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LEHMER’S PROBLEM
FOR COMPACT ABELIAN GROUPS

DOUGLAS LIND

(Communicated by Wen-Ching Winnie Li)

Abstract. We formulate Lehmer’s Problem concerning the Mahler measure
of polynomials for general compact abelian groups, introducing a Lehmer con-
stant for each such group. We show that all nontrivial connected compact
groups have the same Lehmer constant and conjecture the value of the Lehmer
constant for finite cyclic groups. We also show that if a group has infinitely
many connected components, then its Lehmer constant vanishes.

1. Introduction

Let f ∈ Z[x±1] be a Laurent polynomial with integer coefficients. Define its
logarithmic Mahler measure to be

m(f) =
∫ 1

0

log |f(e2πis)| ds.

Lehmer’s Problem asks whether m(f) can be arbitrarily small but positive. Equiv-
alently, does

inf{m(f) : f ∈ Z[x±1], m(f) > 0 }
equal zero? The smallest positive value of m(f) known, found by Lehmer himself
[6], is attained by

(1.1) fL(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1,

for which m(fL) ≈ 0.16235. For accounts of this problem, see [2], [3], and for
connections with dynamics, see [4].

Lehmer’s Problem can be formulated for arbitrary compact abelian groups. To
do so, let G be a compact abelian group with normalized Haar measure µ. Let
Ĝ denote its (multiplicative) dual group of characters, and let Z[Ĝ] be the ring of
integral combinations of characters. For f ∈ Z[Ĝ] define its logarithmic Mahler
measure over G to be

m(f) = mG(f) =
∫

G

log |f | dµ.

Since log 0 = −∞, if f vanishes on a set of positive µ-measure, then m(f) = −∞,
but otherwise m(f) � 0 by Lemma 2.1 below.
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Definition 1.1. The Lehmer constant of a compact abelian group G is

λ(G) = inf{mG(f) : f ∈ Z[Ĝ], mG(f) > 0 }.
Lehmer’s Problem therefore asks whether λ(T) = 0, where T = R/Z.
We show in Theorem 3.2 that all nontrivial connected groups have the same

Lehmer constant λ(T). On the other hand, Theorem 5.1 shows that if G has
infinitely many connected components, then λ(G) = 0. We compute the Lehmer
constant of some finite groups and conjecture a simple formula for cyclic groups
and also for products of two-element groups. Finally, we show that if λ(T) = 0,
then the only groups which have positive Lehmer constant are finite.

2. Preliminaries

Let G be a compact abelian group, and let f ∈ Z[Ĝ]. If f vanishes on a set of
positive µ-measure, then clearly m(f) = −∞.

Lemma 2.1. Let f ∈ Z[Ĝ]. If µ({x : f(x) = 0}) = 0, then m(f) � 0.

Proof. The characters appearing in f generate a subgroup ∆ of Ĝ. Let H = ∆⊥

and π : G → G/H be the quotient map. Then f is constant on cosets of H , and
so defines f̃ ∈ Z[(G/H) ]̂ = Z[∆] such that f̃ ◦ π = f . Clearly mG/H(f̃) = mG(f),
and f̃ vanishes on a set of positive measure if and only if f does. Hence we may
assume that Ĝ is finitely generated.

Let Z/n denote Z/nZ. Applying the structure theorem for finitely generated
abelian groups to Ĝ, we see that G is isomorphic to

Z/n1 ⊕ · · · ⊕ Z/nr
⊕ T

k

for suitable integers n1, . . . , nr and k. Consider f ∈ Z[Ĝ] as a function of r + 1
variables j1 ∈ Z/n1 , . . . , jr ∈ Z/nr

, and s ∈ T
k. Since the set where f vanishes is

null, each function
fj1...jr (s) = f(j1, . . . , jr, s)

is a nonvanishing complex combination of characters on T
k, and hence by [4, Lemma

3.7] we see that mTk(fj1...jr ) > −∞. Thus

m(f) =
1

n1 . . . nr

n1−1∑
j1=0

· · ·
nr−1∑
jr=0

∫
Tk

log |fj1...jr (s)| ds

=
1

n1 . . . nr
mTk(g) > −∞,

where

g(s) =
n1−1∏
j1=0

· · ·
nr−1∏
jr=0

fj1...jr (s).

Since for each i the product over ji covers all the nith roots of unity, the coef-
ficients of g are algebraic integers fixed by all elements in the Galois group of the
field they generate, and so g ∈ Z[(Tk) ]̂. Hence mTk(g) � 0 by [4, Lemma 3.7],
showing that m(f) � 0. �

We repeatedly use the following observation.

