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SEMI-CONTINUITY OF METRIC PROJECTIONS
IN �∞-DIRECT SUMS

V. INDUMATHI

(Communicated by N. Tomczak-Jaegermann)

Abstract. Let Y be a proximinal subspace of finite codimension of c0. We
show that Y is proximinal in �∞ and the metric projection from �∞ onto Y
is Hausdorff metric continuous. In particular, this implies that the metric
projection from �∞ onto Y is both lower Hausdorff semi-continuous and upper
Hausdorff semi-continuous.

1. Preliminaries

Let X be a real Banach space. For x in X and r > 0, we denote by BX(x, r)
(BX [x, r]), the open (closed) ball in X , with x as center and r as radius. The closed
unit ball of X will be denoted by BX and the unit sphere of X by SX . Also, X∗

denotes the dual of X . The collection of norm attaining functionals in X∗ would
be denoted by NA(X). That is, a functional f in X∗ is in NA(X) if and only if
there exists x in SX such that f(x) is equal to ‖f‖.

For a subspace Y of X , let

Y ⊥ = {f ∈ X∗ : f(x) = 0 ∀ x ∈ Y }.
If A is a closed subset of X and x is in X, d(x, A) = inf{‖x − y‖ : y ∈ A}. If
C(Y ) denotes the class of non-empty, bounded and closed subsets of Y , then the
Hausdorff metric on C(Y ) is given by

h(A, B) = max{sup
x∈A

d(x, B), sup
y∈B

d(y, A)}

for A and B in C(Y ).
Let D ⊆ X and F be a map from D into a collection of non-empty subsets of

X . If x is in D, the set-valued map F is lower semi-continuous at x if given ε > 0
and z in F (x), there exists δ > 0 such that for all y in D ∩ B(x, δ), there exists w
in F (y) ∩ B(z, ε). If the choice of δ is independent of the choice of z ∈ F (x), or
equivalently

F (y) ∩ B(z, ε) �= ∅, ∀ z ∈ F (x) and ∀ y ∈ D ∩ B(x, δ),

then following [3], we say F is lower Hausdorff semi-continuous at x. The set-valued
map F is upper Hausdorff semi-continuous at x in D if given ε > 0, there exists
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δ > 0 such that F (y) ⊆ F (x) + εBX , for all y in D ∩ B(x, δ). The map F is said
to be lower Hausdorff (upper Hausdorff) semi-continuous on the domain D if F is
lower Hausdorff (upper Hausdorff) semi-continuous at each point x ∈ D.

If F (x) belongs to C(Y ) for all x in D ⊆ X and x is in D, we say F is Hausdorff
metric continuous at x in D if the single-valued map F from D into the metric
space (C(Y ), h) is continuous. We say F is Hausdorff metric continuous on D if F
is Hausdorff metric continuous at all x in D.

All subspaces are assumed to be closed. Let Y be a subspace of X . For x ∈ X ,
let

PY (x) = {y ∈ Y : ‖x − y‖ = d(x, Y )}.
The subspace Y is said to be proximinal in X , if for each x ∈ X , the set PY (x) is
non-empty. It is easily verified that if Y is a proximinal subspace of X , then the set
PY (x) is bounded, closed and convex. The set-valued map PY : X → 2Y is called
the metric projection from X onto Y . A usual compactness argument shows that
all finite-dimensional subspaces are proximinal.

We also need the notion of strong proximinality as defined in [7].

Definition 1.1. A proximinal subspace Y of a Banach space is called strongly
proximinal if for each x in X and ε > 0, there exists δ > 0 such that

s(x, δ) = sup{d(z, PY (x)) : z ∈ Y and ‖x − z‖ < d(x, Y ) + δ} < ε.

Remark 1.2. It is easily verified that if Y is a strongly proximinal subspace of a Ba-
nach space X , then the metric projection PY is upper Hausdorff semi-continuous on
X . However, a proximinal subspace Y , with PY upper Hausdorff semi-continuous,
need not be strongly proximinal. For example, there exist proximinal hyperplanes
that are not strongly proximinal (see Remark 1.2 of [7]). But the metric projection
onto any proximinal hyperplane is upper Hausdorff semi-continuous.

A subspace Y of a Banach space X is called an L-summand of X if there is a
subspace Z of X such that

X = Y ⊕ Z

and for any x in X with x = y + z, where y is in Y and z is in Z, we have

‖x‖ = ‖y‖ + ‖z‖.
A subspace E of a Banach space X is said to be an M-ideal of X if E⊥ is an
L-summand of the dual space X∗. A Banach space that is an M-ideal in its second
dual is called an M-embedded space.

