SEMI-CONTINUITY OF METRIC PROJECTIONS IN ℓ_{∞}-DIRECT SUMS

V. INDUMATHI

(Communicated by N. Tomczak-Jaegermann)

Abstract

Let Y be a proximinal subspace of finite codimension of c_{0}. We show that Y is proximinal in ℓ_{∞} and the metric projection from ℓ_{∞} onto Y is Hausdorff metric continuous. In particular, this implies that the metric projection from ℓ_{∞} onto Y is both lower Hausdorff semi-continuous and upper Hausdorff semi-continuous.

1. Preliminaries

Let X be a real Banach space. For x in X and $r>0$, we denote by $B_{X}(x, r)$ ($B_{X}[x, r]$), the open (closed) ball in X, with x as center and r as radius. The closed unit ball of X will be denoted by B_{X} and the unit sphere of X by S_{X}. Also, X^{*} denotes the dual of X. The collection of norm attaining functionals in X^{*} would be denoted by $N A(X)$. That is, a functional f in X^{*} is in $N A(X)$ if and only if there exists x in S_{X} such that $f(x)$ is equal to $\|f\|$.

For a subspace Y of X, let

$$
Y^{\perp}=\left\{f \in X^{*}: f(x)=0 \forall x \in Y\right\}
$$

If A is a closed subset of X and x is in $X, d(x, A)=\inf \{\|x-y\|: y \in A\}$. If $\mathbb{C}(Y)$ denotes the class of non-empty, bounded and closed subsets of Y, then the Hausdorff metric on $\mathbb{C}(Y)$ is given by

$$
h(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\}
$$

for A and B in $\mathbb{C}(Y)$.
Let $D \subseteq X$ and F be a map from D into a collection of non-empty subsets of X. If x is in D, the set-valued map F is lower semi-continuous at x if given $\epsilon>0$ and z in $F(x)$, there exists $\delta>0$ such that for all y in $D \cap B(x, \delta)$, there exists w in $F(y) \cap B(z, \epsilon)$. If the choice of δ is independent of the choice of $z \in F(x)$, or equivalently

$$
F(y) \cap B(z, \epsilon) \neq \emptyset, \quad \forall z \in F(x) \text { and } \forall y \in D \cap B(x, \delta)
$$

then following [3], we say F is lower Hausdorff semi-continuous at x. The set-valued map F is upper Hausdorff semi-continuous at x in D if given $\epsilon>0$, there exists

[^0]$\delta>0$ such that $F(y) \subseteq F(x)+\epsilon B_{X}$, for all y in $D \cap B(x, \delta)$. The map F is said to be lower Hausdorff (upper Hausdorff) semi-continuous on the domain D if F is lower Hausdorff (upper Hausdorff) semi-continuous at each point $x \in D$.

If $F(x)$ belongs to $\mathbb{C}(Y)$ for all x in $D \subseteq X$ and x is in D, we say F is Hausdorff metric continuous at x in D if the single-valued map F from D into the metric space $(\mathbb{C}(Y), h)$ is continuous. We say F is Hausdorff metric continuous on D if F is Hausdorff metric continuous at all x in D.

All subspaces are assumed to be closed. Let Y be a subspace of X. For $x \in X$, let

$$
P_{Y}(x)=\{y \in Y:\|x-y\|=d(x, Y)\} .
$$

The subspace Y is said to be proximinal in X, if for each $x \in X$, the set $P_{Y}(x)$ is non-empty. It is easily verified that if Y is a proximinal subspace of X, then the set $P_{Y}(x)$ is bounded, closed and convex. The set-valued map $P_{Y}: X \rightarrow 2^{Y}$ is called the metric projection from X onto Y. A usual compactness argument shows that all finite-dimensional subspaces are proximinal.

