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Abstract. Let (E) ⊂ (L2) ⊂ (E)∗ be the canonical framework of white noise
analysis over the Gel’fand triple S(R) ⊂ L2(R) ⊂ S∗(R) and L ≡ L[(E), (E)∗]
be the space of continuous linear operators from (E) to (E)∗. Let Q be a
self-adjoint operator in (L2) with spectral representation Q =

∫
R

λ PQ(dλ). In
this paper, it is proved that under appropriate conditions upon Q, there exists
a unique linear mapping Z : S∗(R) �−→ L such that Z(f) =

∫
R

f(λ) PQ(dλ)
for each f ∈ S(R). The mapping is then naturally used to define δ(Q) as
Z(δ), where δ is the Dirac δ-function. Finally, properties of the mapping Z
are investigated and several results are obtained.

1. Introduction

Let δ be the Dirac δ-function, which is a Schwartz generalized function, and Q
an observable, i.e., a self-adjoint operator in a Hilbert space. Then δ(Q), called
the δ-function of Q, is of physical significance (cf. [1]). However, from the math-
ematical point of view, it is a very singular object. What is the mathematical
meaning of δ(Q) which is both reasonable and rigorous? In [1], the authors gave
an interpretation in the context of Hilbert space theory.

On the other hand, white noise analysis initiated by Hida [2], which is essentially
an infinite-dimensional analogue of Schwartz generalized function theory, has been
considerably developed and successfully applied to many fields including stochastic
analysis and quantum physics (see, e.g., [2, 3, 4, 5], [7, 8], [12] and references cited
therein). The mathematical framework of the theory is the Gel’fand triple

(E) ⊂ (L2) ⊂ (E)∗

over S(R) ⊂ L2(R) ⊂ S∗(R), where (E) (resp. (E)∗) is known as Hida testing (resp.
generalized) functional space. Let L ≡ L[(E), (E)∗] be the space of continuous
linear operators from (E) to (E)∗. Elements of L are usually called generalized
operators, which are significant generalizations of bounded operators on the Hilbert
space (L2).

The main purpose of the present paper is to define δ(Q) reasonably and rigorously
in the context of white noise analysis. The paper is organized as follows. In Section 2
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we recall some necessary notions, notation and facts in white noise analysis. In
Section 3, we first prove that for a self-adjoint operator Q in (L2) with spectral
representation Q =

∫
R

λPQ(dλ), under appropriate conditions upon Q there exists
a unique linear mapping Z : S∗(R) �−→ L such that Z(f) =

∫
R

f(λ)PQ(dλ) for each
f ∈ S(R). We then naturally use the mapping Z to define δ(Q) as Z(δ). Finally,
we show that the mapping Z : S∗(R) �−→ L is continuous and positivity-preserving.

2. Framework of white noise analysis

In this section we briefly recall some notions, notation and facts in white noise
analysis. For details see [2], [5], [7] and [9].

We first fix some general notation. Throughout the paper, R and C stand for
the real line and complex plane, respectively. For any real locally convex space V ,
we denote by VC the complexification of V . Let 〈·, ·〉 be the canonical bilinear form
on V ∗ × V ; then the canonical bilinear forms on V ∗

C
× VC and (V ⊗n

C
)∗ × V ⊗n

C
are

still denoted by 〈·, ·〉. Similarly, if V is a real Hilbert space with norm | · |, then the
norms of VC and V ⊗n

C
are also denoted by the same symbol | · |.

Now let H ≡ L2(R, dt; R) be the Hilbert space of real-valued square integrable
functions on R with norm | · |0 and inner product 〈·, ·〉. Let A = 1 + t2 − d2/dt2

be the harmonic oscillator. Then A has a self-adjoint extension in H , which is still
denoted by A.

