PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 133, Number 3, Pages 891–898 S 0002-9939(04)07769-X Article electronically published on October 7, 2004

δ -FUNCTION OF AN OPERATOR: A WHITE NOISE APPROACH

CAISHI WANG, ZHIYUAN HUANG, AND XIANGJUN WANG

(Communicated by Richard C. Bradley)

ABSTRACT. Let $(E) \subset (L^2) \subset (E)^*$ be the canonical framework of white noise analysis over the Gel'fand triple $S(\mathbb{R}) \subset L^2(\mathbb{R}) \subset S^*(\mathbb{R})$ and $\mathcal{L} \equiv \mathcal{L}[(E),(E)^*]$ be the space of continuous linear operators from (E) to $(E)^*$. Let Q be a self-adjoint operator in (L^2) with spectral representation $Q = \int_{\mathbb{R}} \lambda P_Q(d\lambda)$. In this paper, it is proved that under appropriate conditions upon Q, there exists a unique linear mapping $Z: S^*(\mathbb{R}) \longmapsto \mathcal{L}$ such that $Z(f) = \int_{\mathbb{R}} f(\lambda) P_Q(d\lambda)$ for each $f \in S(\mathbb{R})$. The mapping is then naturally used to define $\delta(Q)$ as $Z(\delta)$, where δ is the Dirac δ -function. Finally, properties of the mapping Z are investigated and several results are obtained.

1. Introduction

Let δ be the Dirac δ -function, which is a Schwartz generalized function, and Q an observable, i.e., a self-adjoint operator in a Hilbert space. Then $\delta(Q)$, called the δ -function of Q, is of physical significance (cf. [1]). However, from the mathematical point of view, it is a very singular object. What is the mathematical meaning of $\delta(Q)$ which is both reasonable and rigorous? In [1], the authors gave an interpretation in the context of Hilbert space theory.

On the other hand, white noise analysis initiated by Hida [2], which is essentially an infinite-dimensional analogue of Schwartz generalized function theory, has been considerably developed and successfully applied to many fields including stochastic analysis and quantum physics (see, e.g., [2, 3, 4, 5], [7, 8], [12] and references cited therein). The mathematical framework of the theory is the Gel'fand triple

$$(E) \subset (L^2) \subset (E)^*$$

over $S(\mathbb{R}) \subset L^2(\mathbb{R}) \subset S^*(\mathbb{R})$, where (E) (resp. $(E)^*$) is known as Hida testing (resp. generalized) functional space. Let $\mathcal{L} \equiv \mathcal{L}[(E), (E)^*]$ be the space of continuous linear operators from (E) to $(E)^*$. Elements of \mathcal{L} are usually called generalized operators, which are significant generalizations of bounded operators on the Hilbert space (L^2) .

The main purpose of the present paper is to define $\delta(Q)$ reasonably and rigorously in the context of white noise analysis. The paper is organized as follows. In Section 2

Received by the editors December 10, 2002 and, in revised form, September 16, 2003. 2000 Mathematics Subject Classification. Primary 60H40.

Key words and phrases. White noise analysis, self-adjoint operator, Schwartz generalized function.

we recall some necessary notions, notation and facts in white noise analysis. In Section 3, we first prove that for a self-adjoint operator Q in (L^2) with spectral representation $Q = \int_{\mathbb{R}} \lambda P_Q(d\lambda)$, under appropriate conditions upon Q there exists a unique linear mapping $Z: S^*(\mathbb{R}) \longmapsto \mathcal{L}$ such that $Z(f) = \int_{\mathbb{R}} f(\lambda) P_Q(d\lambda)$ for each $f \in S(\mathbb{R})$. We then naturally use the mapping Z to define $\delta(Q)$ as $Z(\delta)$. Finally, we show that the mapping $Z: S^*(\mathbb{R}) \longmapsto \mathcal{L}$ is continuous and positivity-preserving.