We also need the notion of strong proximinality as defined in 7].
Definition 1.1. A proximinal subspace Y of a Banach space is called strongly proximinal if for each x in X and $\epsilon>0$, there exists $\delta>0$ such that

$$
s(x, \delta)=\sup \left\{d\left(z, P_{Y}(x)\right): z \in Y \text { and }\|x-z\|<d(x, Y)+\delta\right\}<\epsilon
$$

Remark 1.2. It is easily verified that if Y is a strongly proximinal subspace of a Banach space X, then the metric projection P_{Y} is upper Hausdorff semi-continuous on X. However, a proximinal subspace Y, with P_{Y} upper Hausdorff semi-continuous, need not be strongly proximinal. For example, there exist proximinal hyperplanes that are not strongly proximinal (see Remark 1.2 of [7]). But the metric projection onto any proximinal hyperplane is upper Hausdorff semi-continuous.

A subspace Y of a Banach space X is called an L-summand of X if there is a subspace Z of X such that

$$
X=Y \oplus Z
$$

and for any x in X with $x=y+z$, where y is in Y and z is in Z, we have

$$
\|x\|=\|y\|+\|z\|
$$

A subspace E of a Banach space X is said to be an M-ideal of X if E^{\perp} is an L-summand of the dual space X^{*}. A Banach space that is an M-ideal in its second dual is called an M-embedded space.

A finite-dimensional normed linear space X is called polyhedral if B_{X} has only a finite number of extreme points. A Banach space X is called polyhedral if every finite-dimensional subspace of X is polyhedral. A well-known example of an infinitedimensional polyhedral space is the sequence space c_{0}.

2. List of Known results needed

We require a few known results about approximative properties of M-ideals and finite-dimensional polyhedral spaces. We quote them below with the appropriate references. All the results on M-ideals, which we list below, can be found in [9]. The following proposition couples Proposition 1.1 and Proposition 1.8 of Chapter II in [9].

Proposition 2.1. Let Y be an M-ideal of a Banach space X. Then Y is proximinal in X and the metric projection P_{Y} from X onto Y is Hausdorff metric continuous on X.
Proposition 2.2 (See Example 1.4 of Chapter III of [9). The sequence space c_{0} is an M-ideal in its second dual space ℓ_{∞} or equivalently, c_{0} is an M-embedded space.

Remark 2.3. M-ideals are strongly proximinal. In fact, they have a stronger proximinality property. M-ideals are known to have the 3-ball property (Theorem I.2.2, [9]). It was shown in [8] and [10] that if a subspace Y has the 3 -ball property in X, then Y is L-proximinal. That is, for each x in X, we have

$$
\|x\|=d(x, Y)+d\left(0, P_{Y}(x)\right) .
$$

Thus if Y is an M-ideal in X, then Y is L-proximinal. It is easily verified that L-proximinality implies strong proximinality.

We now move on to a few facts about finite-dimensional spaces. We first observe that the metric projection, onto even one-dimensional subspaces, need not be lower semi-continuous [2]. However, the following result of A. L. Brown, from [1], has an affirmative assertion in the polyhedral case.

Proposition 2.4. Let X be a finite-dimensional polyhedral space and Y be a subspace of X. Then the metric projection P_{Y} from X onto Y is lower semi-continuous on X.

We also need some standard facts about finite-dimensional subspaces, which can be derived using the usual compactness arguments. We prove one below.

Fact 2.5. Let Y be a finite-dimensional subspace of a Banach space X, and assume that the metric projection P_{Y} is lower semi-continuous at some x in X. Then P_{Y} is lower Hausdorff semi-continuous at x.
Proof. The set $P_{Y}(x)$ is compact since it is closed and bounded. Let $\epsilon>0$ be given. Using the lower semi-continuity of P_{Y} at x, select for each z in $P_{Y}(x)$, a positive number δ_{z} such that for every y in $B_{X}\left(x, \delta_{z}\right)$, the set $P_{Y}(y)$ intersects the open ball $B_{X}(z, \epsilon / 2)$. Select a finite subcover, say, $\left\{B_{X}\left(z_{i}, \epsilon / 2\right) \cap P_{Y}(x): 1 \leq i \leq k\right\}$, of the open cover $\left\{B_{X}(z, \epsilon / 2) \cap P_{Y}(x): z \in P_{Y}(x)\right\}$ of $P_{Y}(x)$. Set $\delta=\min \left\{\delta_{z_{i}}: 1 \leq\right.$ $i \leq k\}$. Choose any z in $P_{Y}(x)$ and i such that z is in $B_{X}\left(z_{i}, \epsilon / 2\right)$. Now for any y in $B_{X}(x, \delta)$, we have $P_{Y}(y) \cap B_{X}\left(z_{i}, \epsilon / 2\right)$ is non-empty and so $P_{Y}(y) \cap B_{X}(z, \epsilon)$ is non-empty.