For each integer p, let Ep be the completion of DomAp with respect to the
Hilbertian norm | · |p = |Ap · |0. Then Ep and E−p can be regarded as each other’s
dual if we identify H with its dual. Let E be the projective limit of {Ep | p ≥ 0 }
and E∗ the topological dual of E. Then E is a nuclear space and E∗ is the inductive
limit of {E−p | p ≥ 0 }. Hence we have a real Gel’fand triple E ⊂ H ⊂ E∗. It is
known (cf. [2]) that E and E∗ coincide with Schwartz rapidly decreasing function
space S(R) and generalized function space S∗(R), respectively. We denote by 〈·, ·〉
the canonical bilinear form on E∗ × E, which is consistent with the inner product
of H .

Let µ be the standard Gaussian measure on E∗, i.e., its characteristic function
is

(2.1)
∫

E∗
ei〈x,f〉 µ(dx) = e−

1
2 |f |

2
0 , f ∈ E.

The measure space (E∗, µ) is known as white noise. Let (L2) ≡ L2(E∗, µ; C) be
the Hilbert space of complex-valued µ-square integrable functionals on E∗ with the
inner product ((·, ·)) and norm ‖ · ‖0. Then, by the well-known Wiener-Itô-Segal
isomorphism theorem, for each ϕ ∈ (L2) there exists a unique sequence (fn)∞n=0

with fn ∈ H⊗̂n
C

such that ϕ =
∑∞

n=0 In(fn) in norm ‖ · ‖0 and

(2.2) ‖ϕ‖2
0 =

∞∑
n=0

n!|fn|20

where In(fn) denotes the multiple Wiener integral of order n with kernel fn.
Note that the harmonic oscillator A also has a self-adjoint extension in HC, which

is still denoted by A. Let Γ(A) be the second quantization operator of A defined
by

(2.3) Γ(A)ϕ =
∞∑

n=0

In(A⊗nfn)
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where ϕ =
∑∞

n=0 In(fn). Then Γ(A) is a positive self-adjoint operator with Hilbert-
Schmidt inverse in (L2).

Similarly, for each integer p, let (Ep) be the completion of Dom Γ(A)p with
respect to the Hilbertian norm ‖ · ‖p = ‖Γ(A)p · ‖0. Then (Ep) becomes a complex
Hilbert space. In particular, (E0) = (L2). Let (E) be the projective limit of
{ (Ep) | p ≥ 0 } and (E)∗ the inductive limit of { (E−p) | p ≥ 0 }. Then (E) and
(E)∗ can be regarded as each other’s dual. Moreover, (E) is a nuclear space and
we come to a complex Gel’fand triple

(E) ⊂ (L2) ⊂ (E)∗,

which is known as the canonical framework of white noise analysis. Elements of
(E) (resp. (E)∗) are called Hida testing (resp. generalized) functionals. In the
following, we denote by 〈〈·, ·〉〉 the canonical bilinear form on (E)∗ × (E).

For ξ ∈ EC, the exponential functional φξ associated with ξ is defined as

(2.4) φξ(x) = e〈x,ξ〉−〈ξ,ξ〉/2 =
∞∑

n=0

〈
: x⊗n :,

1
n!

ξ⊗n
〉
, x ∈ E∗.

It is known that the set {φξ | ξ ∈ EC } is total in the Hilbert space (Ep) for each
integer p. Hence Span{φξ | ξ ∈ EC } is a dense subspace of (E).

Continuous linear operators from (E) to (E)∗ are usually called generalized op-
erators. The space of all generalized operators is denoted by L ≡ L[(E), (E)∗]. For
X ∈ L, its symbol X̂ is defined as

(2.5) X̂(ξ, η) = 〈〈Xφξ, φη〉〉, ξ, η ∈ EC.

The next lemma (cf. [8] and [9]) will be used later.

Lemma 2.1. Let {Xn }n≥1 ⊂ L be such that

(1) ∀ ξ, η ∈ EC, the sequence { X̂n(ξ, η) }n≥1 is convergent in C,
(2) there exist constants a, k, p ≥ 0 such that

(2.6) sup
n≥1

∣∣X̂n(ξ, η)
∣∣ ≤ a exp{k(|ξ|2p + |η|2p)}, ξ, η ∈ EC.