2. Framework of white noise analysis

In this section we briefly recall some notions, notation and facts in white noise analysis. For details see [2], [5], [7] and [9].

We first fix some general notation. Throughout the paper, \mathbb{R} and \mathbb{C} stand for the real line and complex plane, respectively. For any real locally convex space V, we denote by $V_{\mathbb{C}}$ the complexification of V. Let $\langle \cdot, \cdot \rangle$ be the canonical bilinear form on $V^* \times V$; then the canonical bilinear forms on $V^*_{\mathbb{C}} \times V_{\mathbb{C}}$ and $(V^{\otimes n}_{\mathbb{C}})^* \times V^{\otimes n}_{\mathbb{C}}$ are still denoted by $\langle \cdot, \cdot \rangle$. Similarly, if V is a real Hilbert space with norm $|\cdot|$, then the norms of $V_{\mathbb{C}}$ and $V^{\otimes n}_{\mathbb{C}}$ are also denoted by the same symbol $|\cdot|$.

Now let $H \equiv L^2(\mathbb{R}, dt; \mathbb{R})$ be the Hilbert space of real-valued square integrable functions on \mathbb{R} with norm $|\cdot|_0$ and inner product $\langle\cdot,\cdot\rangle$. Let $A = 1 + t^2 - d^2/dt^2$ be the harmonic oscillator. Then A has a self-adjoint extension in H, which is still denoted by A.

For each integer p, let E_p be the completion of $\operatorname{Dom} A^p$ with respect to the Hilbertian norm $|\cdot|_p = |A^p \cdot|_0$. Then E_p and E_{-p} can be regarded as each other's dual if we identify H with its dual. Let E be the projective limit of $\{E_p \mid p \geq 0\}$ and E^* the topological dual of E. Then E is a nuclear space and E^* is the inductive limit of $\{E_{-p} \mid p \geq 0\}$. Hence we have a real Gel'fand triple $E \subset H \subset E^*$. It is known (cf. [2]) that E and E^* coincide with Schwartz rapidly decreasing function space $S(\mathbb{R})$ and generalized function space $S^*(\mathbb{R})$, respectively. We denote by $\langle \cdot, \cdot \rangle$ the canonical bilinear form on $E^* \times E$, which is consistent with the inner product of H.

Let μ be the standard Gaussian measure on E^* , i.e., its characteristic function is

(2.1)
$$\int_{E^*} e^{i\langle x, f \rangle} \, \mu(dx) = e^{-\frac{1}{2}|f|_0^2}, \quad f \in E.$$

The measure space (E^*, μ) is known as white noise. Let $(L^2) \equiv L^2(E^*, \mu; \mathbb{C})$ be the Hilbert space of complex-valued μ -square integrable functionals on E^* with the inner product $((\cdot, \cdot))$ and norm $\|\cdot\|_0$. Then, by the well-known Wiener-Itô-Segal isomorphism theorem, for each $\varphi \in (L^2)$ there exists a unique sequence $(f_n)_{n=0}^{\infty}$ with $f_n \in H_{\mathbb{C}}^{\otimes n}$ such that $\varphi = \sum_{n=0}^{\infty} I_n(f_n)$ in norm $\|\cdot\|_0$ and

(2.2)
$$\|\varphi\|_0^2 = \sum_{n=0}^{\infty} n! |f_n|_0^2$$

where $I_n(f_n)$ denotes the multiple Wiener integral of order n with kernel f_n .

Note that the harmonic oscillator A also has a self-adjoint extension in $H_{\mathbb{C}}$, which is still denoted by A. Let $\Gamma(A)$ be the second quantization operator of A defined by

(2.3)
$$\Gamma(A)\varphi = \sum_{n=0}^{\infty} I_n(A^{\otimes n} f_n)$$

where $\varphi = \sum_{n=0}^{\infty} I_n(f_n)$. Then $\Gamma(A)$ is a positive self-adjoint operator with Hilbert-Schmidt inverse in (L^2) .

