ALMOST AUTOMORPHIC SOLUTIONS OF SEMILINEAR EVOLUTION EQUATIONS

JEROME A. GOLDSTEIN AND GASTON M. N'GUÉRÉKATA

(Communicated by Carmen C. Chicone)

Abstract

We are concerned with the semilinear differential equation in a Banach space \mathbb{X}, $$
x^{\prime}(t)=A x(t)+F(t, x(t)), \quad t \in \mathbb{R}
$$ where A generates an exponentially stable C_{0}-semigroup and $F(t, x): \mathbb{R} \times$ $\mathbb{X} \rightarrow \mathbb{X}$ is a function of the form $F(t, x)=P(t) Q(x)$. Under appropriate conditions on P and Q, and using the Schauder fixed point theorem, we prove the existence of an almost automorphic mild solution to the above equation.

1. Introduction

Consider in a Banach space $(\mathbb{X},\|\cdot\|)$ the semilinear differential equation

$$
\begin{equation*}
x^{\prime}(t)=A x(t)+F(t, x(t)), \quad t \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

where the linear operator $A: D(A) \subset \mathbb{X} \rightarrow \mathbb{X}$ generates an exponentially stable C_{0}-semigroup $\mathcal{T}=(T(t))_{t \geq 0}$; that is, \mathcal{T} satisfies the estimate

$$
\begin{equation*}
\|T(t)\| \leq M e^{-\epsilon t} \tag{1.2}
\end{equation*}
$$

for some constants $M>0, \epsilon>0$ and all $t \geq 0$. Let $F: \mathbb{R} \times \mathbb{X} \rightarrow \mathbb{X}$ be jointly continuous. A mild solution to (1.1) is a function $x \in C(\mathbb{R}, \mathbb{X})$ satisfying the integral equation

$$
\begin{equation*}
x(t)=T(t-a) x(a)+\int_{a}^{t} T(t-s) F(s, x(s)) d s \tag{1.3}
\end{equation*}
$$

for every $a \in \mathbb{R}$ and every $t \geq a$.
A fundamental problem is the existence of almost automorphic mild solutions to (1.1). Recently, G. M. N'Guérékata [5] showed, using the Banach fixed point theorem, that if
i) F is Lipschitzian in $x \in \mathbb{X}$, uniformly in $t \in \mathbb{R}$, that is,

$$
\begin{equation*}
\|F(t, x)-F(t, y)\| \leq L\|x-y\| \tag{1.4}
\end{equation*}
$$

for all $x, y \in \mathbb{X}$, and $t \geq 0$, and L is sufficiently small, namely $L<\frac{\epsilon}{M}$, where ϵ and M are as in (1.2), and

[^0]ii) $F(t, x)$ is almost automorphic in $t \in \mathbb{R}$ for each $x \in \mathbb{X}$, then problem (1.1) has a unique almost automorphic mild solution.

In this paper, we are going to prove the existence of almost automorphic mild solutions to (1.1), F being not necessarily Lipschitzian. But first, let us recall some definitions.

Definition 1.1. A continuous function $f: \mathbb{R} \rightarrow \mathbb{X}$ is said to be almost automorphic if for every sequence of real numbers $\left(s_{n}^{\prime}\right)$, there exists a subsequence $\left(s_{n}\right)$ such that

$$
g(t)=\lim _{n \rightarrow \infty} f\left(t+s_{n}\right)
$$

is well defined for each $t \in \mathbb{R}$, and

$$
\lim _{n \rightarrow \infty} g\left(t-s_{n}\right)=f(t)
$$

for each $t \in \mathbb{R}$.
It is well known that the range $\mathcal{R}_{f}=\{f(t) \mid t \in \mathbb{R}\}$ of an almost automorphic function f is relatively compact in \mathbb{X}, thus bounded in norm (see [6], Theorem 2.13). The function g in the definition is also bounded and strongly measurable. Also, the set $A A(\mathbb{X})$ of all almost automorphic functions $f: \mathbb{R} \rightarrow \mathbb{X}$ equipped with the sup-norm