An easy compactness argument again proves the following statement.
Fact 2.6. Any finite-dimensional subspace of a Banach space is strongly proximinal.
The fact below now follows from Remark 1.2.
Fact 2.7. If Y is a finite-dimensional subspace of a Banach space X, then the metric projection P_{Y} is upper Hausdorff semi-continuous on X.

Finally, we make an easy observation connecting the three semi-continuity concepts we mentioned earlier.

Remark 2.8. Let X and Y be Banach spaces, and let F be a set-valued map from X into Y with $F(x)$ in $\mathbb{C}(Y)$ for all x in X. Then F is Hausdorff metric continuous at x in X if and only if F is both lower Hausdorff semi-continuous and upper Hausdorff semi-continuous at x.

This remark follows from the fact that if E and G are in $\mathbb{C}(Y)$, then

$$
h(E, G)<\epsilon \Leftrightarrow G \subseteq E+\epsilon B_{Y} \text { and } G \cap B_{Y}(z, \epsilon) \neq \emptyset \forall z \in E
$$

The fact below now follows from the above observations and results of this section.
Fact 2.9. Let X be a finite-dimensional polyhedral space and Y be a subspace of X or X be a Banach space and Y be an M-ideal in X. In either case, Y is strongly proximinal in X and the metric projection P_{Y} from X onto Y is Hausdorff metric continuous.

3. SEmi-CONTINUITY IN DIRECT SUM SPACES

In this section, we consider the $\ell_{\infty^{-}}$direct sum, $X=X_{1} \oplus_{\infty} X_{2}$, of two Banach spaces X_{1} and X_{2}. If Y_{1} and Y_{2} are subspaces of X_{1} and X_{2} respectively, we set $Y=Y_{1} \oplus_{\infty} Y_{2}$. For any x in X, we denote by x_{i} the unique elements of X_{i}, for $i \in\{1,2\}$, satisfying $x=x_{1}+x_{2}$. Clearly,

$$
\|x\|=\max \left\{\left\|x_{1}\right\|,\left\|x_{2}\right\|\right\}
$$

We set

$$
d_{i}(x)=d\left(x_{i}, Y_{i}\right), \text { for } i \in\{1,2\}
$$

We note that

$$
d(x, Y)=\max \left\{d_{1}(x), d_{2}(x)\right\}
$$

and if z is in X, then

$$
\begin{equation*}
\left|d_{i}(x)-d_{i}(z)\right| \leq\left\|x_{i}-z_{i}\right\| \text { for } i \in\{1,2\} \tag{1}
\end{equation*}
$$

The following remark, with X and Y as above, is easy to verify.
Remark 3.1. Let Y_{1} and Y_{2} be proximinal subspaces of X_{1} and X_{2} respectively. Then Y is proximinal in X and

$$
P_{Y}(x)=\left\{\begin{array}{ll}
P_{Y_{1}}\left(x_{1}\right)+P_{Y_{2}}\left(x_{2}\right) & \text { if } \\
d_{1}(x)=d_{2}(x) \\
B_{X_{1}}\left[x_{1}, d_{2}(x)\right] \cap Y_{1}+P_{Y_{2}}\left(x_{2}\right) & \text { if } \\
d_{1}(x)<d_{2}(x) \\
P_{Y_{1}}\left(x_{1}\right)+B_{X_{2}}\left[x_{2}, d_{1}(x)\right] \cap Y_{2} & \text { if }
\end{array} d_{1}(x)>d_{2}(x) .\right.
$$

