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RESTRICTED WEAK TYPE VERSUS WEAK TYPE

LOUKAS GRAFAKOS AND MIECZYS�LAW MASTY�LO

(Communicated by Andreas Seeger)

Abstract. We prove that translation invariant multilinear operators of re-
stricted weak type (1, 1, . . . , 1, q) must necessarily be of weak type (1, 1, . . . ,
1, q). We give applications.

1. Introduction and the main result

Let X be a normed (or quasi-normed) linear space of functions defined on a
measure space (M, µ). A linear (or sublinear) operator T defined on X and taking
values in Lq,∞(N) (weak Lq of a measure space (N, ν)), 0 < q < ∞, is said to be of
restricted weak type (X, q) if there is a constant C such that for every characteristic
function χA in X (A is a measurable subset of M) we have

(1) ‖T (χA)‖Lq,∞(N) =: sup
λ>0

[
λ ν({x ∈ N : |T (χA)(x)| > λ}) 1

q

]
≤ C‖χA‖X .

In the special case where X = Lp(M) we say that T is of restricted weak type
(p, q). A pair of restricted weak type estimates are powerful enough to often imply
strong type estimates on intermediate spaces. Restricted weak type estimates are
usually easier to obtain than strong type estimates as the functions involved are
bounded and two-valued instead of arbitrary measurable.

The general question we are concerned with is under what conditions on X and T
does the restricted weak type (X, q) estimate (1) imply the full weak type estimate

(2) ‖T (f)‖Lq,∞(N) = sup
λ>0

[
λ ν({x ∈ N : |T (f)(x)| > λ}) 1

q

]
≤ C′‖f‖X

for all functions f in X . Here C′ is a constant that is allowed to depend only on C, q
and the space X . It is known that a general linear operator T of restricted weak
type (p, q) is not necessarily of weak type (p, q). Stein and Weiss [SW] considered
the linear operator

S(f)(x) = x−1/q

∫ ∞

0

y−1/p′
f(y) dy ,

defined for functions on (0,∞), to indicate that a restricted weak type (p, q) prop-
erty does not necessarily imply the corresponding weak type (p, q) property. Here
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1 < p, q < ∞ and p′ is defined by 1/p + 1/p′ = 1. A remarkable theorem of Moon
[M], however, says that if a convolution operator on L1(Rn) is of restricted weak
type (1, q), then it must necessarily be of weak type (1, q). This theorem is also
valid for maximal convolution operators:

Theorem (Moon [M]). Let Sj, j = 1, 2, . . . , be linear operators on L1(Rn) each
of the form Sj(f) = f ∗ Kj for some Kj in L1(Rn) and let

S∗(f) = sup
j≥1

|Sj(f)| .

If S∗ is of restricted weak type (1, q) for some q > 0, then S∗ must be of weak type
(1, q) with constant independent of the quantities ‖Kj‖L1 .

The hypothesis that each Kj is integrable may seem very strong. In most appli-
cations, nevertheless, one can work equally well with an integrable truncation of the
kernel Kj and obtain restricted weak type estimates independent of the truncation.
Moon’s theorem then yields weak type estimates independent of the truncation
and, passing to the limit (using Fatou’s lemma for weak spaces), one obtains weak
type estimates for the actual operator. Here is an example: Let Iα be the usual
fractional integral operator on Rn given by convolution with the kernel |x|−n+α.
We can use the previous theorem to show that Iα maps L1(Rn) to Ln/(n−α),∞(Rn)
when 0 < α < n. (Using duality and interpolation, this fact implies that Iα maps
Lp(Rn) to Lq(Rn) whenever 1/p−1/q = α/n.) Using Moon’s theorem it will suffice
to show that the operator given by convolution with the truncated integrable kernel
|x|−n+αχ|x|≤B is of restricted weak type (1, n/(n−α)) (with constant independent
of the parameter B). But this amounts to showing that for some dimensional con-
stant Cn and all measurable sets E, F with finite Lebesgue measure (denoted by
|E| and |F |) one has

(3)
∫

F

∫
E

|x − t|−n+αχ|x−t|≤B dt dx ≤ Cn |E| |F |n/α

for all B > 0. Applying Fubini’s theorem and noting that
∫

F |x − t|−n+α dx ≤
Cn |F |n/α for all x in Rn, (3) follows.