Similarly, for each integer p, let (E_p) be the completion of $\text{Dom }\Gamma(A)^p$ with respect to the Hilbertian norm $\|\cdot\|_p = \|\Gamma(A)^p \cdot \|_0$. Then (E_p) becomes a complex Hilbert space. In particular, $(E_0) = (L^2)$. Let (E) be the projective limit of $\{(E_p) \mid p \geq 0\}$ and $(E)^*$ the inductive limit of $\{(E_{-p}) \mid p \geq 0\}$. Then (E) and $(E)^*$ can be regarded as each other's dual. Moreover, (E) is a nuclear space and we come to a complex Gel'fand triple

$$(E) \subset (L^2) \subset (E)^*,$$

which is known as the canonical framework of white noise analysis. Elements of (E) (resp. $(E)^*$) are called Hida testing (resp. generalized) functionals. In the following, we denote by $\langle \langle \cdot, \cdot \rangle \rangle$ the canonical bilinear form on $(E)^* \times (E)$.

For $\xi \in E_{\mathbb{C}}$, the exponential functional ϕ_{ξ} associated with ξ is defined as

(2.4)
$$\phi_{\xi}(x) = e^{\langle x,\xi \rangle - \langle \xi,\xi \rangle/2} = \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, \frac{1}{n!} \xi^{\otimes n} \rangle, \quad x \in E^*.$$

It is known that the set $\{\phi_{\xi} \mid \xi \in E_{\mathbb{C}}\}\$ is total in the Hilbert space (E_p) for each integer p. Hence Span{ $\phi_{\xi} \mid \xi \in E_{\mathbb{C}}$ } is a dense subspace of (E).

Continuous linear operators from (E) to $(E)^*$ are usually called *generalized op*erators. The space of all generalized operators is denoted by $\mathcal{L} \equiv \mathcal{L}[(E), (E)^*]$. For $X \in \mathcal{L}$, its symbol \widehat{X} is defined as

(2.5)
$$\widehat{X}(\xi,\eta) = \langle \langle X\phi_{\xi}, \phi_{\eta} \rangle \rangle, \quad \xi, \eta \in E_{\mathbb{C}}.$$

The next lemma (cf. [8] and [9]) will be used later.

Lemma 2.1. Let $\{X_n\}_{n\geq 1}\subset \mathcal{L}$ be such that

- (1) $\forall \xi, \eta \in E_{\mathbb{C}}$, the sequence $\{\widehat{X}_n(\xi, \eta)\}_{n\geq 1}$ is convergent in \mathbb{C} , (2) there exist constants $a, k, p \geq 0$ such that

(2.6)
$$\sup_{n\geq 1} |\widehat{X}_n(\xi,\eta)| \leq a \exp\{k(|\xi|_p^2 + |\eta|_p^2)\}, \quad \xi,\eta \in E_{\mathbb{C}}.$$

Then there exists a unique $X \in \mathcal{L}$ such that $X_n \longrightarrow X$ in \mathcal{L} .

3. δ -function of an operator

We first make some necessary assumptions. Let $\mathcal{B}(\mathbb{R})$ be the Borel σ -field of the real line \mathbb{R} and $\mathcal{P}[(L^2)]$ the set of projections in (L^2) .

Let Q be a given self-adjoint operator in (L^2) with spectral representation

(3.1)
$$Q = \int_{\mathbb{R}} \lambda P_Q(d\lambda),$$

where $P_Q: \mathcal{B}(\mathbb{R}) \longmapsto \mathcal{P}[(L^2)]$ is the spectral measure of Q (cf. [10]). It is well known that for a Borel measurable function f on \mathbb{R} , $f(Q) = \int_{\mathbb{R}} f(\lambda) P_Q(d\lambda)$ makes sense as a densely defined operator in (L^2) . Moreover, f(Q) is a bounded operator in (L^2) if f is a bounded Borel measurable function (see [10] for details).