A finite-dimensional normed linear space X is called polyhedral if BX has only
a finite number of extreme points. A Banach space X is called polyhedral if every
finite-dimensional subspace of X is polyhedral. A well-known example of an infinite-
dimensional polyhedral space is the sequence space c0.

2. List of known results needed

We require a few known results about approximative properties of M-ideals and
finite-dimensional polyhedral spaces. We quote them below with the appropriate
references. All the results on M-ideals, which we list below, can be found in [9].
The following proposition couples Proposition 1.1 and Proposition 1.8 of Chapter
II in [9].
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Proposition 2.1. Let Y be an M-ideal of a Banach space X. Then Y is proximinal
in X and the metric projection PY from X onto Y is Hausdorff metric continuous
on X.

Proposition 2.2 (See Example 1.4 of Chapter III of [9]). The sequence space c0 is
an M-ideal in its second dual space �∞ or equivalently, c0 is an M-embedded space.

Remark 2.3. M-ideals are strongly proximinal. In fact, they have a stronger prox-
iminality property. M-ideals are known to have the 3-ball property (Theorem I.2.2,
[9]). It was shown in [8] and [10] that if a subspace Y has the 3-ball property in X ,
then Y is L-proximinal. That is, for each x in X , we have

‖x‖ = d(x, Y ) + d(0, PY (x)).

Thus if Y is an M-ideal in X , then Y is L-proximinal. It is easily verified that
L-proximinality implies strong proximinality.

We now move on to a few facts about finite-dimensional spaces. We first observe
that the metric projection, onto even one-dimensional subspaces, need not be lower
semi-continuous [2]. However, the following result of A. L. Brown, from [1], has an
affirmative assertion in the polyhedral case.

Proposition 2.4. Let X be a finite-dimensional polyhedral space and Y be a sub-
space of X. Then the metric projection PY from X onto Y is lower semi-continuous
on X.

We also need some standard facts about finite-dimensional subspaces, which can
be derived using the usual compactness arguments. We prove one below.

Fact 2.5. Let Y be a finite-dimensional subspace of a Banach space X, and assume
that the metric projection PY is lower semi-continuous at some x in X. Then PY

is lower Hausdorff semi-continuous at x.

Proof. The set PY (x) is compact since it is closed and bounded. Let ε > 0 be given.
Using the lower semi-continuity of PY at x, select for each z in PY (x), a positive
number δz such that for every y in BX(x, δz), the set PY (y) intersects the open ball
BX(z, ε/2). Select a finite subcover, say, {BX(zi, ε/2) ∩ PY (x) : 1 ≤ i ≤ k}, of the
open cover {BX(z, ε/2) ∩ PY (x) : z ∈ PY (x)} of PY (x). Set δ = min{δzi : 1 ≤
i ≤ k}. Choose any z in PY (x) and i such that z is in BX(zi, ε/2). Now for any y
in BX(x, δ), we have PY (y) ∩ BX(zi, ε/2) is non-empty and so PY (y) ∩ BX(z, ε) is
non-empty. �

An easy compactness argument again proves the following statement.

Fact 2.6. Any finite-dimensional subspace of a Banach space is strongly proximinal.

The fact below now follows from Remark 1.2.

Fact 2.7. If Y is a finite-dimensional subspace of a Banach space X, then the
metric projection PY is upper Hausdorff semi-continuous on X.

Finally, we make an easy observation connecting the three semi-continuity con-
cepts we mentioned earlier.

Remark 2.8. Let X and Y be Banach spaces, and let F be a set-valued map from X
into Y with F (x) in C(Y ) for all x in X . Then F is Hausdorff metric continuous at
x in X if and only if F is both lower Hausdorff semi-continuous and upper Hausdorff
semi-continuous at x.
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This remark follows from the fact that if E and G are in C(Y ), then

h(E, G) < ε ⇔ G ⊆ E + εBY and G ∩ BY (z, ε) �= ∅ ∀ z ∈ E.

The fact below now follows from the above observations and results of this section.

Fact 2.9. Let X be a finite-dimensional polyhedral space and Y be a subspace of
X or X be a Banach space and Y be an M-ideal in X. In either case, Y is strongly
proximinal in X and the metric projection PY from X onto Y is Hausdorff metric
continuous.