In this work we prove a multilinear version of Moon’s theorem. Our result will
also be limited to multilinear “convolution” operators, which are usually called
“translation invariant” in this context. These are multilinear operators of the form

(4) T (f1, . . . , fm)(x) =
∫

(Rn)m

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) dy1 . . . dym,

where the kernel K(x, y1, . . . , ym) has the form K0(x − y1, . . . , x − ym) for some
function (or distribution) K0 of one less variable. As in Moon’s theorem we will
work with a supremum of translation invariant operators. Inspired by the linear
case we introduce the following terminology: we say that a multilinear (or multi-
sublinear) operator T is of restricted weak type (p1, . . . , pm, q) if for all measurable
sets E1, . . . , Em of finite measure we have

(5) ‖T (χE1 , . . . , χEm)‖Lq,∞ ≤ A |E1|
1

p1 . . . |Em| 1
pm

for some positive constant A. The following is our main result.
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Theorem 1.1. For j = 1, 2, . . . , let Tj be an m-linear translation invariant oper-
ator on L1(Rn) × · · · × L1(Rn) with kernel an integrable bounded function Kj on
(Rn)m and let

T∗(f1, . . . , fm) = sup
j≥1

|Tj(f1, . . . , fm)| .

Let 0 < q < ∞. If T∗ is of restricted weak type (1, . . . , 1, q), then T∗ must be of weak
type (1, . . . , 1, q) with constant independent of the quantities ‖Kj‖L1 , ‖Kj‖L∞.

We prove this theorem in the next section and we discuss a few applications in
the last section.

2. The proof of the main result

Let us denote by Cc(Rn) the set of all continuous functions on Rn with compact
support and by S(Rn) the set of all simple functions each of which is a finite linear
combination of characteristic functions of compact connected sets.

Let us fix an m-tuple (f1, . . . , fm) of nonnegative functions in S(Rn)m. Once the
required estimate is proved for such functions, it is easily extended for all complex-
valued functions using multilinearity (with an extra factor of 4m in the constant).

Since S((Rn)m) is dense in L1((Rn)m), given an ε > 0, there exist functions Hj

in S((Rn)m) such that

‖Hj − Kj‖L1 ≤ ε

2 max(1, ‖f1‖L∞ . . . ‖fm‖L∞)
.

Setting

T̃j(f1, . . . , fm) =
∫
Rmn

Hj(x − y1, . . . , x − ym)f1(y1) . . . fm(ym) dy1 . . . dym ,

we have ∣∣Tj(f1, . . . , fm) − T̃j(f1, . . . , fm)
∣∣

=
∣∣ ∫

Rmn

[
Hj(x − y1, . . . , x − ym)

−Kj(x − y1, . . . , x − ym)
]
f1(y1) . . . fm(ym) dy1 . . . dym

∣∣
≤ ‖f1‖L∞ . . . ‖fm‖L∞‖Kj − Hj‖L1 <

ε

2
.

Let us fix a positive integer J . For any fixed λ > 0 and all positive integers j,
1 ≤ j ≤ J , the continuity of Hj implies the existence of a δ > 0 such that for any
connected set I in Rmn with

diam(I) = sup{|x − y| : x,y ∈ I} < δ,

we have

(6) |Hj(y) − Hj(z)| <
λ

2‖f1‖L1 . . . ‖fm‖L1

whenever y, z ∈ I for all 1 ≤ j ≤ J . (We will use boldface letters for points in
Rmn.)

For each i ∈ {1, . . . , m} we write Rn as a countable disjoint union of connected
sets Ii,ki such that

diam(I1,k1 × · · · × Im,km) < δ .
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Since each fi is a simple function, we may write

fi(x) =
∑
ki

αi,kiχIi,ki
.

There are only finitely many nonzero αi,ki and we set αi = max
ki

(αi,ki) for all

i ∈ {1, 2, . . . , n}. We clearly have αi = ‖fi‖L∞ .
For each 1 ≤ i ≤ m and ki we pick a subset Fi,ki of Ii,ki such that

(7) αi|Fi,ki | = αi,ki |Ii,ki | .

We now set Ei =
⋃

ki
Fi,ki , k = (k1, . . . , km), Fk = F1,k1 × · · · × Fm,km , Ik =

I1,k1 × · · · × Im,km , and using (7) we note that for all i in {1, . . . , m} the following
is valid:

αi|Ei| =
∑
ki

αi|Fi,ki | =
∑
ki

αi,ki |Ii,ki | = ‖fi‖L1 .

