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SUPERCONGRUENCES FOR TRUNCATED n+1Fn

HYPERGEOMETRIC SERIES WITH APPLICATIONS
TO CERTAIN WEIGHT THREE NEWFORMS

ERIC MORTENSON

(Communicated by David E. Rohrlich)

Abstract. We prove general results on supercongruences between values of
truncated n+1Fn hypergeometric functions and their character analogs. As a
consequence of the main results of this paper, we prove Beukers-type super-
congruences for certain weight three newforms.

1. Introduction

In [RV1], Fernando Rodriguez-Villegas discovered numerically a number of
Beukers-type supercongruences for hypergeometric Calabi-Yau manifolds of dimen-
sion d ≤ 3. Specifically, he observed supercongruences between the truncated fun-
damental period of the Picard-Fuchs differential equation of the manifold and an
expression derived from the number of its Fp-points. This had been motivated by
his joint work with Candelas and de la Ossa [COV]. Here we prove general results
on supercongruences between values of truncated n+1Fn hypergeometric functions
and their character analogs. As a consequence of these results, we prove some of
the observed supercongruences for manifolds of dimension d = 2. Supercongruences
of this type were first observed by Beukers [B] in connection with the Apéry num-
bers used in the proof of the irrationality of ζ(3). Ahlgren and Ono [AO] proved
Beukers’ supercongruence conjecture relating Apéry numbers to the coefficients of
a certain weight four newform.

In [RV1] and [RV2], Rodriguez-Villegas identified four modular K3 surfaces with
potential supercongruences. We define Dedekind’s eta function by the infinite prod-
uct:

(1.1) η(z) := q
1
24

∞∏
n=1

(1− qn), q := e2πiz.

We then define the integers a(n), b(n), and c(n) by
∞∑
n=1

a(n)qn := η6(4z) ∈ S3(Γ0(16), (−4
d )),(1.2)
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∞∑
n=1

b(n)qn := η3(6z)η3(2z) ∈ S3(Γ0(12), (−3
d )),(1.3)

∞∑
n=1

c(n)qn := η2(8z)η(4z)η(2z)η2(z) ∈ S3(Γ0(8), (−2
d )).(1.4)

These weight three newforms are related to modular K3 surfaces. They are exten-
sively studied in [SB], where, among other results, the authors prove several modulo
p congruences. From [RV1] and [RV2] we are able to formulate the following:

Conjecture. If p ≥ 5 is a prime, then
p−1∑
n=0

(2n)!3

n!6
64−n ≡ a(p) (mod p2),(1.5)

p−1∑
n=0

(3n)!(2n)!
n!5

108−n ≡ b(p) (mod p2),(1.6)

p−1∑
n=0

(4n)!
n!4

256−n ≡ c(p) (mod p2),(1.7)

p−1∑
n=0

(6n)!
(3n)!n!3

1728−n ≡ γ(p)a(p) (mod p2),(1.8)

where γ(p) := −1 if p ≡ 5 (mod 12) and γ(p) := 1 otherwise.

It should be noted that (1.5) has already been proved by several individuals
including Ishikawa [I], Van Hamme [vH], and Ahlgren [A]. The numbers 64, 108,
256, 1728 are called the conifold points (see [RV1]). Here we prove several cases of
these conjectures.

To state our results, we recall basic facts about characters and Jacobi sums and
introduce some notation. We denote by Fq the finite field with q = pr elements,
where p is a prime. We extend all multiplicative characters χ : F×q → Cp, including
the trivial character εq, to Fq by setting χ(0) := 0. If A and B are two characters
on Fq, then we define

(
A
B

)
in terms of the Jacobi sum by

(1.9)
(
A

B

)
:=

B(−1)
q

Jr(A, B̄) =
B(−1)
q

∑
x∈Fq

A(x)B̄(1− x),

where Jr(·, ·) is a Jacobi sum over Fpr . We recall some useful properties of binomial
coefficients ([G], (2.6)-(2.7)):

(1.10)
(
A

B

)
=
(
A

AB

)
and

(
A

B

)
=
(
BA

B

)
B(−1).

