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AN EXTREMAL FUNCTION
FOR THE CHANG-MARSHALL INEQUALITY

OVER THE BEURLING FUNCTIONS

VALENTIN V. ANDREEV

(Communicated by Juha M. Heinonen)

Abstract. S.-Y. A. Chang and D. E. Marshall showed that the functional

Λ(f) = (1/2π)
∫ 2π
0

exp{|f(eiθ)|2}dθ is bounded on the unit ball B of the space
D of analytic functions in the unit disk with f(0) = 0 and Dirichlet integral
not exceeding one. Andreev and Matheson conjectured that the identity func-
tion f(z) = z is a global maximum on B for the functional Λ. We prove that
Λ attains its maximum at f(z) = z over a subset of B determined by ker-
nel functions, which provides a positive answer to a conjecture of Cima and
Matheson.

1. Introduction

Let D be the Dirichlet space of functions f analytic on the unit disk D, with
f(0) = 0 and a finite Dirichlet integral

‖f‖2
D =

1
π

∫ ∫
D

|f ′(z)|2dxdy.

It is well known that D is a Hilbert space with inner product

〈f, g〉D =
1
π

∫ ∫
D

f ′(z)g′(z)dxdy.

Let B = {f ∈ D : ‖f‖D ≤ 1} be its closed unit ball.
We shall be concerned with functionals ΛΦ on B defined by

ΛΦ(f) =
1
π

∫ 2π

0

Φ(|f(eiθ)|)dθ,

for f ∈ B and Φ : (−∞,∞) → R being a continuous convex nondecreasing function.
A function f is a maximum for ΛΦ if f ∈ B and ΛΦ(f) ≥ ΛΦ(g) for all g ∈ B.

Chang and Marshall [3] proved that if Φα(t) = eαt2 for α > 0, then ΛΦα is
bounded on B if and only if α ≤ 1. In their proof they compared functions in B to
the Beurling functions

Ba(z) =
log 1

1−az√
log 1

1−|a|2
,
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for a ∈ D \ {0}, where the branch of the logarithm is chosen so that Ba(a) is real.
The denominator assures that ‖Ba‖D = 1. Up to a normalizing factor, the Ba are
the kernel functions for D. We shall denote by B0 the set of all Beurling functions
and by B̃0 its closed convex hull.

A shorter proof of this fact has since been found by Marshall [9]. A significantly
more general and stronger inequality has been found by Essén [7]. Andreev and
Matheson [1] showed that the identity function f(z) = z is a local maximum for
ΛΦ1 on B and conjectured that it is also a global maximum. Cima and Matheson
[4] showed that the identity function is a local maximum on the set B0 and that
the functional ΛΦ1 attains its maximum on B̃0. On the other hand, they showed
that ΛΦ1 , when restricted to B, is not weakly continuous at 0, and thus it is an
open question whether there exists a global maximum for ΛΦ1 on B. Matheson and
Pruss [10] studied the regularity of the extremal functions. We refer the reader to
their paper for an excellent discussion of this and other related problems and for a
list of open problems.

Our principle result is:

Theorem 1.1. The inequality

(1.1) ΛΦ1(f) < ΛΦ1(z)

holds true for all f ∈ B̃0.

Our result proves Conjecture 1 of Cima and Matheson in [4].

2. Proof of Theorem 1.1

It is natural to set B0(z) = z (see [4]). A function Φ(x) continuous on −∞ <
x < ∞ is said to be convex if Φ((x + y)/2) ≤ [Φ(x) + Φ(y)]/2, and strictly convex
if strict inequality holds whenever x 	= y. Theorem 1.1 is a consequence of the
following result.

Theorem 2.1. Let Φ(x) be a convex nondecreasing function on −∞ < x < ∞.
For all a0,a ∈ D \ {0} such that 0 ≤ |a0| < |a| < 1, we have

(2.1)
∫ 2π

0

Φ(log |Ba(reiθ)|)dθ ≤
∫ 2π

0

Φ(log |Ba0(re
iθ)|)dθ,

0 < r < 1. If Φ is strictly convex, then the inequality is strict for all r.