Note that in all the above three cases, we have

$$
P_{Y}(x) \supseteq P_{Y_{1}}\left(x_{1}\right)+P_{Y_{2}}\left(x_{2}\right)
$$

We need the following fact in the sequel.
Fact 3.2. Let E be a Banach space, F be a proximinal subspace of E and x be in $E \backslash F$. Let $\alpha>d(x, F)=d_{x}$. Then given $\epsilon>0$, there exists $\delta>0$ such that for any y in $B_{E}(x, \delta)$ and β satisfying $|\beta-\alpha|<\delta$, we have

$$
h\left(B_{E}[x, \alpha] \cap F, B_{E}[y, \beta] \cap F\right) \leq \epsilon
$$

Proof. Let $2 \gamma=\alpha-d_{x}, K=\alpha+d_{x}+2$ and $\delta=\min \{1, \gamma / 2, \gamma \epsilon /(2 K)\}$. Let y be in $B_{E}(x, \delta)$. If $d_{y}=d(y, F)$ and β is a scalar such that $|\alpha-\beta|<\delta$, then it is easily verified, using (1), that

$$
\left|d_{x}-d_{y}\right|<\delta \text { and } \beta-d_{y}>\gamma
$$

Select any t in $B_{E}[x, \alpha] \cap F$. We will construct an element v in $B_{E}[y, \beta] \cap F$ satisfying $\|t-v\|<\epsilon$. We have

$$
\|y-t\| \leq\|y-x\|+\|x-t\| \leq \delta+\alpha \leq \beta+2 \delta
$$

Now select any w in $P_{F}(y)$, and let

$$
v=\lambda t+(1-\lambda) w, \text { where } \lambda=\frac{\beta-d_{y}}{\beta-d_{y}+2 \delta}
$$

Then v is in F and

$$
\begin{aligned}
\|y-v\| & \leq \lambda\|t-y\|+(1-\lambda) d_{y} \\
& \leq \lambda(\beta+2 \delta)+(1-\lambda) d_{y} \\
& =\lambda\left(\beta-d_{y}+2 \delta\right)+d_{y}=\beta
\end{aligned}
$$

Now

$$
\begin{aligned}
\|t-v\| & =(1-\lambda)\|t-w\|=\frac{2 \delta}{\beta-d_{y}+2 \delta}\|t-w\| \\
& <\frac{2 \delta}{\gamma}(\|t-x\|+\|x-y\|+\|y-w\|) \\
& \leq \frac{2 \delta}{\gamma}\left(\alpha+\delta+d_{y}\right) \\
& \leq \frac{2 \delta}{\gamma}\left(\alpha+d_{x}+2 \delta\right) \\
& \leq \frac{2 \delta}{\gamma} K<\epsilon .
\end{aligned}
$$

Similarly, for any s in $B_{E}[y, \beta] \cap F$, we can get v^{\prime} in $B_{E}[x, \alpha] \cap F$ satisfying $\left\|s-v^{\prime}\right\|<$ ϵ, and this completes the proof of the fact.

Now we can prove the main result of this section.
Theorem 3.3. Let Y_{i} be a proximinal subspace of the normed linear space X_{i} for $i \in\{1,2\}$, and let $Y=Y_{1} \oplus_{\infty} Y_{2}$. If $P_{Y_{i}}$ is lower Hausdorff semi-continuous on X_{i} for $i \in\{1,2\}$, then P_{Y} is lower Hausdorff semi-continuous on $X=X_{1} \oplus_{\infty} X_{2}$.

Proof. By Remark 3.1, Y is proximinal in X. Fix x in X and let $\epsilon>0$ be given. Using the lower Hausdorff semi-continuity of the maps $P_{Y_{i}}$ at x_{i}, we can get $\delta>0$ such that
(2) $\quad z \in X,\|x-z\|<\delta \Rightarrow B_{X_{i}}\left(p_{i}, \epsilon\right) \cap P_{Y_{i}}\left(z_{i}\right) \neq \emptyset$, for $i \in\{1,2\}$.