3. Semi-continuity in direct sum spaces

In this section, we consider the �∞- direct sum, X = X1 ⊕∞ X2, of two Banach
spaces X1 and X2. If Y1 and Y2 are subspaces of X1 and X2 respectively, we set
Y = Y1 ⊕∞ Y2. For any x in X , we denote by xi the unique elements of Xi, for
i ∈ {1, 2}, satisfying x = x1 + x2. Clearly,

‖x‖ = max{‖x1‖, ‖x2‖}.
We set

di(x) = d(xi, Yi), for i ∈ {1, 2}.
We note that

d(x, Y ) = max{d1(x), d2(x)}
and if z is in X , then

|di(x) − di(z)| ≤ ‖xi − zi‖ for i ∈ {1, 2}.(1)

The following remark, with X and Y as above, is easy to verify.

Remark 3.1. Let Y1 and Y2 be proximinal subspaces of X1 and X2 respectively.
Then Y is proximinal in X and

PY (x) =




PY1(x1) + PY2(x2) if d1(x) = d2(x),

BX1 [x1, d2(x)] ∩ Y1 + PY2(x2) if d1(x) < d2(x),

PY1(x1) + BX2 [x2, d1(x)] ∩ Y2 if d1(x) > d2(x).

Note that in all the above three cases, we have

PY (x) ⊇ PY1(x1) + PY2(x2).

�

We need the following fact in the sequel.

Fact 3.2. Let E be a Banach space, F be a proximinal subspace of E and x be in
E\F . Let α > d(x, F ) = dx. Then given ε > 0, there exists δ > 0 such that for
any y in BE(x, δ) and β satisfying |β − α| < δ, we have

h(BE [x, α] ∩ F, BE [y, β] ∩ F ) ≤ ε.

Proof. Let 2γ = α − dx, K = α + dx + 2 and δ = min{1, γ/2, γε/(2K)}. Let y be
in BE(x, δ). If dy = d(y, F ) and β is a scalar such that |α−β| < δ, then it is easily
verified, using (1), that

|dx − dy | < δ and β − dy > γ.
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Select any t in BE [x, α]∩F . We will construct an element v in BE [y, β]∩F satisfying
‖t − v‖ < ε. We have

‖y − t‖ ≤ ‖y − x‖ + ‖x − t‖ ≤ δ + α ≤ β + 2δ.

Now select any w in PF (y), and let

v = λt + (1 − λ)w, where λ =
β − dy

β − dy + 2δ
.

Then v is in F and

‖y − v‖ ≤ λ‖t − y‖ + (1 − λ)dy

≤ λ(β + 2δ) + (1 − λ)dy

= λ(β − dy + 2δ) + dy = β.

Now

‖t − v‖ = (1 − λ)‖t − w‖ = 2δ
β−dy+2δ ‖t − w‖

< 2δ
γ (‖t − x‖ + ‖x − y‖ + ‖y − w‖)

≤ 2δ
γ (α + δ + dy)

≤ 2δ
γ (α + dx + 2δ)

≤ 2δ
γ K < ε.

Similarly, for any s in BE [y, β]∩F , we can get v′ in BE [x, α]∩F satisfying ‖s−v′‖ <
ε, and this completes the proof of the fact. �

Now we can prove the main result of this section.

Theorem 3.3. Let Yi be a proximinal subspace of the normed linear space Xi for
i ∈ {1, 2}, and let Y = Y1 ⊕∞ Y2. If PYi is lower Hausdorff semi-continuous on Xi

for i ∈ {1, 2}, then PY is lower Hausdorff semi-continuous on X = X1 ⊕∞ X2.

Proof. By Remark 3.1, Y is proximinal in X . Fix x in X and let ε > 0 be given.
Using the lower Hausdorff semi-continuity of the maps PYi at xi, we can get δ > 0
such that

z ∈ X, ‖x − z‖ < δ ⇒ BXi(pi, ε) ∩ PYi(zi) �= ∅, for i ∈ {1, 2}.(2)

Case 1. d1(x) = d2(x).
In this case, we have PY (x) = PY1(x1) ⊕∞ PY2(x2). Select any pi ∈ PYi(xi)

for i in {1, 2} and z in X with ‖x − z‖ < δ. Using (2), we can pick ri from
BXi(pi, ε) ∩ PYi(zi) for i in {1, 2}. By Remark 3.1, r1 + r2 is in PY (z). Since
‖(p1 + p2) − (r1 + r2)‖ < ε, it follows that PY is lower Hausdorff semi-continuous
at x.