Proof. Our proof is based on the deep results of Albert Baernstein [2, Theorem 1]
on integral means of univalent functions (see also Chapter 7 of Duren’s book [5]).
In particular, we need the following proposition [2, Proposition 3].

Proposition 2.2. For g, h ∈ L1(−π, π), the following statements are equivalent.
(a) For each function Φ(s) convex and nondecreasing on −∞ < s < ∞,∫ π

−π

Φ(g(x))dx ≤
∫ π

−π

Φ(h(x))dx.

(b) For each t ∈ R,∫ π

−π

[g(x) − t]+dx ≤
∫ π

−π

[h(x) − t]+dx.

(c) g∗(θ) ≤ h∗(θ), 0 ≤ θ ≤ π.
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Here for each r ∈ (r1, r2) and u(reiθ) ∈ L1(0, 2π) the Baernstein star-function
of u is defined as

(2.2) u∗(reiθ) = sup
|E|=2θ

∫
E

u(reit)dt,

0 ≤ θ ≤ π, where |E| denotes the Lebesgue measure of the set E ⊂ [−π, π].
In view of Proposition 2.2, we want first to show that

(2.3)
∫ π

−π

log+

[ |Ba(reiθ)|
ρ

]
dθ ≤

∫ π

−π

log+

[
Ba0(reiθ)

ρ

]
dθ,

0 < r < 1, for each ρ > 0 and all a and a0 such that 0 ≤ |a0| < |a| < 1. Notice that∫ π

−π

log+

[ |Ba′(reiθ)|
ρ

]
dθ =

∫ π

−π

log+

[ |Ba′′(reiθ)|
ρ

]
dθ

whenever |a′| = |a′′|. Hence we may assume from now on that 0 ≤ a0 < a < 0.
We can apply Jensen’s theorem to obtain

(2.4)
∫ π

−π

log+

[ |Ba(reiθ)|
ρ

]
dθ =

∫ π

−π

N(r, ρeiφ)dφ,

since Ba(0) = 0. It is easy to see that Ba is a univalent function in the unit disk D,
Ba(0) = 0 and B′

a(0) = a/A, where A = {log[1/(1 − |a|2)]}1/2, for each 0 < a < 1,
with a continuous extension to the closed unit disk D, and if α = ρeiφ 	= 0 is in the
range Da of Ba, then

(2.5) N(r, α) =
∫ r

0

n(t, α)
t

dt = log+

[
r

|α|
]

= log+

[
r

|B−1
a (α)|

]
,

0 < r < 1. Let ua(ζ) = − log |B−1
a (ζ)| be the Green’s function of Da with pole at

0. Extend it to a continuous function in the punctured plane by setting ua(ζ) = 0,
ζ /∈ Da. The formula (2.5) takes the form

N(r, ζ) = [ua(ζ) + log r]+,

0 < r < 1, for arbitrary ζ, and equation (2.4) becomes

(2.6)
∫ π

−π

log+

[ |Ba(reiθ)|
ρ

]
dθ =

∫ π

−π

[ua(ρeiφ) + log r]+dφ.

Let ua0(ζ) = − log |B−1
a0

(ζ)| for ζ ∈ Da0 , and let ua0(ζ) = 0 elsewhere. In view
of (2.6) the inequality (2.3) can be recast in the form∫ π

−π

[ua(ρeiφ) + log r]+dφ ≤
∫ π

−π

[ua0(ρeiφ) + log r]+dφ,

0 < r < 1, 0 < ρ < ∞. By Proposition 2.2, this is implied by the inequality

(2.7) u∗
a(ρeiφ) ≤ u∗

a0
(ρeiφ),

0 < ρ < ∞, 0 ≤ φ ≤ π.
The function u(ζ) is continuous in 0 < |ζ| < ∞, it is positive and harmonic in

