | |xj | ≤ ε} .

Then |E| ≈ ε. When j is odd we have Aj(sj) ≥ χ{|sj |≤ε} and Bj(sj , sj+1) ≥
χ{|sj |≤ε}, while for j even we have Aj(sj) ≥ ε and Bj(sj , sj+1) ≥ χ{|sj+1|≤ε}. So

Qn+1
n (χE) =

∫
[0,1]n

A1(s1)B1(s1, s2)B2(s2, s3)...An(sn)ds1...dsn

≥
∫
χ{|s1|≤ε}χ{|s3|≤ε}...ds1...dsn

=

{
ε
n+1

2 n odd,
ε
n+2

2 n even.

In this example we thus have Qn(χE) ≥ C |E|
1
2 for n odd and Qn(χE) ≥

C |E|
n+2

2(n+1) for n even; so the inequalities proved above are sharp. On the other
hand, there are also examples to show that Qn(χE) may be much smaller than
|E|

n
n+1 : if E is an ε-neighbourhood of the straight line joining (0, 0, ..., 0) to

(1, 1, ..., 1) in [0, 1]n, then each Aj(sj) is essentially constant (and equal to Cεn−1) ,
and so we have equality (see 6 above) in |E| =

∫
χE ≤ Qn(χE), which is therefore

much smaller than |E|
n
n+1 .

Thus, on a product of probability spaces, we have that the quantitiesQn(χE) and
|E|

n
n+1 are incommensurable when n ≥ 3, and so neither of the main theorem and
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(7) contains the other. When n = 2 the main theorem is an essential improvement
over (7), irrespective of whether the measure spaces are probability spaces or not.
(Perhaps this has something to do with its utility as in [KT].)

8. Further possible extensions
One may represent the functional Qn by the (n+ 1)× n matrix

∗
∗ ∗
∗

. . .
∗
∗


with the *’s on the main and subdiagonals denoting contraction on variables in
each column separately. What about other arrangements of *’s?

(a) Let P be an (m+ 1)× n matrix with two *’s in each column. Let

Qm+1
P (K) =

∫ K(x0
1, ..., x

n
1 )

...
K(xm1 , ..., x

m
n )

where, in each column, the variables associated to a * are contracted. Let G(P) be
the graph of P defined as follows: G(P) has vertices {0, 1, ...,m} and there is an
edge joining j and k iff there is a column of P with *’s in the jth and kth places.
Wisewell [W] has shown that∫

K(x)
n∏
i=1

fi(xi)dxi ≤ QP(K)
n∏
i=1

‖fi‖m+1

if and only if G(P) is acyclic. In particular, for

P =

 ∗ ∗
∗ ∗
∗ ∗


the graph is cyclic and the inequality fails. It then becomes interesting to obtain
lower bounds, for (recall the language of Katz and Tao [KT])

#{(x0, x1, x2) ∈ X3 | g1(x0) = g1(x1), g2(x1) = g2(x2), g3(x2) = g3(x0)}
where gj : X → {1, ..., N} are functions and X is a finite set. By the case n = 2 of
[KT], or the theorem, one has a lower bound of (#X)3/N4, while the lower bound
(#X)3/N3 fails. In fact, if (#X)3/Nα is a lower bound, then α > 3 ([W]). What
is the best α?

(b) In connection with Hölder’s inequality (with integral values of the exponent)
one may consider placing three or more *’s in each column of P . Thus, for 1 ≤ j ≤
n let Bj ⊆ {0, ...,m}, and define P by placing *’s in the jth column of P in the
places indicated by Bj . Define QP(K) in the analogous way. One may then ask
about the inequality

(8)
∫
K(x)

n∏
i=1

fi(xi)dxi ≤ QP(K)
n∏
i=1

‖fi‖ m+1
#Bi−1

.

We define a “move” to be an operation transforming an (m + 1) × q matrix of
blanks and *’s into an (m + 1) × (q + 1) matrix of blanks and *’s by taking one
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column and forming an extra column to its right by shifting some of the *’s across
to the new column. If P can be transformed by a sequence of moves to a matrix
P ′ with exactly two *’s in each column, with G(P ′) acyclic, then (8) holds, [W]. If
(8) holds, must there exist such a sequence of moves?