For each $\xi, \eta \in E_{\mathbb{C}}$, define $\nu_{\xi,\eta}^Q : \mathcal{B}(\mathbb{R}) \longmapsto \mathbb{C}$ as

(3.2)
$$\nu_{\xi,\eta}^{Q}(S) = \langle \langle P_{Q}(S)\phi_{\xi}, \phi_{\eta} \rangle \rangle, \quad S \in \mathcal{B}(\mathbb{R}).$$

Obviously $\nu_{\xi,\eta}^Q$ is a complex-valued measure on $(\mathbb{R},\mathcal{B}(\mathbb{R}))$. Throughout the section, we make the following hypothesis.

Hypothesis. For each $\xi, \eta \in E_{\mathbb{C}}$, there exists a function $\rho_{\xi,\eta}^Q \in E_{\mathbb{C}}$ such that

(3.3)
$$\nu_{\xi,\eta}^{Q}(S) = \int_{S} \rho_{\xi,\eta}^{Q}(\lambda) d\lambda, \quad S \in \mathcal{B}(\mathbb{R}).$$

We call the function $\rho_{\xi,\eta}^Q$ the spectral density of the operator Q associated with ξ,η .

Proposition 3.1. The spectral density $\rho_{\xi,\eta}^Q$ is positive definite in the sense that for each $n \geq 1$ and any $z_i \in \mathbb{C}$, $\xi_i \in E_{\mathbb{C}}$, $i = 1, 2, \dots, n$,

(3.4)
$$\sum_{i,j=1}^{n} z_{i}\overline{z_{j}} \rho_{\xi_{i},\bar{\xi_{j}}}^{Q} \geq 0 \quad as \ a \ function \ on \ \mathbb{R}.$$

Proof. Let $\varphi = \sum_{i=1}^n z_i \, \phi_{\xi_i}$. Then for each $S \in \mathcal{B}(\mathbb{R})$, we have

$$\begin{split} \int_{S} \sum_{i,j=1}^{n} z_{i} \overline{z_{j}} \, \rho_{\xi_{i},\bar{\xi_{j}}}^{Q}(\lambda) \, d\lambda &= \sum_{i,j=1}^{n} z_{i} \overline{z_{j}} \, \nu_{\xi_{i},\bar{\xi_{j}}}^{Q}(S) \\ &= \sum_{i,j=1}^{n} z_{i} \overline{z_{j}} \, \langle \langle P_{Q}(S) \, \phi_{\xi_{i}}, \phi_{\bar{\xi_{j}}} \rangle \rangle \\ &= \langle \langle P_{Q}(S) \, \varphi, \overline{\varphi} \rangle \rangle \\ &= \|P_{Q}(S) \, \varphi\|_{0}^{2} \\ &> 0 \end{split}$$

where $\|\cdot\|_0$ denotes the norm of (L^2) . Hence $\sum_{i,j=1}^n z_i \overline{z_j} \rho_{\xi_i,\bar{\xi_j}}^Q \geq 0$ as a function on \mathbb{R} .

Proposition 3.2. Let $Dom Q^n$ be the domain of Q^n , where $n \geq 0$. Then $\{\phi_{\xi} \mid \xi \in E_{\mathbb{C}}\} \subset Dom Q^n$.

Proof. Let $\xi \in E_{\mathbb{C}}$. By Proposition 3.1 and the Hypothesis, we have

$$0 \le \int_{\mathbb{R}} \lambda^{2n} \, \rho_{\xi,\bar{\xi}}^Q(\lambda) \, d\lambda < +\infty.$$

Hence

$$\begin{split} \int_{\mathbb{R}} |\lambda^n|^2 & ((P_Q(d\lambda)\phi_\xi, \phi_\xi)) &= \int_{\mathbb{R}} \lambda^{2n} \left\langle \langle P_Q(d\lambda)\phi_\xi, \overline{\phi_\xi} \rangle \rangle \\ &= \int_{\mathbb{R}} \lambda^{2n} \, \nu_{\xi, \bar{\xi}}^Q(d\lambda) \\ &= \int_{\mathbb{R}} \lambda^{2n} \, \rho_{\xi, \bar{\xi}}^Q(\lambda) \, d\lambda \\ &< +\infty, \end{split}$$

which implies that $\phi_{\xi} \in \text{Dom } Q^n$.