Then there exists a unique X ∈ L such that Xn −→ X in L.

3. δ-function of an operator

We first make some necessary assumptions. Let B(R) be the Borel σ-field of the
real line R and P [(L2)] the set of projections in (L2).

Let Q be a given self-adjoint operator in (L2) with spectral representation

(3.1) Q =
∫

R

λPQ(dλ),

where PQ : B(R) �−→ P [(L2)] is the spectral measure of Q (cf. [10]). It is well
known that for a Borel measurable function f on R, f(Q) =

∫
R

f(λ)PQ(dλ) makes
sense as a densely defined operator in (L2). Moreover, f(Q) is a bounded operator
in (L2) if f is a bounded Borel measurable function (see [10] for details).

For each ξ, η ∈ EC, define νQ
ξ,η : B(R) �−→ C as

(3.2) νQ
ξ,η(S) = 〈〈PQ(S)φξ, φη〉〉, S ∈ B(R).
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Obviously νQ
ξ,η is a complex-valued measure on (R,B(R)). Throughout the section,

we make the following hypothesis.
Hypothesis. For each ξ, η ∈ EC, there exists a function ρQ

ξ,η ∈ EC such that

(3.3) νQ
ξ,η(S) =

∫
S

ρQ
ξ,η(λ)dλ, S ∈ B(R).

We call the function ρQ
ξ,η the spectral density of the operator Q associated with

ξ, η.

Proposition 3.1. The spectral density ρQ
ξ,η is positive definite in the sense that for

each n ≥ 1 and any zi ∈ C, ξi ∈ EC, i = 1, 2, · · · , n,

(3.4)
n∑

i,j=1

zizj ρQ

ξi,ξ̄j
≥ 0 as a function on R.

Proof. Let ϕ =
∑n

i=1 zi φξi . Then for each S ∈ B(R), we have∫
S

n∑
i,j=1

zizj ρQ

ξi,ξ̄j
(λ) dλ =

n∑
i,j=1

zizj νQ

ξi,ξ̄j
(S)

=
n∑

i,j=1

zizj 〈〈PQ(S)φξi , φξ̄j
〉〉

= 〈〈PQ(S)ϕ, ϕ〉〉
= ‖PQ(S)ϕ‖2

0

≥ 0

where ‖ · ‖0 denotes the norm of (L2). Hence
∑n

i,j=1 zizj ρQ

ξi,ξ̄j
≥ 0 as a function

on R. �

Proposition 3.2. Let DomQn be the domain of Qn, where n ≥ 0. Then {φξ | ξ ∈
EC } ⊂ DomQn.

Proof. Let ξ ∈ EC. By Proposition 3.1 and the Hypothesis, we have

0 ≤
∫

R

λ2n ρQ

ξ,ξ̄
(λ) dλ < +∞.

Hence ∫
R

|λn|2((PQ(dλ)φξ , φξ)) =
∫

R

λ2n 〈〈PQ(dλ)φξ , φξ〉〉

=
∫

R

λ2n νQ

ξ,ξ̄
(dλ)

=
∫

R

λ2n ρQ

ξ,ξ̄
(λ) dλ

< +∞,

which implies that φξ ∈ Dom Qn. �

The above propositions show useful properties of the operator Q. Now we use
them to define Schwartz generalized functions of Q.
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Theorem 3.3. Assume that the spectral density ρQ
ξ,η satisfies that for each q ≥ 0

there exist constants a, k, p ≥ 0 such that

(3.5) |ρQ
ξ,η|q ≤ k exp{a(|ξ|2p + |η|2p)}, ξ, η ∈ EC.