Da, and identically zero outside Da. Thus it is subharmonic in 0 < |ζ| < ∞. Hence
by [2, Theorem A] and the definition (2.2) of the star-function, u∗

a is subharmonic
in the open upper half-plane and continuous in the closed upper half-plane, except
at the origin.
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Since B−1
a (ζ) = (1 − e−Aζ)/a, then, near the origin, ua has the form

(2.8) ua(ζ) = − log |ζ| − log
A

a
+ u1a(ζ),

where u1a is harmonic and u1a(0) = 0. Thus

u∗
a(ρeiφ) + 2φ log ρ → −2φ log

A

a

as ρ → 0 for 0 ≤ φ ≤ π. Similarly, near the origin, ua0 has the form

ua0(ζ) = − log |ζ| − log
A0

a0
+ u1a0(ζ),

where u1a0 is harmonic and u1a0(0) = 0. Thus

u∗
a0

(ρeiφ) + 2φ log ρ → −2φ log
A0

a0

as ρ → 0 for 0 ≤ φ ≤ π. It follows that

[u∗
a(ρeiφ) − u∗

a0
(ρeiφ)] → −2φ log

a0A

aA0

as ρ → 0 for 0 ≤ φ ≤ π. It is easy to see that a0A/(aA0) > 1 for a0 < a and hence
that −2π log a0A

aA0
≤ −2φ log a0A

aA0
≤ 0 for a0 < a.

Hence (u∗
a − u∗

a0
) is subharmonic in the upper half-plane and continuous in its

closure except at the origin, where it has a bounded discontinuity: for φ = 0,

lim
ρ→0

(u∗
a(ρ) − u∗

a0
(ρ)) = 0,

and for φ = π,

lim
ρ→0

(u∗
a(−ρ) − u∗

a0
(−ρ)) = −2π log

a0A

aA0
.

We want to show that (u∗
a − u∗

a0
) < 0 in the open upper half-plane. Since

u∗
a − u∗

a0
is discontinuous at the origin, we cannot apply the maximum principle

for subharmonic functions to u∗
a − u∗

a0
at this point. The proof of the inequality

(u∗
a − u∗

a0
) < 0 for �ζ > 0 will be based on the following four steps (a)–(d).

(a) On the positive real axis, by definition, u∗
a(ζ) = v∗(ζ) = 0 for ζ > 0.

(b) Next let da be the distance from 0 to the complement of Da. It is obvious
that �(1−aeiθ)−1 > 0. Since the branch of the logarithm was chosen so that Ba(a)
is real, then

|Ba(eiθ)| =
1
A
{[log

1
|1 − aeiθ| ]

2 + [arg
1

1 − aeiθ
]2}1/2.

Since max |1− aeiθ| = |1− aeiπ| = 1+ a and [arg 1
1−aeiπ ]2 = 0, it is easy to see that

− 1
A

log
1

1 + a
≤ |Ba(eiθ)| ≤ 1

A
log

1
1 − a

for 0 < a < 1. Thus da = − 1
A log 1

1+a . We want to show that da is a decreasing
function of a for 0 < a < 1. It is clear that da → 1 as a → 0. Let

f(a) =
log(1 + a)

A
.

Then

f ′(a) = − [(1 − a) log(1 − a) + log(1 + a)]
(1 − a2)A3

.
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Let
f1(a) = (1 − a) log(1 − a) + log(1 + a).

An easy computation shows that f”
1 (a) > 0 for 0 < a < 1. Thus f ′

1 is an increasing
function of a, and it follows that f ′

1(a) > 0 for 0 < a < 1 since f ′
1(0) = 0. Therefore

f1 is an increasing function of a for 0 < a < 1 and f1(a) > 0 since f1(0) = 0.
Finally, this implies that f ′(a) < 0 for 0 < a < 1, and thus f is a decreasing
function of a. Therefore da0 > da for all a, a0 < a < 1.

In the disk |ζ| < da, ua(ζ) has the form (2.8), where u1a is harmonic in |ζ| < da

and u1a(0) = 0. Thus

u∗
a(ρeiπ) = −2π log

1
ρ
− 2π log

A

a

and, similarly,

u∗
a0

(ρeiπ) = −2π log
1
ρ
− 2π log

A0

a0

for 0 < ρ < da. Hence u∗
a(ζ) < u∗

a0
(ζ) for −da ≤ ζ < 0.