The above propositions show useful properties of the operator Q. Now we use them to define Schwartz generalized functions of Q.

Theorem 3.3. Assume that the spectral density $\rho_{\xi,\eta}^Q$ satisfies that for each $q \geq 0$ there exist constants $a, k, p \geq 0$ such that

(3.5)
$$|\rho_{\xi,\eta}^Q|_q \le k \exp\{a(|\xi|_p^2 + |\eta|_p^2)\}, \quad \xi, \, \eta \in E_{\mathbb{C}}.$$

Then for each Schwartz generalized function $\omega \in E^* = S^*(\mathbb{R})$, there exists a unique generalized operator $X_\omega^Q \in \mathcal{L}$ such that

(3.6)
$$\widehat{X_{\omega}^{Q}}(\xi,\eta) = \langle \omega, \rho_{\xi,\eta}^{Q} \rangle, \quad \xi, \, \eta \in E_{\mathbb{C}}.$$

Proof. Obviously (3.6) implies the uniqueness of X_{ω}^Q . Now we prove the existence. Let $\omega \in E^*$. Then there is $q \geq 0$ such that $\omega \in E_{-q}$. Since E is dense in E_{-q} , we can take a sequence $\{f_n\}_{n\geq 1} \subset E$ such that $f_n \longrightarrow \omega$ in the norm $|\cdot|_{-q}$. For each $n\geq 1$, $f_n(Q)=\int_{\mathbb{R}} f_n(\lambda)P_Q(d\lambda)$ is a bounded linear operator on (L^2) since f_n is a bounded function. Hence $f_n(Q)\in \mathcal{L}$ for all $n\geq 1$.

We assert that the sequence $\{f_n(Q)\}$ satisfies the two conditions of Lemma 2.1. In fact, for each ξ , $\eta \in E_{\mathbb{C}}$, we have

$$\lim_{n \to \infty} \widehat{f_n(Q)}(\xi, \eta) = \lim_{n \to \infty} \int_{\mathbb{R}} f_n(\lambda) \, \nu_{\xi, \eta}^Q(d\lambda)$$

$$= \lim_{n \to \infty} \int_{\mathbb{R}} f_n(\lambda) \, \rho_{\xi, \eta}^Q(\lambda) \, d\lambda$$

$$= \lim_{n \to \infty} \langle f_n, \rho_{\xi, \eta}^Q \rangle$$

$$= \langle \omega, \rho_{\xi, \eta}^Q \rangle.$$

On the other hand, by the assumption we have

$$|\widehat{f_n(Q)}(\xi,\eta)| = |\langle f_n, \rho_{\xi,\eta}^Q \rangle|$$

$$\leq |f_n|_q |\rho_{\xi,\eta}^Q|_q$$

$$\leq \alpha k \exp\{a(|\xi|_p^2 + |\eta|_p^2)\}$$

 $\forall \xi, \eta \in E_{\mathbb{C}}$, where $\alpha = \sup_{n \geq 1} |f_n|_{-q} < \infty$ since $\{f_n\}_{n \geq 1}$ is convergent in the norm $|\cdot|_{-q}$.

By Lemma 2.1, there exists a generalized operator, denoted by X_{ω}^{Q} , such that $f_{n}(Q) \longrightarrow X_{\omega}^{Q}$ in \mathcal{L} , which implies

$$\lim_{n \to \infty} \widehat{f_n(Q)}(\xi, \eta) = \widehat{X_{\omega}^Q}(\xi, \eta), \quad \forall \, \xi, \, \eta \in E_{\mathbb{C}},$$

which implies (3.6).