If A0, A1, . . . An, and B1, B2, . . . Bn are characters on Fq and if x ∈ Fq, then Greene
[G] defines n+1Fn Gaussian hypergeometric series by
(1.11)

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn
| x
)
q

:=
q

q − 1

∑
χ

(
A0χ

χ

)(
A1χ

B1χ

)
. . .

(
Anχ

Bnχ

)
χ(x),

where the sum runs over all characters χ on Fq. We note that this definition lives in
some extension of Qp. For certain choices of characters, the right-hand side actually
is in Zp.
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If m is a positive integer, then we define the truncated hypergeometric series by

(1.12) n+1Fn

(
a0, a1, . . . , an

b1, . . . , bn
| x
)

tr(m)

:=
m−1∑
k=0

(a0)k(a1)k · · · (an)k
k!(b1)k · · · (bn)k

xk,

where (a)k := a(a+ 1) · · · (a+ k − 1).
If n ∈ N, we define the p-adic Γ-function on the ring Zp of p-adic integers by

(1.13) Γp(n) := (−1)n
∏

j<n, p-j

j and Γp(x) := lim
n→x

Γp(n), x ∈ Zp,

where in the limit we take any sequence of positive integers that approaches x in
the p-adic sense. We recall three basic properties of the p-adic Γ-function. If p ≥ 5
is a prime and x, y ∈ Zp, then the following are true. We have

(1.14) Γp(x+ 1) =

{
−xΓp(x) if x ∈ Z∗p,
−Γp(x) if x ∈ pZp.

If n ≥ 1, then

(1.15) x ≡ y (mod pn)⇒ Γp(x) ≡ Γp(y) (mod pn).

If R(x) denotes the reduction of x modulo p to the range {1, . . . , p}, then

(1.16) Γp(x)Γp(1− x) = (−1)R(x).

We are now able to state the results of this paper. Let φq denote the character
of order 2 on Fq, and let εq denote the trivial character on Fq. In the sequel we
shall drop the subscript q since it will be obvious from the context.

Theorem 1. If p is a prime, p ≡ 1 (mod di) with 1 ≤ mi < di, ρi is a character
of order di on Fp, and

∑n+1
i=1

mi
di
≥ n− 1, then

n+1Fn

(m1
d1
, m2

d2
, . . . , mn+1

dn+1

1, . . . , 1
| 1
)

tr(p)

≡ (−1)npn · n+1Fn

(
ρm1

1 , ρm2
2 , . . . , ρ

mn+1
n+1

εp, . . . , εp
| 1
)
p

− δ · p (mod p2),

where δ :=

{
0 if

∑n+1
i=1

mi
di
> n− 1,∏n+1

i=1 Γp(1 − mi
di

) if
∑n+1

i=1
mi
di

= n− 1.

Corollary 1. If p is a prime, p ≡ 1 (mod di), 1 ≤ mi < di, and ρi is a character
of order di on Fp, then

4F3

(m1
d1
, 1− m1

d1
, m2

d2
, 1− m2

d2

1, 1, 1
| 1
)

tr(p)

≡ −p3 · 4F3

(
ρ1
m1 , ρ1

m1 , ρ2
m2 , ρ2

m2

εp, εp, εp
| 1
)
p

− (−1)
m1
d1

(p−1)+
m2
d2

(p−1)
p (mod p2).

Corollary 2. If p is a prime, p ≡ 1 (mod d), 1 ≤ m < d, and ρ is a character of
order d on Fp, then

3F2

(
1
2 ,

m
d , 1− m

d
1, 1 | 1

)
tr(p)

≡ p2 · 3F2

(
φq, ρm, ρm

εp, εp
| 1
)
p

(mod p2).
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Theorem 2. If p is a prime, p ≡ −1 (mod di), 1 ≤ mi < di, and ρi is a character
of order di on Fp2 , then

4F3

(m1
d1
, 1− m1

d1
, m2

d2
, 1− m2

d2

1, 1, 1
| 1
)2

tr(p)

≡ −p6 · 4F3

(
ρ1
m1 , ρ1

m1 , ρ2
m2 , ρ2

m2

εp2 , εp2 , εp2
| 1
)
p2

(mod p2).