Case 2. d1(x) �= d2(x).
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We discuss only the case d1(x) < d2(x), the proof for the other case being similar.
Let 2γ = d2(x) − d1(x). Replacing x by x1 and α by d2(x) in Fact 3.2, we can get
δ > 0 such that if ‖x − z‖ < δ, then

d2(z) − d1(z) > γ

and
h(BX1 [x1, d2(x)] ∩ Y1, BX1 [z1, d2(z)] ∩ Y1) < ε.

Without loss of generality, we assume that δ is so chosen that (2) is also satisfied.
We have, by Remark 3.1,

PY (w) = BX1 [w1, d2(w)] ∩ Y1 + PY2(w2)

for all w in X with ‖x − w‖ < δ. Choose any z in X with ‖x − z‖ < δ. If t is in
BX1 [x1, d2(x)] ∩ Y1 and s in PY2(x2), using the above inequality and (2), we select
r in BX1 [z1, d2(z)] ∩ Y1 and p in PY2(z2) satisfying ‖t − r‖ < ε and ‖s − p‖ < ε.
Clearly r + p is in PY (z), and this completes the proof for this case. �

We now prove a similar result for upper Hausdorff semi-continuity.

Theorem 3.4. Let Xi be a Banach space, Yi a strongly proximinal subspace of Xi,
for i ∈ {1, 2}. If X = X1 ⊕∞ X2 and Y = Y1 ⊕∞ Y2, then the metric projection
PY , from X onto Y , is upper Hausdorff semi-continuous.

Proof. By Remark 3.1, Y is proximinal in X , and by Remark 1.2, the metric pro-
jection from Xi onto Yi is upper Hausdorff semi-continuous, for i in {1, 2}. Fix x
in X and let ε > 0 be given. Then there exists δ > 0 such that

‖x − z‖ < δ ⇒ PYi(zi) ⊆ PYi(xi) + εBXi ,(3)

for i in {1, 2}.
Case 1. d1(x) = d2(x).
In this case, we have PY (x) = PY1(x1)⊕∞ PY2(x2). Since Yi is strongly proxim-

inal in Xi, we can select η > 0 such that

s(xi, η) < ε for i ∈ {1, 2},(4)

where s(xi, η) is given by Definition 1.1. We now choose 0 < δ < η/4 so that
(3) holds and consider any z with ‖x − z‖ < δ. If d1(z) = d2(z), then PY (z) =
PY1(z1) + PY2(z2) and clearly by (3),

PY (z) ⊆ PY (x) + εBX

in this case.
Now assume that d1(z) < d2(z). Since

|di(x) − di(z)| ≤ ‖x − z‖ < η/4, for i ∈ {1, 2},
we have

(5) |d2(z) − d1(x)| ≤ |d2(z) − d2(x)| + |d2(x) − d1(x)| = |d2(z) − d2(x)| < η/4.

Now, by Remark 3.1, PY (z) = BX1 [z1, d2(z)] ∩ Y1 + PY2(z2). Select any t in
BX1 [z1, d2(z)] ∩ Y1. Then, using (5), we have

‖t − x1‖ ≤ ‖t − z1‖ + ‖z1 − x1‖ ≤ d2(z) + η/4 ≤ d1(x) + η/2.

By (4), s(x1, η) < ε and so we have d(t, PY1(x1)) < ε. Thus there exists r in PY1(x1)
satisfying ‖t− r‖ < ε and

BX1 [z1, d2(z)] ∩ Y1 ⊆ PY1(x1) + εBX1 .
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Since, by (3),

PY2(z2) ⊆ PY2(x2) + εBX2 ,

we conclude that

PY (z) ⊆ PY (x) + εBX .

If d2(z) < d1(z), we argue just as above to conclude that PY is upper Hausdorff
semi-continuous.

Case 2. d1(x) �= d2(x).
We discuss only the case d1(x) < d2(x), the proof for the other case being similar.

Let 2γ = d2(x) − d1(x). Replacing x by x1 and α by d2(x) in Fact 3.2, we can get
δ > 0 such that if ‖x − z‖ < δ, then

d2(z) − d1(z) > γ

and

h(BX1 [x1, d2(x)] ∩ Y1, BX1 [z1, d2(z)] ∩ Y1) < ε.