Case 1. $d_{1}(x)=d_{2}(x)$.
In this case, we have $P_{Y}(x)=P_{Y_{1}}\left(x_{1}\right) \oplus_{\infty} P_{Y_{2}}\left(x_{2}\right)$. Select any $p_{i} \in P_{Y_{i}}\left(x_{i}\right)$ for i in $\{1,2\}$ and z in X with $\|x-z\|<\delta$. Using (2), we can pick r_{i} from $B_{X_{i}}\left(p_{i}, \epsilon\right) \cap P_{Y_{i}}\left(z_{i}\right)$ for i in $\{1,2\}$. By Remark 3.1, $r_{1}+r_{2}$ is in $P_{Y}(z)$. Since $\left\|\left(p_{1}+p_{2}\right)-\left(r_{1}+r_{2}\right)\right\|<\epsilon$, it follows that P_{Y} is lower Hausdorff semi-continuous at x.

Case 2. $d_{1}(x) \neq d_{2}(x)$.

We discuss only the case $d_{1}(x)<d_{2}(x)$, the proof for the other case being similar. Let $2 \gamma=d_{2}(x)-d_{1}(x)$. Replacing x by x_{1} and α by $d_{2}(x)$ in Fact 3.2 , we can get $\delta>0$ such that if $\|x-z\|<\delta$, then

$$
d_{2}(z)-d_{1}(z)>\gamma
$$

and

$$
h\left(B_{X_{1}}\left[x_{1}, d_{2}(x)\right] \cap Y_{1}, B_{X_{1}}\left[z_{1}, d_{2}(z)\right] \cap Y_{1}\right)<\epsilon
$$

Without loss of generality, we assume that δ is so chosen that (2) is also satisfied.
We have, by Remark 3.1,

$$
P_{Y}(w)=B_{X_{1}}\left[w_{1}, d_{2}(w)\right] \cap Y_{1}+P_{Y_{2}}\left(w_{2}\right)
$$

for all w in X with $\|x-w\|<\delta$. Choose any z in X with $\|x-z\|<\delta$. If t is in $B_{X_{1}}\left[x_{1}, d_{2}(x)\right] \cap Y_{1}$ and s in $P_{Y_{2}}\left(x_{2}\right)$, using the above inequality and (2), we select r in $B_{X_{1}}\left[z_{1}, d_{2}(z)\right] \cap Y_{1}$ and p in $P_{Y_{2}}\left(z_{2}\right)$ satisfying $\|t-r\|<\epsilon$ and $\|s-p\|<\epsilon$. Clearly $r+p$ is in $P_{Y}(z)$, and this completes the proof for this case.

We now prove a similar result for upper Hausdorff semi-continuity.
Theorem 3.4. Let X_{i} be a Banach space, Y_{i} a strongly proximinal subspace of X_{i}, for $i \in\{1,2\}$. If $X=X_{1} \oplus_{\infty} X_{2}$ and $Y=Y_{1} \oplus_{\infty} Y_{2}$, then the metric projection P_{Y}, from X onto Y, is upper Hausdorff semi-continuous.

Proof. By Remark 3.1, Y is proximinal in X, and by Remark 1.2, the metric projection from X_{i} onto Y_{i} is upper Hausdorff semi-continuous, for i in $\{1,2\}$. Fix x in X and let $\epsilon>0$ be given. Then there exists $\delta>0$ such that

$$
\begin{equation*}
\|x-z\|<\delta \Rightarrow P_{Y_{i}}\left(z_{i}\right) \subseteq P_{Y_{i}}\left(x_{i}\right)+\epsilon B_{X_{i}} \tag{3}
\end{equation*}
$$

for i in $\{1,2\}$.
Case 1. $d_{1}(x)=d_{2}(x)$.
In this case, we have $P_{Y}(x)=P_{Y_{1}}\left(x_{1}\right) \oplus_{\infty} P_{Y_{2}}\left(x_{2}\right)$. Since Y_{i} is strongly proximinal in X_{i}, we can select $\eta>0$ such that