Theorem 3. If p is a prime, p ≡ −1 (mod d), 1 ≤ m < d, and ρ is a character of
order d on Fp2 , then

3F2

(
1
2 ,

m
d , 1− m

d
1, 1 | 1

)2

tr(p)

≡ p4 · 3F2

(
φq, ρm, ρm

εp2 , εp2
| 1
)
p2

(mod p2).

For (1.5)− (1.8), we are able to prove the following.

Theorem 4. Let p ≥ 5 be a prime.

(1) We have
∑p−1

n=0
(2n)!3

n!6 64−n ≡ a(p) (mod p2).
(2) If p ≡ 1 (mod 3), then

∑p−1
n=0

(3n)!(2n)!
n!5 108−n ≡ b(p) (mod p2).

If p ≡ 2 (mod 3), then
(∑p−1

n=0
(3n)!(2n)!

n!5 108−n
)2

≡ b(p)2 (mod p2).

(3) If p ≡ 1 (mod 4), then
∑p−1

n=0
(4n)!
n!4 256−n ≡ c(p) (mod p2).

If p ≡ 3 (mod 4), then
(∑p−1

n=0
(4n)!
n!4 256−n

)2

≡ c(p)2 (mod p2).

(4) If p ≡ 1 (mod 6), then
∑p−1

n=0
(6n)!

(3n)!n!3 1728−n ≡ a(p) (mod p2).

If p ≡ 5 (mod 6), then
(∑p−1

n=0
(6n)!

(3n)!n!3 1728−n
)2

≡ a(p)2 (mod p2).

In sections 2 and 3, we prove Theorems 1-3 using the method of proof in [M2] (i.e.
we use basic character theory, the Gross-Koblitz formula [GK], and properties of
the p-adic Γ-function). For these proofs, the arguments are similiar enough to those
in [M2] that we only point out the changes made in the strategy. The key change is
in dealing with the strange combinatorial expressions involving harmonic numbers
that we encounter. In [M2], using Wilf-Zeilberger theory, the author evaluated
two families of expressions explicitly in terms of p (see (5.28), (6.21)). Here, by
writing the expressions in a different way and by using new techniques, we avoid
WZ-theory, Corollary 2 is immediate and Corollary 1 uses (1.16).

In section 4, we prove Theorem 4 using Corollary 2 and Theorem 3. In addition,
we need to evaluate the Gaussian hypergeometric series in terms of the trace of
Frobenius. To accomplish this we borrow an idea from Ono [O] and use a char-
acter analog of Whipple’s theorem for classical 3F2 hypergeometric series. This
analog was found by Greene [G], and it yields an expression in terms of Jacobi
sums. Using several theorems of Berndt, Evans, and Williams ([BE], [BEW]), and
a theorem of Beukers and Stienstra [SB], we evaluate these Jacobi sums in terms
of the coefficients of the respective weight three modular forms.

2. Proof of Theorem 1

We begin this section with a lemma and a proposition. The proof of the lemma
is trivial.
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Lemma 2.1. If p ≥ 5 is a prime and n ≥ 1, then

p−1∑
k=1

kn ≡
{

0 (mod p) if p− 1 6 |n,
−1 (mod p) if p− 1|n.

Proposition 2.2. Let m and d be integers such that 1 ≤ m < d. If p ≡ 1 (mod d)
is a prime, then define r such that p = dr + 1.

(1) If 0 ≤ j ≤ mr, then (md )j ≡ Γp(1− m
d )((d −m)r + j)! (mod p).

(2) If mr + 1 ≤ j ≤ p− 2, then (md )j( d
mp ) ≡ Γp(1− m

d ) ((d−m)r+j)!
p (mod p).

Proof of Proposition 2.2. We first prove (1). From Proposition (1.14), we have

(2.1) Γp(md + j) = (−1)j(md )jΓp(md ).

Using (1.15) and (1.13), we obtain

(2.2) Γp(md +j) ≡ Γp((d−m)r+1+j) ≡ (−1)(d−m)r+1+j((d−m)r+j)! (mod p).