Proposition 3.4. Let $\rho_{\xi,n}^Q$ be as in Theorem 3.3 and $f \in E = S(\mathbb{R})$. Then

(3.7)
$$X_f^Q = f(Q)$$
 (as generalized operators)

where $f(Q) = \int_{\mathbb{R}} f(\lambda) P_Q(d\lambda)$, which is well known as the f-function of Q.

Proof. f(Q) is a bounded operator on (L^2) , which means $f(Q) \in \mathcal{L}$. For each $\xi, \eta \in E_{\mathbb{C}}$, by a straightforward computation, we find that

$$\widehat{f(Q)}(\xi,\eta) = \widehat{X_f^Q}(\xi,\eta),$$

which implies (3.7).

Motivated by Proposition 3.4, we now give the definition of Schwartz generalized functions of the operator Q as follows.

Definition 3.1. Let $\rho_{\xi,\eta}^Q$ be as in Theorem 3.3. For a Schwartz generalized function $\omega \in E^*$, we define

(3.8)
$$\omega(Q) = X_{\omega}^{Q}$$

and call it the ω -function of Q.

Remark 3.1. Let δ be the Dirac δ -function. Then $\delta \in E^*$. Hence, under the above conditions upon Q and $\rho_{\xi,\eta}^Q$, $\delta(Q)$ makes sense as a generalized operator.

In the following, we investigate properties of the Schwartz generalized functions of Q defined above.

Theorem 3.5. Let $\rho_{\xi,\eta}^Q$ be as in Theorem 3.3 and $n \geq 0$. Let $\omega_n \in E^*$ be defined by

(3.9)
$$\langle \omega_n, f \rangle = \int_{\mathbb{R}} \lambda^n f(\lambda) \, d\lambda, \quad f \in E.$$

Then

(3.10)
$$\omega_n(Q)\varphi = Q^n\varphi, \quad \varphi \in \mathcal{D}$$

where $\mathcal{D} \equiv Span\{ \phi_{\xi} \mid \xi \in E_{\mathbb{C}} \}$ is the linear subspace of (E) spanned by $\{ \phi_{\xi} \mid \xi \in E_{\mathbb{C}} \}$.

Proof. Firstly, by Proposition 3.2, we see that $\mathcal{D} \subset \text{Dom } Q^n$. On the other hand, for each ξ , $\eta \in E_{\mathbb{C}}$, we have

$$\langle\!\langle Q^n \phi_{\xi}, \phi_{\eta} \rangle\!\rangle = \left(\left(\int_{\mathbb{R}} \lambda^n P_Q(d\lambda) \phi_{\xi}, \overline{\phi_{\eta}} \right) \right)$$

$$= \int_{\mathbb{R}} \lambda^n (\!\langle P_Q(d\lambda) \phi_{\xi}, \phi_{\bar{\eta}} \rangle\!\rangle)$$

$$= \int_{\mathbb{R}} \lambda^n \langle\!\langle P_Q(d\lambda) \phi_{\xi}, \phi_{\eta} \rangle\!\rangle$$

$$= \int_{\mathbb{R}} \lambda^n \rho_{\xi,\eta}^Q(\lambda) d\lambda$$

$$= \langle \omega_n, \rho_{\xi,\eta}^Q \rangle$$

$$= \langle\!\langle \omega_n(Q) \phi_{\xi}, \phi_{\eta} \rangle\!\rangle,$$

where $((\cdot,\cdot))$ means the inner product of (L^2) . Hence (3.10) follows.

Remark 3.2. Let $\rho_{\xi,\eta}^Q$ be as in Theorem 3.3. Then from Theorem 3.5 we see that

(3.11)
$$Q\varphi = \omega_1(Q)\,\varphi, \quad \varphi \in \mathcal{D}.$$

Note that \mathcal{D} is not only a dense subspace of (E) but also a dense subspace of (L^2) . Hence Q itself can be viewed as a generalized operator.