Let x ∈ Rn. Setting x0 = (x, . . . , x), for each j ∈ {1, 2, . . . , J} we have∣∣T̃j(f1, . . . , fm)(x) − T̃j(α1χE1 , . . . , αmχEm)(x)
∣∣

≤
∑
k1

· · ·
∑
km

∣∣T̃j(α1,k1χI1,k1
, . . . , αm,kmχIm,km

)(x)

−T̃j(α1χF1,k1
, . . . , αmχFm,km

)(x)
∣∣

=
∑
k1

· · ·
∑
km

∣∣∣∣α1,k1 . . . αm,km

∫
Ik

Hj(x0 − y) dy − α1 . . . αm

∫
Fk

Hj(x0 − y) dy
∣∣∣∣

=
∑
k1

· · ·
∑
km

∣∣α1,k1 . . . αm,km |Ik|Hj(x0 − yk) − α1 . . . αm |Fk|Hj(x0 − y′
k)

∣∣
=

∑
k1

· · ·
∑
km

∣∣α1 . . . αm |Fk|Hj(x0 − yk) − α1 . . . αm |Fk|Hj(x0 − y′
k)

∣∣
for some yk in Ik and y′

k in Fk, as a consequence of the mean value theorem. In
the last identity we used (7). As the diameter of the set x0 − Ik is at most δ, using
(6) we obtain that the last displayed expression above is at most∑

k1

· · ·
∑
km

α1 . . . αm |Fk|
λ

2‖f1‖L1 . . . ‖fm‖L1
=

λ

2
.

Combining the results of the previous calculations we obtain

|Tj(f1, . . . , fm)| ≤ |T̃j(f1, . . . , fm)| + ε

2

≤ |T̃j(α1χE1 , . . . , αmχEm)| + λ

2
+

ε

2

≤ |Tj(α1χE1 , . . . , αmχEm)| + ε

2
+

λ

2
+

ε

2

≤ α1 . . . αmT∗(χE1 , . . . , χEm) +
λ

2
+ ε ,

and from this we deduce that

(8)
∣∣∣{ sup

1≤j≤J
|Tj(f1, . . . , fm)| > λ + ε

}∣∣∣ ≤ ∣∣∣{|T∗(χE1 , . . . , χEm)| >
λ

2α1 . . . αm

}∣∣∣ .
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Using our assumption that the operator T∗ is of restricted weak type (1, . . . , 1, q)
we conclude that the last expression in (8) is at most(

A|E1| . . . |Em| 2α1 . . . αmλ−1
)q =

(
2A‖f1‖L1 . . . ‖fm‖L1λ−1

)q
.

Letting J → ∞ and ε → 0 we obtain that T∗ satisfies the required weak type
estimate for all functions f1, . . . , fm in S(Rn).

It remains to consider general functions in L1(Rn). As the operator T∗ is not
linear, this extension is not automatic. For the rest of this proof, we fix functions
f1, . . . , fm in L1(Rn).

Using the multilinearity of the Tj we can easily show that there is a constant C
(depending on m variables) such that for all integrable functions fj , gj satisfying
‖fj − gj‖L1 < 1 we have

‖Tj(f1, . . . , fm) − Tj(g1, . . . , gm)‖L1

≤ ‖Kj‖L∞C(‖f1‖L1 . . . , ‖fm‖L1)
[ m∑

i=1

‖fi − gi‖L1

]
.

Let J be a fixed positive integer. For any given 0 < ε < 1 we can find functions gj

(depending on ε, J) in S(Rn) such that

‖fj − gj‖L1 < ε2
[
max

(
1, C(‖f1‖L1 , . . . , ‖fm‖L1)max(‖K1‖L∞ , . . . , ‖KJ‖L∞)

)]−1

.

Then for each j ∈ {1, . . . , J} we have

‖Tj(f1, . . . , fm) − Tj(g1, . . . , gm)‖L1 < ε2 ,

which, via Chebychev’s inequality, implies that the set

Bj =
{
|Tj(f1, . . . , fm) − Tj(g1, . . . , gm)| > ε

}
has measure at most ε. Letting B(J) =

⋃J
j=1 Bj , for all x /∈ B(J) we have

sup
1≤j≤J

|Tj(f1, . . . , fm)| ≤ sup
1≤j≤J

|Tj(g1, . . . , gm)| + ε ≤ T∗(g1, . . . , gm) + ε .

It follows that∣∣{ sup
1≤j≤J

|Tj(f1, . . . , fm)| > λ + ε
}∣∣ ≤ ∣∣{T∗(g1, . . . , gm) > λ

}∣∣ + |B(J)|

≤
(
Aλ−1‖g1‖L1 . . . ‖gm‖L1

)q +
J∑

j=1

|Bj |

≤
(
Aλ−1(‖f1‖L1 + ε2) . . . (‖fm‖L1 + ε2)

)q

+ Jε .

Letting first ε → 0 and then J → ∞ we conclude that∣∣{T∗(f1, . . . , fm) > λ
}∣∣ ≤ (

Aλ−1‖f1‖L1 . . . ‖fm‖L1

)q
.