Then for each Schwartz generalized function ω ∈ E∗ = S∗(R), there exists a unique
generalized operator XQ

ω ∈ L such that

(3.6) X̂Q
ω (ξ, η) = 〈ω, ρQ

ξ,η〉, ξ, η ∈ EC.

Proof. Obviously (3.6) implies the uniqueness of XQ
ω . Now we prove the existence.

Let ω ∈ E∗. Then there is q ≥ 0 such that ω ∈ E−q. Since E is dense in E−q, we
can take a sequence { fn }n≥1 ⊂ E such that fn −→ ω in the norm | · |−q. For each
n ≥ 1, fn(Q) =

∫
R

fn(λ)PQ(dλ) is a bounded linear operator on (L2) since fn is a
bounded function. Hence fn(Q) ∈ L for all n ≥ 1.

We assert that the sequence { fn(Q) } satisfies the two conditions of Lemma 2.1.
In fact, for each ξ, η ∈ EC, we have

lim
n→∞

f̂n(Q)(ξ, η) = lim
n→∞

∫
R

fn(λ) νQ
ξ,η(dλ)

= lim
n→∞

∫
R

fn(λ) ρQ
ξ,η(λ) dλ

= lim
n→∞

〈fn, ρQ
ξ,η〉

= 〈ω, ρQ
ξ,η〉.

On the other hand, by the assumption we have

|f̂n(Q)(ξ, η)| = |〈fn, ρQ
ξ,η〉|

≤ |fn|q|ρQ
ξ,η|q

≤ αk exp{a(|ξ|2p + |η|2p)}

∀ ξ, η ∈ EC, where α = supn≥1 |fn|−q < ∞ since { fn }n≥1 is convergent in the
norm | · |−q.

By Lemma 2.1, there exists a generalized operator, denoted by XQ
ω , such that

fn(Q) −→ XQ
ω in L , which implies

lim
n→∞

f̂n(Q)(ξ, η) = X̂Q
ω (ξ, η), ∀ ξ, η ∈ EC,

which implies (3.6). �

Proposition 3.4. Let ρQ
ξ,η be as in Theorem 3.3 and f ∈ E = S(R). Then

(3.7) XQ
f = f(Q) (as generalized operators)

where f(Q) =
∫

R
f(λ)PQ(dλ), which is well known as the f -function of Q.

Proof. f(Q) is a bounded operator on (L2), which means f(Q) ∈ L. For each
ξ, η ∈ EC, by a straightforward computation, we find that

f̂(Q)(ξ, η) = X̂Q
f (ξ, η),

which implies (3.7). �
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Motivated by Proposition 3.4, we now give the definition of Schwartz generalized
functions of the operator Q as follows.

Definition 3.1. Let ρQ
ξ,η be as in Theorem 3.3. For a Schwartz generalized function

ω ∈ E∗, we define

(3.8) ω(Q) = XQ
ω

and call it the ω-function of Q.

Remark 3.1. Let δ be the Dirac δ-function. Then δ ∈ E∗. Hence, under the above
conditions upon Q and ρQ

ξ,η, δ(Q) makes sense as a generalized operator.

In the following, we investigate properties of the Schwartz generalized functions
of Q defined above.

Theorem 3.5. Let ρQ
ξ,η be as in Theorem 3.3 and n ≥ 0. Let ωn ∈ E∗ be defined

by

(3.9) 〈ωn, f〉 =
∫

R

λnf(λ) dλ, f ∈ E.

Then

(3.10) ωn(Q)ϕ = Qnϕ, ϕ ∈ D
where D ≡ Span{φξ | ξ ∈ EC } is the linear subspace of (E) spanned by {φξ | ξ ∈
EC }.