Theorem 3.6. Let $\rho_{\xi,\eta}^Q$ be as in Theorem 3.3. Define a mapping $Z: E^* \longmapsto \mathcal{L}$ as follows:

(3.12)
$$Z(\omega) = \omega(Q), \quad \omega \in E^*.$$

Then $Z: E^* \longmapsto \mathcal{L}$ is a continuous linear mapping.

Proof. Z is obviously linear. We now prove its continuity. Let $\{\omega^{(k)}\}_{k\geq 1}\subset E^*$ and $\omega\in E^*$ be such that $\omega^{(k)}\longrightarrow \omega$ in E^* . Then there exists some $q\geq 0$ such that $\omega,\,\omega^{(k)}\in E_{-q},\,k\geq 1$ and

$$\omega^{(k)} \longrightarrow \omega$$
 (in the norm $|\cdot|_{-a}$).

With an argument similar to that in the proof of Theorem 3.3, we can get a generalized operator X such that

$$Z(\omega^{(k)}) = \omega^{(k)}(Q) \longrightarrow X \quad (\text{in } \mathcal{L}).$$

On the other hand, we have

$$\begin{split} \widehat{X}(\xi,\eta) &= \lim_{k \to \infty} \widehat{Z(\omega^{(k)})}(\xi,\eta) \\ &= \lim_{k \to \infty} \langle \omega^{(k)}, \rho_{\xi,\eta}^Q \rangle \\ &= \langle \omega, \rho_{\xi,\eta}^Q \rangle \\ &= \widehat{\omega(Q)}(\xi,\eta) \\ &= \widehat{Z(\omega)}(\xi,\eta), \end{split}$$

 $\forall \xi, \eta \in E_{\mathbb{C}}$, which implies $X = Z(\omega)$. Hence $Z(\omega^{(k)}) \longrightarrow Z(\omega)$ in \mathcal{L} .

Theorem 3.7. Let $\rho_{\xi,\eta}^Q$ be as in Theorem 3.3 and $Z: E^* \longmapsto \mathcal{L}$ as in Theorem 3.6. Then Z is positivity-preserving in the sense that

(3.13)
$$\langle\!\langle Z(\omega)\varphi,\overline{\varphi}\rangle\!\rangle \ge 0, \quad \varphi \in (E)$$

whenever $\omega \in E^*$ and $\omega \geq 0$.

Proof. Let $\omega \in E^*$ with $\omega \geq 0$. To prove (3.13), we only need to show that for each $n \geq 1$ and any $z_i \in \mathbb{C}$, $\xi_i \in \mathbb{E}_{\mathbb{C}}$, $i = 1, 2, \dots, n$,

$$\left\langle \left\langle Z(\omega) \sum_{i=1}^{n} z_{i} \phi_{\xi_{i}}, \overline{\sum_{i=1}^{n} z_{i} \phi_{\xi_{i}}} \right\rangle \right\rangle \geq 0.$$

In fact, we have

$$\left\langle \left\langle Z(\omega) \sum_{i=1}^{n} z_{i} \phi_{\xi_{i}}, \overline{\sum_{i=1}^{n} z_{i} \phi_{\xi_{i}}} \right\rangle \right\rangle = \sum_{i,j=1}^{n} z_{i} \overline{z_{j}} \left\langle Z(\omega) \phi_{\xi_{i}}, \phi_{\bar{\xi_{j}}} \right\rangle$$

$$= \sum_{i,j=1}^{n} z_{i} \overline{z_{j}} \left\langle \omega, \rho_{\xi_{i}, \bar{\xi_{j}}}^{Q} \right\rangle$$

$$= \left\langle \omega, \sum_{i,j=1}^{n} z_{i} \overline{z_{j}} \rho_{\xi_{i}, \bar{\xi_{j}}}^{Q} \right\rangle$$

$$\geq 0,$$

where, by Proposition 3.1, $\sum_{i,j=1}^{n} z_i \overline{z_j} \rho_{\xi_i,\bar{\xi_j}}^Q \ge 0$ as a function on \mathbb{R} .