Remark 2.1. Suppose that Kj = 0 for all j ≥ 2. Then the assumption that K1 is in
L∞((Rn)m) can be dropped. In this case, the following is valid: If T1 is of restricted
weak type (1, . . . , 1, q), then T1 must be of weak type (1, . . . , 1, q) with constant
independent of the quantity ‖K1‖L1. Indeed, in this case, the passage from S(Rn)
to L1(Rn) follows by a simple density argument in view of the (multi)linearity of
T1.
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3. Applications

Let H be the Hilbert transform and F be a measurable subset of R of finite
measure. It is shown in [SW] that

(9) |{x ∈ R : |H(χF )(x)| > λ}| =
4 |F |

eπλ − e−πλ

for all λ > 0. Observing that this function is at most a multiple of λ−1 and
using Moon’s theorem [M], we conclude that H is of weak type (1, 1). Although a
precise identity is not known in the m-linear case, an estimate that captures the
whole essence of (9) for multilinear Calderón-Zygmund operators is contained in a
forthcoming publication by Bilyk and the first author [BG]: Let T0 be a translation
invariant m-linear Calderón-Zygmund operator on Rn × · · · ×Rn (see [GT] for the
pertinent definitions and for a short account of the general theory). Then there is a
constant C (depending only on m and n) such that for all sets F1, . . . , Fm of finite
measure we have

(10)
∣∣{|T0(χF1 , . . . , χFm)| > λ

}∣∣ ≤ C
(
|F1| . . . |Fm|

)−1/m
φ(λ) ,

where

φ(λ) =

{
λ−1/m when λ < 1,
e−cλ when λ ≥ 1,

and c is another constant that depends only on m and n. In particular, the pre-
vious estimate implies that T0 is of restricted weak type (1, . . . , 1, 1/m). Applying
Theorem 1.1 we deduce that T0 is of weak type (1, . . . , 1, 1/m); this fact is already
contained in [GT], and we discuss here an alternative approach.1 There is a small
technical issue concerning the kernel of T0 that needs to be addressed here; this
argument provides a typical illustration of the way one handles problems of similar
nature in the application of Theorem 1.1. The kernel of an m-linear Calderón-
Zygmund operator is a distribution K0 of mn real variables that coincides with a
function satisfying

|K0(x1, . . . , xm)| ≤ A
( m∑

i,j=1

|xi − xj |
)−mn

for all (x1, . . . , xm) away from the diagonal in Rmn and also satisfying an analogous
estimate for its gradient. As Theorem 1.1 requires K0 to be integrable, we will have
to consider the integrable truncations

Kε
0(x1, . . . , xm) = K0(x1, . . . , xm)χε2≤|x1|2+···+|xm|2≤ε−2

of K0 defined for ε < 1. Estimate (10) also holds for the operator T ε
0 with kernel

Kε
0 with constant independent of ε; applying Theorem 1.1 we deduce that the T ε

0 ’s
are of weak type (1, . . . , 1, 1/m) with constants independent of ε. Passing to the
limit and using Fatou’s theorem for weak type spaces we obtain that T0 is of weak
type (1, . . . , 1, 1/m).

1Estimate (10) can be derived without the weak type (1, . . . , 1, 1/m) property of T0. For
simplicity, in [BG] it was proved using this property, but we point out that this was not necessary.
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For a second application, we consider the mixed-homogeneity fractional integral
operator

Iγ1,...,γm,γ(f1, . . . , fm)(x)

=
∫
Rn

. . .

∫
Rn

m∏
i=1

fi(x − ti)(|t1|γ1 + · · · + |tm|γm)−γdt1 . . . dtm .

We have the following:

Proposition 3.1. Assuming 0 < min(γ1, . . . , γm) < n/γ, the operator Iγ1,...,γm,γ

maps L1(Rn) × · · · × L1(Rn) into L
n

γµ ,∞(Rn) where µ = max(γ1, . . . , γm).

To be able to apply Theorem 1.1 we will insert the truncation |t1|+· · ·+|tm| ≤ N
in the kernel of the operator and will obtain estimates independent of N . Using
Theorem 1.1 and a simple characterization of weak Lp, it will suffice to show that
for all measurable sets F, E1, . . . , Em of finite measure one has
(11)∫

F

∫
E1

. . .

∫
Em

(|x−t1|γ1+· · ·+|x−tm|γm)−γdt1 . . . dtm dx ≤ C |E1| . . . |Em| |F |1− n
γµ

for some constant C > 0, where the extra assumption |x− t1|+ · · ·+ |x− tm| ≤ N
was conveniently dropped at this point. We apply Fubini’s theorem and a simple
estimate to bound the left-hand side of (11) by∫

E1

. . .

∫
Em

∫
F

|x − tj0 |−µγdx dt1 . . . dtm

where γj0 = µ = max(γ1, . . . , γm). As
∫

F |x − tj0 |−µγdx becomes largest when F is
a ball of radius |F |1/n centered at tj0 , this integral is easily seen to be at most a
constant multiple of |F |1−

n
γµ , and this clearly implies (11).
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