(c) Since u1a(ζ) and u1a0(ζ) are harmonic in |ζ| < da and u1a(0) = u1a0(0) = 0,
then for every ε > 0 there is a ρ0, ρ0 = |ζ0| < da, such that |u1a(ζ)| < ε/2 and
|u1a0(ζ)| < ε/2 for all ζ, |ζ| ≤ ρ0. Thus

u∗
a(ρeiφ) = sup

|E|=2φ

∫
E

ua(ρeit)dt

= −2φ log ρ − 2φ log
A

a
+ sup

|E|=2φ

∫
E

u1a(ρeit)dt

≤ −2φ log ρ − 2φ log
A

a
+ φε

and

u∗
a0

(ρeiφ) = sup
|E|=2φ

∫
E

ua0(ρeit)dt

= −2φ log ρ − 2φ log
A0

a0
+ sup

|E|=2φ

∫
E

u1a0(ρeit)dt

≥ −2φ log ρ − 2φ log
A0

a0
− φε

for 0 < ρ ≤ ρ0 and 0 < φ < π. Now choose ε such that ε < log(Aa0/aA0). Then

u∗
a(ρeiφ) − u∗

a0
(ρeiφ) ≤ −2φ log

Aa0

aA0
+ 2φε < 0

for all 0 < ρ ≤ ρ0 and 0 < φ < π. Hence u∗
a(ζ) < u∗

a0
(ζ) for |ζ| ≤ ρ0 < da and

0 < φ < π.
(d) To establish the inequality on −∞ < ζ < −da, we fix ε > 0 and consider the

function
Q(ζ) = u∗

a(ζ) − u∗
a0

(ζ) − εφ,

ζ = ρeiφ, which is subharmonic in A = {ζ : ρ0 < |ζ|, 0 < �ζ} and continuous
in the closure of A. Let M be the maximum of Q(ζ) in A. Then M ≥ 0 and,
according to the maximum principle for subharmonic functions, the maximum is
attained somewhere on the boundary of A. Suppose M > 0. Since u∗

a(ζ) ≤ u∗
a0

(ζ)
on the set {ζ : −da ≤ ζ ≤ ρ0} ∪ {ζ : |ζ| = ρ0,�ζ > 0} ∪ {ζ : ρ0 ≤ ζ < ∞}, there
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is some point −ζ1 = −ρ1 for which −∞ < ζ1 < −da and Q(ζ1) = M . Let Ga(φ)
denote the symmetric decreasing rearrangement of ua(ρ1e

iφ). Then
∂u∗

a

∂φ
(ρ1e

iφ) = 2Ga(φ)

for 0 ≤ φ ≤ π by [2, Proposition 2]. But because ρ1 > da, there is some point on
the circle |ζ| = ρ1 that lies outside Da, so

Ga(π) = inf
0≤φ≤π

ua(ρ1e
iφ) = 0.

Applying the same argument to u∗
a0

we obtain

∂u∗
a0

∂φ
(ρ1e

iφ) = 2Ga0(φ)

for 0 ≤ φ ≤ π. If da < ρ1 ≤ da0 , then

Ga0(φ) = inf
0≤φ<π

{t : λ(t) ≤ 2φ},

where λ is the distribution function of ua0 , λ(t) = |{φ : ua0(ρ0e
iφ) > t}|, and

Ga0(π) = lim
φ→π−

Ga0(φ).

Hence Ga0(π) ≥ 0 if da < ρ1 ≤ da0 . If da0 < ρ1, there is some point on the circle
|ζ| = ρ1 that lies outside Da0 , so

Ga0(π) = inf
0≤φ≤π

ua0(ρ1e
iφ) = 0.