Lemma 2.2. Let H be a closed subgroup of G. Then λ(G) ≤ λ(G/H).
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Proof. Let π : G → G/H be the quotient map. If f ∈ Z[(G/H) ]̂, then f ◦π ∈ Z[Ĝ]
and mG(f ◦ π) = mG/H(f). The conclusion then follows from the definition of
λ. �

3. Connected groups

In this section we prove that all nontrivial connected groups have the same
Lehmer constant.

Lemma 3.1. λ(Tk) = λ(T) for all k � 1.

Proof. Since T ∼= T
k/T

k−1, Lemma 2.2 shows that λ(Tk) ≤ λ(T).
To prove the reverse inequality, fix ε > 0. Choose f ∈ Z[(Tk) ]̂ with

0 < mTk(f) < λ(Tk) + ε.

For r = (r1, . . . , rk) ∈ Z
k define fr(s) = f(r1s, . . . , rks), so that fr ∈ Z[T̂]. By [5]

we can find r so that

|m
T
(fr) − mTk(f)| < min{mTk(f), ε}.

It follows that λ(T) ≤ λ(Tk) + 2ε. Since ε > 0 was arbitrary, we obtain that
λ(T) ≤ λ(Tk). �

Theorem 3.2. If G is a nontrivial connected compact abelian group, then λ(G) =
λ(T).

Proof. Since G is nontrivial and connected, it has a quotient isomorphic to T, and
hence λ(G) ≤ λ(T) by Lemma 2.2.

To prove the reverse inequality, observe that Ĝ is torsion-free. Let f ∈ Z[Ĝ] with
mG(f) > 0. The subgroup ∆ of Ĝ generated by the characters in f is therefore
isomorphic to Z

k for some k � 1, and so ∆̂ = G/∆⊥ ∼= T
k. As in the proof of

Lemma 2.1, f induces f̃ ∈ Z[∆] with m∆̂(f̃) = mG(f). By Lemma 3.1, we have
that

mG(f) = m∆̂(f̃) � λ(Tk) = λ(T),

proving that λ(G) � λ(T). �

4. Finite groups

In this section we consider the problem of computing the Lehmer constant of
some finite abelian groups.

Trivially λ(Z/1) = log 2.
Define characters χk on Z/n by χk(j) = e2πijk/n. Thus the character group is

Ẑ/n = {χ0, χ1, . . . , χn−1}.

Example 4.1. Let G = Z/2. For f = aχ0 + bχ1 ∈ Z[Ẑ/2] we have that

m(f) =
1
2
(
log |a + b| + log |a − b|) =

1
2

log |a2 − b2|.

It is easy to check that the smallest value of |a2 − b2| greater than 1 is 3, so that
λ(Z/2) = 1

2 log 3.
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Example 4.2. Let G = Z/3. A simple calculation shows that

m(aχ0 + bχ1 + cχ2) =
1
3

log |a3 + b3 + c3 − 3abc|.
Choosing a = b = 1 and c = 0 gives a value of 2 for the expression inside the
absolute value, which is clearly the smallest possible value greater than 1. Hence
λ(Z/3) = 1

3 log 2.

Example 4.3. Let G = Z/4. Then

m(aχ0 + bχ1 + cχ2 + dχ3) =
1
4

log
∣∣(a + b + c + d)(a− b + c− d)[(a− c)2 + (b− d)2]

∣∣.
Putting a = b = c = 1 and d = 0 gives 1

4 log 3.
Suppose the product inside the absolute value were ±2. Then the factorization

would be either 2 · 1 · 1, 1 · 2 · 1 or 1 · 1 · 2. The first two factorizations cannot occur
since the difference of the first two factors must be even. Therefore |a + c| ≤ 2
and (a − c)2 + (b − d)2 = 2. A straightforward search rules out all possibilities for
attaining ±2. Hence λ(Z/4) = 1

4 log 3.

There is a simple upper bound for the Lehmer constant of a finite group.

Lemma 4.4. Let F be a finite abelian group with cardinality |F | � 3. Then

(4.1) λ(F ) ≤ 1
|F | log

(|F | − 1
)
.

Proof. Let χ0 ∈ F̂ be the trivial character, and let δ0 be the unit mass at 0 ∈ F .
Then

g =
∑
χ∈F̂

χ = |F |δ0.

Put f = g − χ0, so that

f(x) =

{
|F | − 1 if x = 0,
−1 if x 	= 0.

Then mF (f) =
1
|F | log

(|F | − 1
)

> 0 since |F | � 3, proving (4.1). �

To estimate the Lehmer constant of a cyclic group, it is convenient to introduce
the following arithmetical function.