We then equate the two expressions and use Proposition (1.16).
For (2), the argument is similar. We use Proposition (1.14) to obtain

(2.3) Γp(md + j) = (−1)j · d
mp · (

m
d )jΓp(md ),

and we use Proposition (1.15) and (1.13) to obtain
(2.4)
Γp(md + j) ≡ Γp((d−m)r+ 1 + j) ≡ (−1)(d−m)r+1+j · 1

p · ((d−m)r+ j)! (mod p).

We note that the expressions in (2.3) and (2.4) are p-integral. The terms with the
p’s in their denominator are only present to cancel out their reciprocals. �

Proof of Theorem 1. Recalling the notation of Theorem 1, we define ri := p−1
di

. We
also define the harmonic number Hn := 1 + 1

2 + · · ·+ 1
n . Without loss of generality,

we can assume m1r1 ≤ m2r2 ≤ · · · ≤ mn+1rn+1. Using basic character theory, the
Gross-Koblitz formula, and p-adic Γ-function properties, we follow the method of
proof in [M2, section 5] to obtain

(−1)npn · n+1Fn

(
ρm1

1 , ρm2
2 , . . . , ρ

mn+1
n+1

εp, . . . , εp
| 1
)
p

≡ p
{ m2r2∑
m1r1+1

(
n+1∏
i=1

(midi )j
j!

)(
jd1

m1p

)(2.5)

+
m1r1∑
j=0

[ n+1∏
i=1

(midi )j
j!

][
1 + j ·

[ n+1∑
i=1

(
H(di−mi)ri+j −Hj

) ]]}

+
m2r2∑
j=0

n+1∏
i=1

(
mi
di

)
j

j!
(mod p2).

This is analogous to (5.25) in [M2]. If m1r1 = m2r2, then only the second sum in
the braces is present. Using Proposition 2.2 and arguing as we did for (5.27) in
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[M2] yields

(−1)npn · n+1Fn

(
ρm1

1 , ρm2
2 , . . . , ρ

mn+1
n+1

εp, . . . , εp
| 1
)
p

≡
m2r2∑
j=0

n+1∏
i=1

(
mi
di

)
j

j!
+ p ·

(
n+1∏
i=1

Γp(1− mi
di

)

)
· A (mod p2),(2.6)

where

(2.7) A :=
m2r2∑
j=0

[
n+1∏
i=1

((di −mi)ri + j)!
j!

]
·
[

1 + j ·
n+1∑
i=1

(
H(di−mi)ri+j −Hj

)]
.

We determine when A ≡ 0 (mod p) and when A ≡ 1 (mod p). We can extend
the sum in A to p− 1 to obtain
(2.8)

A ≡
p−1∑
j=0

[
n+1∏
i=1

((di −mi)ri + j)!
j!

]
·
[

1 + j ·
n+1∑
i=1

(
H(di−mi)ri+j −Hj

)]
(mod p).

In other words, for j ≥ m2r2 + 1 the factorials for i = 1 and i = 2 each contain a
factor of p; moreover, at most one p is cancelled by a term of the harmonic number.
Noting that

(2.9) ((di −mi)ri + j)!/j! = (j + 1)(di−mi)ri ,

we can rewrite the right-hand side:

(2.10) A ≡
p−1∑
j=0

d

dj

[
j

n+1∏
i=1

(j + 1)(di−mi)ri

]
(mod p).

Define the polynomial p(j) ∈ Z[j] by

(2.11) p(j) :=
d

dj

[
j

n+1∏
i=1

(j + 1)(di−mi)ri

]
=

D∑
k=0

akj
k, where D :=

n+1∑
i=1

(di−mi)ri,

to obtain

(2.12) A ≡
p−1∑
j=0

(
a0 +

D∑
k=1

akj
k

)
≡

D∑
k=1

ak

p−1∑
j=1

jk (mod p).