$$
\|f\|_{\infty}=\sup _{t \in \mathbb{R}}\|f(t)\|
$$

is a Banach space (see 6], page 20).
Also, given two Banach spaces $\left(\mathbb{X}_{1},\|\cdot\|_{1}\right)$ and $\left(\mathbb{X}_{2},\|\cdot\|_{2}\right), B\left(\mathbb{X}_{1}, \mathbb{X}_{2}\right)$ will denote the Banach space of bounded linear operators $L: \mathbb{X}_{1} \rightarrow \mathbb{X}_{2}, B C\left(\mathbb{R}, \mathbb{X}_{1}\right)$ is the Banach space of all continuous and bounded functions $f: \mathbb{R} \rightarrow \mathbb{X}_{1}$, and $B U C\left(\mathbb{R}, \mathbb{X}_{1}\right)$ is the Banach space of all bounded and uniformly continuous functions $f: \mathbb{R} \rightarrow \mathbb{X}_{1}$.

2. Preliminaries

In this paper $(\mathbb{Y},|\cdot|)$ will denote a Banach space algebraically contained in \mathbb{X} such that the canonical injection $\mathbb{Y} \rightarrow \mathbb{X}$ is compact. An example of such a space \mathbb{Y} is an abstract Sobolev space that we construct as follows:

Let A be as in (1.1), (1.2). By (1.2), $0 \in \rho(A)$, so that the fractional powers $(-A)^{\alpha}, 0<\alpha<1$, are well defined. Also, since $0 \in \rho(A)$, the norm

$$
\begin{equation*}
|f|=\left\|(-A)^{\alpha} f\right\| \tag{2.1}
\end{equation*}
$$

is equivalent to the graph norm

$$
\|f\|_{\alpha}=\left\|(-A)^{\alpha} f\right\|+\|f\|
$$

Now we take $\mathbb{X}=L^{p}(\Omega)$, where $1<p<\infty$ and $\Omega \subset \mathbb{R}^{n}$ is a smooth bounded domain in \mathbb{R}^{n}. Let A be a linear uniformly elliptic operator (with suitable boundary conditions), of order 2 m . Then let \mathbb{Y} be the domain of $(-A)^{\alpha}$ with norm (2.1); we have

$$
W_{0}^{2 m \alpha, p}(\Omega) \subset \mathbb{Y} \subset W^{2 m \alpha, p}(\Omega)
$$

and the norm $|\cdot|$ in \mathbb{Y} is equivalent to the usual norm in $W^{2 m \alpha, p}(\Omega)$. Also, the injection $\mathbb{Y} \rightarrow \mathbb{X}$ is compact in this case, by Sobolev embedding.

3. Main Results

Now let $\mathbb{Y}=D\left((-A)^{\alpha}\right)$, the domain of $(-A)^{\alpha}$, with norm

$$
|y|=\left\|(-A)^{\alpha} y\right\|, \quad y \in D\left((-A)^{\alpha}\right)
$$

where $0<\alpha<1$ is fixed. We get

$$
\begin{equation*}
|T(t) y|=\left\|T(t)(-A)^{\alpha} y\right\| \leq M e^{-\epsilon t}\left\|(-A)^{\alpha} y\right\|=M e^{-\epsilon t}|y| \tag{3.1}
\end{equation*}
$$

for each $y \in \mathbb{Y}$ and every $t \geq 0$, by (1.2).
We also make the following assumptions:

$$
\begin{equation*}
F(t, x)=P(t) Q(x), \quad \text { for all } \quad t \in \mathbb{R}, x \in \mathbb{X} \tag{3.2}
\end{equation*}
$$

where $P(t) \in A A(\mathbb{Z})$ for each $t \in \mathbb{R}$ with $\mathbb{Z}=B(\mathbb{X}, \mathbb{Y}) ; P$ is continuous from \mathbb{R} to $A A(\mathbb{Z})$, and $Q: B C(\mathbb{R}, \mathbb{X}) \rightarrow B C(\mathbb{R}, \mathbb{X})$ is continuous and satisfies the estimate

$$
\begin{equation*}
\|Q \varphi\|_{\infty} \leq \mathcal{M}\left(\|\varphi\|_{\infty}\right) \tag{3.3}
\end{equation*}
$$

where $\|f\|_{\infty}:=\sup _{t \in \mathbb{R}}\|f(t)\|$ and $\mathcal{M} \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$satisfies

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\mathcal{M}(r)}{r}=0 \tag{3.4}
\end{equation*}
$$

Note that \mathcal{M} can be unbounded but must grow slower than a linear function. Let

$$
\begin{equation*}
[P]:=\sup _{t \in \mathbb{R}}\|P(t)\|_{\mathbb{Z}}<\infty \tag{3.5}
\end{equation*}
$$