Proof. Firstly, by Proposition 3.2, we see that D ⊂ Dom Qn. On the other hand,
for each ξ, η ∈ EC, we have

〈〈Qnφξ, φη〉〉 =
(( ∫

R

λn PQ(dλ)φξ , φη

))

=
∫

R

λn((PQ(dλ)φξ , φη̄))

=
∫

R

λn〈〈PQ(dλ)φξ , φη〉〉

=
∫

R

λn ρQ
ξ,η(λ) dλ

= 〈ωn, ρQ
ξ,η〉

= 〈〈ωn(Q)φξ, φη〉〉,
where ((·, ·)) means the inner product of (L2). Hence (3.10) follows. �

Remark 3.2. Let ρQ
ξ,η be as in Theorem 3.3. Then from Theorem 3.5 we see that

(3.11) Qϕ = ω1(Q)ϕ, ϕ ∈ D.

Note that D is not only a dense subspace of (E) but also a dense subspace of (L2).
Hence Q itself can be viewed as a generalized operator.

Theorem 3.6. Let ρQ
ξ,η be as in Theorem 3.3. Define a mapping Z : E∗ �−→ L as

follows:

(3.12) Z(ω) = ω(Q), ω ∈ E∗.

Then Z : E∗ �−→ L is a continuous linear mapping.
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Proof. Z is obviously linear. We now prove its continuity. Let {ω(k) }k≥1 ⊂ E∗

and ω ∈ E∗ be such that ω(k) −→ ω in E∗. Then there exists some q ≥ 0 such that
ω, ω(k) ∈ E−q, k ≥ 1 and

ω(k) −→ ω ( in the norm | · |−q ).

With an argument similar to that in the proof of Theorem 3.3, we can get a gener-
alized operator X such that

Z(ω(k)) = ω(k)(Q) −→ X ( in L ).

On the other hand, we have

X̂(ξ, η) = lim
k→∞

Ẑ(ω(k))(ξ, η)

= lim
k→∞

〈ω(k), ρQ
ξ,η〉

= 〈ω, ρQ
ξ,η〉

= ω̂(Q)(ξ, η)

= Ẑ(ω)(ξ, η),

∀ ξ, η ∈ EC, which implies X = Z(ω). Hence Z(ω(k)) −→ Z(ω) in L. �

Theorem 3.7. Let ρQ
ξ,η be as in Theorem 3.3 and Z : E∗ �−→ L as in Theorem 3.6.

Then Z is positivity-preserving in the sense that

(3.13) 〈〈Z(ω)ϕ, ϕ〉〉 ≥ 0, ϕ ∈ (E)

whenever ω ∈ E∗ and ω ≥ 0.

Proof. Let ω ∈ E∗ with ω ≥ 0. To prove (3.13), we only need to show that for each
n ≥ 1 and any zi ∈ C, ξi ∈ EC, i = 1, 2, · · · , n,〈〈

Z(ω)
n∑

i=1

ziφξi ,

n∑
i=1

ziφξi

〉〉
≥ 0.

In fact, we have〈〈
Z(ω)

n∑
i=1

ziφξi ,

n∑
i=1

ziφξi

〉〉
=

n∑
i,j=1

zizj〈〈Z(ω)φξi , φξ̄j
〉〉

=
n∑

i,j=1

zizj

〈
ω, ρQ

ξi,ξ̄j

〉

=
〈

ω,

n∑
i,j=1

zizjρ
Q

ξi,ξ̄j

〉
≥ 0,

where, by Proposition 3.1,
∑n

i,j=1 zizj ρQ

ξi,ξ̄j
≥ 0 as a function on R. �

By Theorem 3.7, we immediately come to the following proposition.

Proposition 3.8. δ(Q) is positive, i.e., 〈〈δ(Q)ϕ, ϕ〉〉 ≥ 0, ∀ϕ ∈ (E).
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Remark 3.3. The physical meaning of the fact that δ(Q) is positive can be inter-
preted as follows. From the physical point of view, the self-adjoint operator Q
stands for an observable. Naturally, as a generalized operator, δ(Q) can be viewed
as an observable associated with the observable Q. Hence the positivity property
of δ(Q) implies that it is a positive observable.
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