We consider the case D < 2(p − 1). By Lemma 2.1, the only k we need to be
concerned with in the j summation is k = p − 1. Since p(j) is a derivative, the
coefficient ap−1 will contain a factor of p. Hence in this case, A ≡ 0 (mod p). We
consider the case D = 2(p− 1). Using the above information, the only k we need
to concern ourselves with is k = 2(p − 1). Since p(j) is a derivative of a monic
polynomial, it follows that a2(p−1) = (2p − 1). Using Lemma 2.1, we find that
A ≡ 1 (mod p). Since we can extend the first sum in (2.6) from m2r2 to p− 1, the
theorem follows. �
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3. Proofs of Theorems 2 and 3

Proof of Theorem 3. We recall the notation of Theorem 3. We define n such that
p = d(n+1)−1 and define N1 := m(n+1)−1, N2 := (d−m)(n+1)−1. Using the
method of proof in [M2, section 6], and using the appropriate analog of Proposition
2.2, we obtain

p4 · 3F2

(
φ, ρm, ρm

εp2 , εp2
| 1
)
p2

≡


p−1

2∑
k=0

(1
2 )k(md )k(1− m

d )k
k!3


2

(3.1)

+ 2 · p ·
(
N1∑
k=0

k ·
(1

2 )k(md )k(1 − m
d )k

k!3

)
·
(
Γp(1

2 )Γp(md )Γp(1− m
d )
)
·B (mod p2),

where

(3.2) B :=


p−1

2∑
j=0

(
p−1

2 +j)!

j!
(N1+j)!

j!
(N2+j)!

j!

[
Hp−1

2 +j
+ HN1+j +HN2+j − 3Hj

] .

We point out that line (3.1) is similar to (6.21) of [M2]. We note that the case
where m = 1, d = p+ 1 is handled like it is in (6.15) of [M2]. Arguing as in section
2, we obtain

(3.3) B ≡
p−1∑
j=0

d

dj

[
(j + 1)p−1

2

(j + 1)N1(j + 1)N2

]
(mod p).

If we let d be the degree of the polynomial in terms of j, we see that d < 2(p− 1).
Arguing as in section 2, we have that B ≡ 0 (mod p). �

Proof of Theorem 2. We recall the notation of Theorem 2. We define ni such that
p = di(ni + 1) − 1. Without lost of generality we assume m1/d1 ≤ m2/d2 ≤ 1/2.
We define Ri := mi(ni + 1)− 1 and Si := (di −mi)(ni + 1)− 1. We note R1 ≤ R2.
Using the method of proof in [M2, section 6], and using the appropriate analog of
Proposition 2.2, we obtain

− p6 · 4F3

(
ρ1
m1 , ρ1

m1 , ρ2
m2 , ρ2

m2

εp2 , εp2 , εp2
| 1
)
p2

≡
(
R2∑
k=0

(m1
d1

)k(d1−m1
d1

)k(m2
d2

)k(d2−m2
d2

)k
k!3

)2

+ 2 · p ·
(
R1∑
k=0

k ·
(m1
d1

)k(d1−m1
d1

)k(m2
d2

)k(d2−m2
d2

)k
k!3

)
·
(

Γp(m1
d1

)Γp(d1−m1
d1

)Γp(m2
d2

)Γp(d2−m2
d2

)
)
· C (mod p2),

(3.4)

where
(3.5)

C :=
R2∑
j=0

(R1+j)!
j!

(S1+j)!
j!

(R2+j)!
j!

(S2+j)!
j! [HR1+j +HS1+j + HR2+j +HS2+j − 4Hj] .
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The m1 = 1, d1 = p+1 case and the m1 = m2 = 1, d1 = d2 = p+1 case are handled
like they are in [M2]. Arguing as we did in the proof of Theorem 3, we find that
C ≡ 0 (mod p). �

4. Proof of Theorem 4

We begin with a theorem of Beukers and Stienstra that describes the coefficients
of the three modular forms in question. We recall the modular forms (1.2)-(1.4).

Theorem ([SB, 14.2]). If we define Φ4(p) := a(p), Φ3(p) := b(p), Φ2(p) := c(p),
then the p-th coefficients of the modular forms are given by

ΦM (p) =

{
0 if (−Mp ) = −1,
4a2 − 2p if (−Mp ) = 1, p = a2 +Mb2.

We rewrite the conjecture to motivate the use of Corollary 2 and Theorem 3.