Therefore
∂Q

∂φ
(ζ1) ≤ −ε < 0,

which contradicts the assumption that Q(ζ) has a relative maximum at ζ1. Hence
M = 0 and

u∗
a(ζ) ≤ u∗

a0
(ζ) + εφ ≤ u∗

a0
(ζ) + επ

for ζ ∈ A. Letting ε → 0 we obtain that

u∗
a(ρeiφ) ≤ u∗

a0
(ρeiφ)

for ζ ∈ A.
We are in a position now to prove that u∗

a(ζ) < u∗
a0

(ζ) in the open upper half-
plane. Combining (a)–(d) we obtain (2.7). Furthermore, u∗

a(ζ) < u∗
a0

(ζ) on the
set {ζ : −da ≤ ζ ≤ ρ0} ∪ {ζ : |ζ| = ρ0,�ζ > 0} by (b) and (c). Hence u∗

a − u∗
a0

is a subharmonic function on A that is not identically equal to zero there and, by
the maximum principle, this implies that u∗

a(ζ) < u∗
a0

(ζ) everywhere in A. Also,
u∗

a(ζ) < u∗
a0

(ζ) for {ζ : 0 < |ζ| ≤ ρ0 < da, 0 < �ζ} by (c). Therefore,

u∗
a(ζ) < u∗

a0
(ζ)

in the open upper half-plane.
It follows from Proposition 2.2 that

(2.9)
∫ 2π

0

Φ(log |Ba(reiθ)|)dθ ≤
∫ 2π

0

Φ(log |Ba0(re
iθ)|)dθ

for all 0 ≤ a0 < a < 0 and 0 < r < 1. The proof of strict inequality in (2.9) is
identical to the proof of strict inequality in Theorem 1 in [2, pp. 157-158] and will
be omitted. This completes the proof of Theorem 2.1. �
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Proof of Theorem 1.1. The choice Φ(x) = ee2x

in (2.1) allows us to conclude that

ΛΦ1(Ba(reiθ)) < ΛΦ1(Ba0(re
iθ))

for all 0 ≤ a0 < a < 0 and 0 < r < 1. Let

‖Ba(reiθ)‖p
p =

1
2π

∫ 2π

0

|Ba(reiθ)|pdθ.

Since

ΛΦ1(Ba(reiθ)) = 1 +
∞∑

n=1

‖Ba(reiθ)‖2n
2n

n!
,

and, by Lemma 1 of [1], Ba ∈ Hp for 0 < p < ∞, we can choose a sequence
rn → 1 as n → ∞ for which the inequalities ΛΦ1(Ba(rneiθ)) < ΛΦ1(Ba0(rneiθ))
hold. Hence

ΛΦ1(Ba(reiθ)) ≤ ΛΦ1(Ba0(re
iθ))

for all 0 < r ≤ 1 by Hardy’s convexity theorem for integral means (see, e.g., [6,
Theorem 1.5]).

It now remains to demonstrate that strict inequality holds true in Theorem 1.1.
According to Theorem 2 of [4], B0 is a local maximum on the set of Beurling
functions. Thus there is an a0, 0 < a0, such that

ΛΦ1(Ba(eiθ)) < ΛΦ1(B0(eiθ))

for 0 < a ≤ a0. (James and Matheson [8] have informed the author that, using a
numerical method, they have proved the last inequality for 0 < a < 1/2.)

Finally, combine the last inequality with the fact that ΛΦ1 is log-convex [4, p.
387] to complete the proof of Theorem 1.1. �

It was pointed out in [1] that B0 does not maximize the integral means over B.
If we choose Φ(x) = epx, 0 < p < ∞, in Theorem 2.1, we obtain that B0 maximizes
the integral means over B0.

Corollary 2.3. The inequality

1
2π

∫ 2π

0

|Ba(reiθ)|pdθ ≤ 1
2π

∫ 2π

0

|Ba0(re
iθ)|pdθ

holds true for all 0 ≤ |a0| < |a| < 0, 0 < r ≤ 1, and all 0 < p < ∞.

It will be interesting to see if the approach in Theorem 2.1 can be extended to
the univalent functions in D. The result of this paper provides further evidence in
favor of a conjecture made in [1]:

Conjecture 1. ΛΦ1 attains its maximum on B at B0.
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