$$
\begin{equation*}
s\left(x_{i}, \eta\right)<\epsilon \text { for } i \in\{1,2\} \tag{4}
\end{equation*}
$$

where $s\left(x_{i}, \eta\right)$ is given by Definition 1.1. We now choose $0<\delta<\eta / 4$ so that (3) holds and consider any z with $\|x-z\|<\delta$. If $d_{1}(z)=d_{2}(z)$, then $P_{Y}(z)=$ $P_{Y_{1}}\left(z_{1}\right)+P_{Y_{2}}\left(z_{2}\right)$ and clearly by (3),

$$
P_{Y}(z) \subseteq P_{Y}(x)+\epsilon B_{X}
$$

in this case.
Now assume that $d_{1}(z)<d_{2}(z)$. Since

$$
\left|d_{i}(x)-d_{i}(z)\right| \leq\|x-z\|<\eta / 4, \text { for } i \in\{1,2\}
$$

we have

$$
\begin{equation*}
\left|d_{2}(z)-d_{1}(x)\right| \leq\left|d_{2}(z)-d_{2}(x)\right|+\left|d_{2}(x)-d_{1}(x)\right|=\left|d_{2}(z)-d_{2}(x)\right|<\eta / 4 . \tag{5}
\end{equation*}
$$

Now, by Remark 3.1, $P_{Y}(z)=B_{X_{1}}\left[z_{1}, d_{2}(z)\right] \cap Y_{1}+P_{Y_{2}}\left(z_{2}\right)$. Select any t in $B_{X_{1}}\left[z_{1}, d_{2}(z)\right] \cap Y_{1}$. Then, using (5), we have

$$
\left\|t-x_{1}\right\| \leq\left\|t-z_{1}\right\|+\left\|z_{1}-x_{1}\right\| \leq d_{2}(z)+\eta / 4 \leq d_{1}(x)+\eta / 2
$$

By (4), $s\left(x_{1}, \eta\right)<\epsilon$ and so we have $d\left(t, P_{Y_{1}}\left(x_{1}\right)\right)<\epsilon$. Thus there exists r in $P_{Y_{1}}\left(x_{1}\right)$ satisfying $\|t-r\|<\epsilon$ and

$$
B_{X_{1}}\left[z_{1}, d_{2}(z)\right] \cap Y_{1} \subseteq P_{Y_{1}}\left(x_{1}\right)+\epsilon B_{X_{1}}
$$

Since, by (3),

$$
P_{Y_{2}}\left(z_{2}\right) \subseteq P_{Y_{2}}\left(x_{2}\right)+\epsilon B_{X_{2}}
$$

we conclude that

$$
P_{Y}(z) \subseteq P_{Y}(x)+\epsilon B_{X}
$$

If $d_{2}(z)<d_{1}(z)$, we argue just as above to conclude that P_{Y} is upper Hausdorff semi-continuous.

Case 2. $d_{1}(x) \neq d_{2}(x)$.
We discuss only the case $d_{1}(x)<d_{2}(x)$, the proof for the other case being similar. Let $2 \gamma=d_{2}(x)-d_{1}(x)$. Replacing x by x_{1} and α by $d_{2}(x)$ in Fact 3.2, we can get $\delta>0$ such that if $\|x-z\|<\delta$, then

$$
d_{2}(z)-d_{1}(z)>\gamma
$$

and

$$
h\left(B_{X_{1}}\left[x_{1}, d_{2}(x)\right] \cap Y_{1}, B_{X_{1}}\left[z_{1}, d_{2}(z)\right] \cap Y_{1}\right)<\epsilon
$$