(c) Finally, we may think of the *’s as being black (the blanks white). What
about multicoloured arrangements of *’s? In this case, in defining QP , we contract
separately (within each column) over *’s of the same colour. Thus

P1 =


∗ ∗
∗ ·
· ·
· ∗


corresponds to

QP1(K) =

∫
K(s, t)
K(s, u)
K(v, u)
K(v, t)

dsdtdudv


1
4

and

P2 =


∗ ∗
∗ ∗
· ∗
· ∗


corresponds to

QP2(K) =

∫
K(s, t, α)
K(s, β, u)
K(v, γ, u)
K(v, t, δ)

dsdtdudvdαdβdγdδ


1
4

In general, if P is an (m + 1) × n matrix with multicoloured *’s, let γjC be
the number of *’s of colour C occurring in the jth column of P , and let γj =∑
C

(γjC − 1). The question is then whether

(9)
∫
K(x)

∏
i

fi(xi)dxi ≤ QP(K)
n∏
i=1

‖fi‖m+1
γi

.

Thus, for P1 above, (9) becomes

(10)
∫
K(x)f1(x1)f2(x2)dx1dx2 ≤ QP1(K) ‖f1‖2 ‖f2‖2

and for P2, (9) becomes

(11)
∫
K(x)f1(x1)f2(x2)f3(x3)dx1dx2dx3 ≤ QP2(K) ‖f1‖2 ‖f2‖4 ‖f3‖4 .

Both (10) and (11) are true, and in fact (10) follows from (11) via the move
transforming P1 to P2. Since QP1(K) ≤ ‖K‖2 , (10) is a strengthening of the
Hilbert-Schmidt criterion for boundedness on L2 of a bilinear form. The proofs of
(10) and (11) are elementary. In the language of Katz and Tao, (10) amounts to
counting rectangles and (11) to counting quadrilaterals with two sides parallel. See
also [MT].



3152 ANTHONY CARBERY

References

[Be1] W. Beckner, Inequalities in Fourier Analysis, Annals of Math. 102 (1975) 159-182.
MR 52:6317

[Be2] W. Beckner, Geometric inequalities in Fourier Analysis, in Essays on Fourier Analysis
in Honor of E.M. Stein, ed. C. Fefferman, R. Fefferman, S. Wainger, Princeton U. Press
(1995) 36-68. MR 95m:42004

[Be3] W. Beckner, Sharp inequalities and geometric manifolds, J. Fourier Anal. Appl. 3 (special
issue) (1997) 825-836. MR 2000c:58059

[Be4] W. Beckner, Geometric asymptotics and the logarithmic Sobolev inequality, Forum Math.
11 (1999) 105-137. MR 2000a:46049

[BL] H.J. Brascamp and E. Lieb, Best constants in Young’s inequality, its converse, and its
generalization to more than three functions, Adv. Math. 20 (1976) 151-173. MR 54:492

[BLL] H.J. Brascamp, E. Lieb and J.M. Luttinger, A general rearrangement inequality for multiple
integrals, Jour. Funct. Anal. 17 (1974) 227-237. MR 49:10835

[C] A. Carbery, A remark on an inequality of Katz and Tao, in Harmonic Analysis at Mount
Holyoke, eds. W. Beckner, A. Nagel, A. Seeger and H. Smith, Contemporary Mathematics
320, Amer. Math. Soc. (2003) 71-75.

[KT] N. Katz and T. Tao, Bounds on arithmetic projections, and applications to the Kakeya
conjecture, Math. Res. Lett. 6 (1999), 625-633. MR 2000m:28006

[L] E. Lieb, Gaussian kernels have only Gaussian maximizers, Inventiones Math. 102 (1990)
179-208. MR 91i:42014

[MT] G. Mockenhaupt and T. Tao, Restriction and Kakeya phenomena for finite fields, Duke
Math. J. 121 (2004), 35-74.

[SW] E.M. Stein and G. Weiss, An Introduction to Fourier Analysis on Euclidean spaces, Prince-
ton U. Press, Princeton (1971) MR 46:4102

[W] L. Wisewell, personal communication.

School of Mathematics, University of Edinburgh, James Clerk Maxwell Building,

King’s Buildings, Edinburgh EH9 3JZ, United Kingdom

E-mail address: A.Carbery@ed.ac.uk

http://www.ams.org/mathscinet-getitem?mr=52:6317
http://www.ams.org/mathscinet-getitem?mr=95m:42004
http://www.ams.org/mathscinet-getitem?mr=2000c:58059
http://www.ams.org/mathscinet-getitem?mr=2000a:46049
http://www.ams.org/mathscinet-getitem?mr=54:492
http://www.ams.org/mathscinet-getitem?mr=49:10835
http://www.ams.org/mathscinet-getitem?mr=2000m:28006
http://www.ams.org/mathscinet-getitem?mr=91i:42014
http://www.ams.org/mathscinet-getitem?mr=46:4102

	1. Introduction
	2. Proof of Theorem
	3. Remarks
	References