Conjecture. If p ≥ 5 is a prime and γ(p) is as before, then

3F2

(
1
2 ,

1
2 ,

1
2

1, 1 | 1
)

tr(p)

≡ a(p) (mod p2),(4.1)

3F2

(
1
2 ,

1
3 ,

2
3

1, 1 | 1
)

tr(p)

≡ b(p) (mod p2),(4.2)

3F2

(
1
2 ,

1
4 ,

3
4

1, 1 | 1
)

tr(p)

≡ c(p) (mod p2),(4.3)

3F2

(
1
2 ,

1
6 ,

5
6

1, 1 | 1
)

tr(p)

≡ γ(p)a(p) (mod p2).(4.4)

From the new formulation, we see that we need to use Corollary 2 and Theorem
3 where m = 1 and d = 2, 3, 4 or 6. For primes p where p ≡ 1 (mod d) we use
Corollary 2, for primes p where p ≡ −1 (mod d) we use Theorem 3. The proof of
Theorem 4 is thus reduced to evaluating the 3F2 Gaussian hypergeometric series.
First, we state a theorem which is a special case of Greene ([G], 4.38(ii)). The
corollary follows from the two binomial coefficient properties (1.10).

Theorem ([G]). If B is a nontrivial character on Fq, then

3F2

(
φ, B, B

εq, εq
| 1
)
q

= B(−1)

{
0 if B 6= �,(
χ
φ

)(
χ
φχ

)
+
(
φχ
φ

)(
φχ
χ

)
if B = χ2.

Corollary 4.1. If B is a nontrivial character on Fq, then

q2 · 3F2

(
φ, B, B

εq, εq
| 1
)
q

= B(−1)

{
0 if B 6= �,
Jr(χ, φ)2 + Jr(χ, φ)2 if B = χ2.

The following two propositions evaluate the Gaussian hypergeometric series in
Corollary 2 and Theorem 3, respectively. Theorem 4 is then immediate. We recall
(1.2)-(1.4) and define α2(p) := a(p), α3(p) := b(p), α4(p) := c(p) , and α6(p) :=
a(p).
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Proposition 4.2. Fix a d, d ∈ {2, 3, 4, 6}. Let p be a prime, p ≡ 1 (mod d). If ρd
is a character of order d on Fp, then

p2 · 3F2

(
φ, ρd, ρd

εp, εp
| 1
)
p

= αd(p).

Proof of Proposition 4.2. This method comes from Ono [O], where he does the case
d = 2. We have two cases. For the first case we consider p, p ≡ d + 1 (mod 2d).
Here ρd is not a square, so the Gaussian hypergeometric series evaluates to zero.
Using the theorem of [SB] and basic Legendre symbol properties, we have that
αd(p) = 0. For d = 3 this case is vacuous.

For the second case we consider p, p ≡ 1 (mod 2d). Here ρd = χ2 for some
character χ. We consider d = 4. By [BEW, Theorem 3.3.1],

J1(χ, φ)2 + J1(χ, φ)2 = (a+ ib
√

2)2 + (a− ib
√

2)2 = 4a2 − 2p,

where p = a2 + 2b2. For d = 2, 3 and 6 we use [BEW, Theorems 3.2.1, 3.1.1, and
3.5.2], respectively. For each d, we use [SB] and see that this equals αd(p). �
Proposition 4.3. Fix a d, d ∈ {3, 4, 6}. Let p be a prime, p ≡ −1 (mod d). If ρd
is a character of order d on Fp2 , then

p4 · 3F2

(
φ, ρd, ρd

εp2 , εp2
| 1
)
p2

= αd(p)2 − (−1)
p−(d−1)

d 2p2.

Proof of Proposition 4.3. We note that ρd is always a square. We have two cases
to consider. For the first case, we consider p with p ≡ −1 (mod 2d). Using the
theorem of [SB] we have that αd(p) = 0. By [BE, Theorem 2.14],

J2(χ, φ)2 + J2(χ, φ)2 = 2p2.

For the second case, we consider p with p ≡ d− 1 (mod 2d). We consider d = 4.
By [BE, Theorem 4.6],

J2(χ, φ)2 +J2(χ, φ)2 = (a+ ib
√

2)4 + (a− ib
√

2)4 = (4a2−2p)2−2p2 = c(p)2−2p2,

where p = a2 + 2b2, and the last equality follows from [SB]. For d = 3 this case is
vacuous. For d = 6 we use [BE, Theorem 4.10]. �
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