Without loss of generality, we assume that δ is so chosen that (3) is also satisfied.
We have

$$
P_{Y}(w)=B_{X_{1}}\left[w_{1}, d_{2}(w)\right] \cap Y_{1}+P_{Y_{2}}\left(w_{2}\right)
$$

for all w in X with $\|x-w\|<\delta$. Select any z in X with $\|x-z\|<\delta$. If t is in $B_{X_{1}}\left[z_{1}, d_{2}(z)\right] \cap Y_{1}$ and s in $P_{Y_{2}}\left(z_{2}\right)$, using the above inequality and (3), we select r in $B_{X_{1}}\left[x_{1}, d_{2}(x)\right] \cap Y_{1}$ and p in $P_{Y_{2}}\left(x_{2}\right)$ satisfying $\|t-r\|<\epsilon$ and $\|s-p\|<\epsilon$. Clearly $r+p$ is in $P_{Y}(x)$ and $P_{Y}(z) \subseteq P_{Y}(x)+\epsilon B_{X}$.

Remark 3.5. Let X be an ℓ_{∞}-direct sum of two non-zero Banach spaces X_{1} and X_{2} and Y_{i} be a proximinal, proper subspace of X_{i}, for $i \in\{1,2\}$. It was recently shown in [4] that if P_{Y} is upper Hausdorff semi-continuous on X, where $Y=Y_{1} \oplus_{\infty} Y_{2}$, then Y_{i} must be strongly proximinal in X_{i}, for $i \in\{1,2\}$. This clearly implies that Theorem 3.4 does not hold if, for any one of the two values of i, strong proximinality of Y_{i} is replaced by the strictly weaker assumption that Y_{i} is proximinal and $P_{Y_{i}}$ is upper Hausdorff semi-continuous.

The following theorem now follows from Remark 2.8 and Theorems 3.3 and 3.4.
Theorem 3.6. Let X_{i} be a Banach space, Y_{i} a strongly proximinal subspace of X_{i} with the metric projection from X_{i} onto Y_{i} Hausdorff metric continuous, for $i \in\{1,2\}$. If $X=X_{1} \oplus_{\infty} X_{2}$ and $Y=Y_{1} \oplus_{\infty} Y_{2}$, then the metric projection P_{Y} from X onto Y is Hausdorff metric continuous.

4. Proximinal subspaces of finite codimension of c_{0}

If Y is a proximinal subspace of finite codimension in a normed linear space X, then the annihilator Y^{\perp} of Y is contained in $N A(X)$, the class of norm attaining functionals on X (see [5] and [6]). Let Y be a proximinal subspace of finite codimension in c_{0}. Since $N A\left(c_{0}\right)$ is the set of finite sequences in ℓ_{1} and Y^{\perp} is finite dimensional, there exists a positive integer k such that for any $f=\left(f_{n}\right)$ in Y^{\perp}, f_{n} is zero for all $n \geq k$. In the rest of this section, the subspace Y and positive integer k are fixed as above.

Let $\left\{e_{n}: n \geq 1\right\}$ denote the natural basis of c_{0}. For any sequence $x=\left(x_{n}\right)$ of scalars, we set $\tilde{x}=\sum_{n=1}^{k} x_{n} e_{n}$. Also, we set

$$
\begin{gathered}
X_{1}=\operatorname{sp}\left\{e_{1}, e_{2}, \cdots, e_{k}\right\} \\
X_{2}=\left\{\left(x_{n}\right) \in \ell_{\infty}: x_{n}=0 \text { for } 1 \leq n \leq k\right\} \\
Y_{1}=\{\tilde{x}: x \in Y\}
\end{gathered}
$$

and finally

$$
Y_{2}=\left\{\left(x_{n}\right) \in c_{0}: x_{n}=0 \text { for } 1 \leq n \leq k\right\}
$$

Then clearly Y_{i} is a subspace of X_{i} for $i=1,2$ and

$$
X=X_{1} \oplus_{\infty} X_{2}
$$

Also, note that if x is in c_{0}, then

$$
x \in Y \Leftrightarrow \tilde{x} \in Y \Leftrightarrow \tilde{x} \in Y_{1}
$$

It is now clear that $Y=Y_{1} \oplus_{\infty} Y_{2}$.
Now, following the same proof for c_{0} an M -ideal in ℓ_{∞}, we get Y_{2} to be an M-ideal in X_{2}. Since X_{1} is a finite-dimensional subspace of c_{0}, it is a polyhedral space. By Fact $2.9, Y_{i}$ is a strongly proximinal subspace of X_{i} with the metric projection $P_{Y_{i}}$ from X_{i} onto Y_{i} Hausdorff metric continuous for $i \in\{1,2\}$. It is now clear that the main theorem of this article, given below, follows immediately from Theorem 3.6.