Without loss of generality, we assume that δ is so chosen that (3) is also satisfied.
We have

PY (w) = BX1 [w1, d2(w)] ∩ Y1 + PY2(w2)

for all w in X with ‖x − w‖ < δ. Select any z in X with ‖x − z‖ < δ. If t is in
BX1 [z1, d2(z)] ∩ Y1 and s in PY2(z2), using the above inequality and (3), we select
r in BX1 [x1, d2(x)] ∩ Y1 and p in PY2(x2) satisfying ‖t − r‖ < ε and ‖s − p‖ < ε.
Clearly r + p is in PY (x) and PY (z) ⊆ PY (x) + εBX . �

Remark 3.5. Let X be an �∞-direct sum of two non-zero Banach spaces X1 and X2

and Yi be a proximinal, proper subspace of Xi, for i ∈ {1, 2}. It was recently shown
in [4] that if PY is upper Hausdorff semi-continuous on X , where Y = Y1 ⊕∞ Y2,
then Yi must be strongly proximinal in Xi, for i ∈ {1, 2}. This clearly implies that
Theorem 3.4 does not hold if, for any one of the two values of i, strong proximinality
of Yi is replaced by the strictly weaker assumption that Yi is proximinal and PYi is
upper Hausdorff semi-continuous.

The following theorem now follows from Remark 2.8 and Theorems 3.3 and 3.4.

Theorem 3.6. Let Xi be a Banach space, Yi a strongly proximinal subspace of
Xi with the metric projection from Xi onto Yi Hausdorff metric continuous, for
i ∈ {1, 2}. If X = X1 ⊕∞ X2 and Y = Y1 ⊕∞ Y2, then the metric projection PY

from X onto Y is Hausdorff metric continuous.

4. Proximinal subspaces of finite codimension of c0

If Y is a proximinal subspace of finite codimension in a normed linear space X ,
then the annihilator Y ⊥ of Y is contained in NA(X), the class of norm attaining
functionals on X (see [5] and [6]). Let Y be a proximinal subspace of finite codi-
mension in c0. Since NA(c0) is the set of finite sequences in �1 and Y ⊥ is finite
dimensional, there exists a positive integer k such that for any f = (fn) in Y ⊥, fn

is zero for all n ≥ k. In the rest of this section, the subspace Y and positive integer
k are fixed as above.
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Let {en : n ≥ 1} denote the natural basis of c0. For any sequence x = (xn) of
scalars, we set x̃ =

∑k
n=1 xnen. Also, we set

X1 = sp {e1, e2, · · · , ek},
X2 = {(xn) ∈ �∞ : xn = 0 for 1 ≤ n ≤ k},

Y1 = {x̃ : x ∈ Y }
and finally

Y2 = {(xn) ∈ c0 : xn = 0 for 1 ≤ n ≤ k}.
Then clearly Yi is a subspace of Xi for i = 1, 2 and

X = X1 ⊕∞ X2.

Also, note that if x is in c0, then

x ∈ Y ⇔ x̃ ∈ Y ⇔ x̃ ∈ Y1.

It is now clear that Y = Y1 ⊕∞ Y2.
Now, following the same proof for c0 an M-ideal in �∞, we get Y2 to be an M-ideal

in X2. Since X1 is a finite-dimensional subspace of c0, it is a polyhedral space. By
Fact 2.9, Yi is a strongly proximinal subspace of Xi with the metric projection PYi

from Xi onto Yi Hausdorff metric continuous for i ∈ {1, 2}. It is now clear that the
main theorem of this article, given below, follows immediately from Theorem 3.6.

Theorem 4.1. Let Y be a proximinal subspace of finite codimension in c0. Then Y
is proximinal in �∞ and the metric projection from �∞ onto Y is Hausdorff metric
continuous.

Remark 4.2. Let Y be a subspace of codimension k in c0, and assume Y ⊥ is the
span of a linearly independent set {f1, f2, · · · , fk}. Then it follows from Example
1.4 (a) of [9] that Y is an M-ideal in �∞ if and only if Y is an M-ideal in c0 if
and only if fi belongs to {en : n ≥ 1} for each i, 1 ≤ i ≤ k. We recall, from
[6], that Y is proximinal in c0 (and hence in �∞) if and only if Y ⊥ is contained in
NA(c0) or equivalently, every element of Y ⊥ is a sequence of �1 with only a finite
number of nonzero entries. Thus, there are plenty of proximinal subspaces of finite
codimension of c0 that are not M-ideals in �∞ and for these, Theorem 4.1 cannot
be derived from Proposition 2.1.
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