By Theorem 3.7, we immediately come to the following proposition.

Proposition 3.8. $\delta(Q)$ is positive, i.e., $\langle \langle \delta(Q)\varphi, \overline{\varphi} \rangle \rangle \geq 0$, $\forall \varphi \in (E)$.

Remark 3.3. The physical meaning of the fact that $\delta(Q)$ is positive can be interpreted as follows. From the physical point of view, the self-adjoint operator Q stands for an observable. Naturally, as a generalized operator, $\delta(Q)$ can be viewed as an observable associated with the observable Q. Hence the positivity property of $\delta(Q)$ implies that it is a positive observable.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science Foundation of China (10171035), Natural Science Foundation of Gansu Province, China (ZS021-A25-004-Z) and NWNU-KJCXGC-212. The authors are grateful for their support.

References

- L. Accardi, Y.G. Lu and I.V. Volovich, Quantum Theory and Its Stochastic Limit, Springer-Verlag, Berlin, 2002. MR1925437 (2003h:81116)
- [2] T. Hida, H. H. Kuo, J. Potthoff and L. Streit, White Noise—An Infinite Dimensional Calculus, Kluwer Academic, Dordrecht, 1993. MR1244577 (95f:60046)
- [3] Z. Y. Huang, Quantum white noises—white noise approach to quantum stochastic calculus, Nagoya Math. J. 129 (1993) 23–42. MR1210001 (94e:81153)
- [4] Z. Y. Huang, C. S. Wang and X. J. Wang, Quantum cable equations in terms of generalized operators, Acta Appl. Math. 63 (2000) 151–164. MR1831253 (2002b:81071)
- [5] Z. Y. Huang, J. A. Yan, Introduction to Infinite Dimensional Calculus, Kluwer, Dordrecht, 1997.
- [6] R.L. Hudson, K. R. Parthasarathy, Quantum Itô's formula and stochastic evolutions, Comm. Math. Phys. 93 (1984) 301–323. MR0745686 (86e:46057)
- [7] H. H. Kuo, White Noise Distribution Theory, CRC, Boca Raton, 1996. MR1387829 (97m:60056)
- [8] S. L. Luo, Wick algebra of generalized operators involving quantum white noise, J. Operator Theory 38 (1997) 367–378. MR1606956 (99b:47063)
- [9] N. Obata, White Noise Calculus and Fock Space, Springer-Verlag, Berlin, 1994. MR1301775 (96e:60061)
- [10] K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Birkhäuser, Basel, 1992. MR1164866 (93g:81062)
- [11] J. Potthoff, L. Streit, A characterization of Hida distributions, J. Funct. Anal. 101 (1991) 212–229. MR1132316 (93a:46078)
- [12] C.S. Wang and Z.Y. Huang, A filtration of Wick algebra and its application to Quantum SDE's, Acta Math. Sinica, English Series (in press).
- [13] C.S. Wang, Z.Y. Huang and X. J. Wang, Analytic characterization for Hilbert-Schmidt operators on Fock space, preprint.
- [14] C.S. Wang, Z.Y. Huang and X. J. Wang, A W-transform-based criterion for the existence of bounded extensions of E-operators, preprint.
- [15] J. A. Yan, Products and transforms of white-noise functionals (in general setting), Appl. Math. Optim., 31 (1995), 137–153. MR1309303 (95m:60096)

Department of Mathematics, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China

 $E ext{-}mail\ address: wangcs@nwnu.edu.cn}$

DEPARTMENT OF MATHEMATICS, HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY, WUHAN, HUBEI 430074, PEOPLE'S REPUBLIC OF CHINA

E-mail address: zyhuang@hust.edu.cn

DEPARTMENT OF MATHEMATICS, HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY, WUHAN, HUBEI 430074, PEOPLE'S REPUBLIC OF CHINA

 $E\text{-}mail\ address{:}\ \mathtt{x.j.wang@yeah.net}$