Definition 4.5. For an integer n � 2 let ρ(n) denote the smallest prime number
that does not divide n.

It is easy to see by using the fact that
∏

p≤x p = exp(x(1 + o(x)) (equivalent to
the Prime Number Theorem) that ρ(n) ≤ log n(1 + o(1)) as n → ∞.

Theorem 4.6. For all integers n � 2 we have that

λ(Z/n) ≤ 1
n

log ρ(n).

Proof. Let p = ρ(n), and Φp be the pth cyclotomic polynomial. Put fp(j) =
Φp(e2πij/n), so that fp ∈ Z[Ẑ/n]. Then

m(fp) =
1
n

log |R(
Φp(x), xn − 1

)|,
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where R(·, ·) denotes the resultant. Since p does not divide n, if follows from [1]
that R

(
Φp(x), xn − 1

)
= p = ρ(n). �

Corollary 4.7. If n is odd, then λ(Z/n) = 1
n log 2.

Proof. Since ρ(n) = 2 we see that λ(Z/n) ≤ 1
n log 2 by Theorem 4.6. An argument

similar to that in the proof of Lemma 2.1 shows the reverse inequality. �

Note that the upper bound in Theorem 4.6 is actually the correct value of λ(Z/n)
for n = 2, 3, and 4 computed in Examples 4.1, 4.2, and 4.3 above. Further compu-
tational evidence suggests the following.

Conjecture 4.8. λ(Z/n) = 1
n log ρ(n) for all n � 2.

Next, consider groups of the form Z/2 ⊕ · · · ⊕ Z/2 = Z
n
/2.

Example 4.9. Let G = Z/2 ⊕Z/2. The characters χij(x, y) = χi(x)χj(y) form the
dual group Ĝ = {χ00, χ01, χ10, χ11}. Then

m
( 1∑

i,j=0

aijχij

)
=

1
4

log
∣∣∣ 1∏
r,s=0

( 1∑
i,j=0

(−1)ir+jsaij

)∣∣∣.
The expression inside the absolute value is 3 when a00 = a01 = a10 = 1 and
a11 = 0. It cannot attain the value ±2 since, if so, 2 would factor into a product of
four integers whose pairwise differences are all even. Hence λ(Z2

/2) = 1
4 log 3.

Further numerical work suggests the following.

Conjecture 4.10. λ(Zn
/2) =

1
2n

log(2n − 1) for all n � 2.

Note that this quantity is the upper bound for λ(F ) in Lemma 4.4 when F = Z
n
/2.

5. Mixed groups

Here we consider groups G that have a nontrivial connected component G0 of
the identity.

Let Γ = Ĝ, and denote the torsion subgroup of Γ by t(Γ). The totally discon-
nected group G/G0 then has dual group t(Γ).

Theorem 5.1. If G/G0 is infinite, then λ(G) = 0.

Proof. Let ∆ be a finite subgroup of t(Γ), and suppose that |∆| � 3. Then by
Lemma 2.2,

(5.1) λ(G) ≤ λ(G/∆⊥) = λ(∆̂) ≤ 1
|∆| log

(|∆| − 1
)
.

If t(Γ) is infinite, we can then find arbitrarily large finite subgroups ∆, so that the
bound in (5.1) can be made arbitrarily small. �

Remark 5.2. If G0 is nontrivial, then any character of infinite order that is nontrivial
on G0 gives a quotient map of G to T, and so λ(G) ≤ λ(T) by Lemma 2.2. If λ(T)
were 0, this would show that only finite groups have positive Lehmer constant.
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Example 5.3. What is the value of λ(T ⊕ Z/2)? If λ(T) were 0, the previous
remark shows that λ(T ⊕ Z/2) would also be 0.

On the other hand, if λ(T) > 0, it seems likely that λ(T ⊕ Z/2) < λ(T). Some
evidence for this comes from the following example, kindly communicated to us by
Peter Borwein.

Let
f(x) = x12 − x11 + x10 − x9 − x6 − x3 + x2 − x + 1

and
g(x) = x8 − x7 + x6 − x5 + x4.

Then f + g is cyclotomic, so that m(f + g) = 0, while m(f − g) ≈ 0.30082.
Define h on T ⊕ Z/2 by

h(s, j) = f(e2πis) + (−1)jg(e2πis).

Then
mT⊕Z/2(h) =

1
2
[
m(f + g) + m(f − g)

]
≈ 0.15041 < 0.16235 = mT(fL),

where fL is the Lehmer polynomial in (1.1). Thus λ(T ⊕ Z/2) is strictly less than
the best current value for λ(T).
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