Theorem 4.1. Let Y be a proximinal subspace of finite codimension in c_{0}. Then Y is proximinal in ℓ_{∞} and the metric projection from ℓ_{∞} onto Y is Hausdorff metric continuous.

Remark 4.2. Let Y be a subspace of codimension k in c_{0}, and assume Y^{\perp} is the span of a linearly independent set $\left\{f_{1}, f_{2}, \cdots, f_{k}\right\}$. Then it follows from Example 1.4 (a) of [9] that Y is an M-ideal in ℓ_{∞} if and only if Y is an M-ideal in c_{0} if and only if f_{i} belongs to $\left\{e_{n}: n \geq 1\right\}$ for each $i, 1 \leq i \leq k$. We recall, from [6], that Y is proximinal in c_{0} (and hence in ℓ_{∞}) if and only if Y^{\perp} is contained in $N A\left(c_{0}\right)$ or equivalently, every element of Y^{\perp} is a sequence of ℓ_{1} with only a finite number of nonzero entries. Thus, there are plenty of proximinal subspaces of finite codimension of c_{0} that are not M-ideals in ℓ_{∞} and for these, Theorem 4.1 cannot be derived from Proposition 2.1.

Acknowledgement

The author would like to express her thanks to Prof. Bor-Luh Lin and Prof. Vladimir Fonf for questions that led to this paper.

References

1. A. L. Brown, Best n-dimensional approximation of functions, Proc. London Math. Soc., 14, 1964, 577-594. MR0167761 (29:5033)
2. A. L. Brown, Frank Deutsch, V. Indumathi and Petar S. Kenderov, Lower semicontinuity concepts, continuous selections and set valued metric projections, J. Approx. Th, 115, 2002, 120-143. MR 1888980 (2003e:41051)
3. Frank Deutsch, Walter Pollul and Ivan Singer, On set-valued metric projections, Hahn-Banach extension maps and spherical image maps, Duke Math. Journal, Vol. 40, No. 2, June, 1973. MR0313759 (47:2313)
4. Darapaneni Narayana, Best approximation in direct sum spaces, Preprint, December, 2003.
5. G. Godefroy, The Banach space c_{0}, Extr.Math 16, No. 1, 2001, 1-25. MR1837770|(2002f:46015)
6. G. Godefroy and V. Indumathi, Proximinality in subspaces of c_{0}, J. Approx. Theory, 101, 1999, 175-181. MR $1726451(2000 \mathrm{j}: 46041)$
7. G. Godefroy and V. Indumathi, Strong Proximinality and Polyhedral spaces, Rev. Mat, Vol. 14, No. 1, 2001, 105-125. MR 1851725 (2002f:46016)
8. G. Godini, Best approximation and intersection of balls, Lecture Notes in Math, 991, SpringerVerlag, 1983, 44-54. MF0714172 (85d:41031)
9. P. Harmand, D. Werner and W. Werner, M-Ideals in Banach spaces and Banach Algebras, Lecture Notes in Math, 1547, Springer-Verlag, 1993. MR1238713|(94k:46022)
10. Rafael Paya and David Yost, The two ball property: Transitivity and Examples, Mathematika, $35,1988,190-197$. MR0986628 (90a:46036)

Department of Mathematics, Pondicherry University, Kalapet, Pondicherry-605014, India

E-mail address: pdy_indumath@sancharnet.in

[^0]: Received by the editors October 23, 2003 and, in revised form, December 18, 2003 and January 16, 2004.

 2000 Mathematics Subject Classification. Primary 46B20, 41A50, 41A65.
 Key words and phrases. Proximinal, metric projection, lower semi-continuity, upper Hausdorff semi-continuity.