Define $G: B C(\mathbb{R}, \mathbb{X}) \rightarrow B C(\mathbb{R}, \mathbb{Y})$ by

$$
\begin{equation*}
(G \varphi)(t)=\int_{-\infty}^{t} T(t-s) F(s, \varphi(s)) d s \tag{3.6}
\end{equation*}
$$

For $\varphi \in B C(\mathbb{R}, \mathbb{X})$, this integral exists. Indeed, we have

$$
\begin{aligned}
|(G \varphi)(t)| & \leq \int_{-\infty}^{t}|T(t-s) \| P(t) Q(\varphi(s))| d s \\
& \leq \int_{-\infty}^{t} M e^{-\epsilon(t-s)}[P] \mathcal{M}\left(\|\varphi\|_{\infty}\right) d s
\end{aligned}
$$

using (3.1), (3.3) and (3.5). Consequently

$$
\begin{align*}
& |G \varphi|_{\infty}=\sup _{t \in \mathbb{R}}|(G \varphi)(t)| \\
& \leq M \epsilon^{-1}[P] \mathcal{M}\left(\|\varphi\|_{\infty}\right) . \tag{3.7}
\end{align*}
$$

Continuity of G is straightforward by virtue of continuity of both P and Q. Thus we have

$$
G(B C(\mathbb{R}, \mathbb{X})) \subset B C(\mathbb{R}, \mathbb{Y})
$$

Finally, for $0<\delta \leq 1$, let

$$
B C^{\delta}(\mathbb{R}, \mathbb{Y}) \equiv\left\{f \in B C(\mathbb{R}, \mathbb{Y}):|f|_{\delta, \mathbb{Y}}<\infty\right\}
$$

where

$$
|f|_{\delta, \mathbb{Y}} \equiv \sup _{t \in \mathbb{R}}|f(t)|+\delta \sup _{t, s \in \mathbb{R}, t \neq s} \frac{|f(t)-f(s)|}{|t-s|^{\delta}}
$$

With the norm $|\cdot|_{\delta, \mathbb{Y}}, B C^{\delta}(\mathbb{R}, \mathbb{Y})$ turns out to be a Banach space of all bounded Hölder continuous \mathbb{Y}-valued functions on \mathbb{R} of Hölder exponent δ.

Proposition 3.1. The function G defined above maps bounded sets of $B C(\mathbb{R}, \mathbb{X})$ into bounded sets of $B C^{\delta}(\mathbb{R}, \mathbb{Y})$ for any $\delta>0$ satisfying $\delta<\alpha$, where $0<\alpha<1$ is the exponent defining $\mathbb{Y}=D(-A)^{-\alpha}$.

Proof. The proof is basically a modification of the above remarks. Let $0<\beta<\alpha$. Then

$$
\begin{align*}
|(G \varphi)(t)| & =\left|\int_{-\infty}^{t} T(t-s)(-A)^{\beta}(-A)^{-\beta} F(s, \varphi(s)) d s\right| \\
& \leq \int_{-\infty}^{t}\left|T(t-s)(-A)^{\beta}\right|\left|(-A)^{-\beta} P(s)\right| \mid Q(\varphi(s) \mid d s \tag{3.8}
\end{align*}
$$

Now, by semigroup theory (see for instance [4]), there exists a constant M_{1} such that

$$
\left\|T(r)(-A)^{\beta}\right\| \leq \frac{M_{1} e^{-\epsilon r}}{r^{\beta}}
$$

for all $r>0$. Thus we obtain, as previously,

$$
\begin{equation*}
\left|T(r)(-A)^{\beta}\right| \leq M_{1} e^{-\epsilon r} r^{-\beta}, \quad r>0 \tag{3.9}
\end{equation*}
$$

Next, we observe that the function $s \mapsto(-A)^{-\beta} P(s)$ is a uniformly bounded function $\mathbb{R} \rightarrow B\left(\mathbb{X}, D\left((-A)^{\alpha-\beta}\right)\right.$. Indeed, it is the composition of $P(\cdot): \mathbb{R} \rightarrow$ $B\left(\mathbb{X}, D\left((-A)^{\alpha}\right)\right)$, which is bounded by $[P]$, with $(-A)^{-\beta}$, an isometry from $D\left((-A)^{\alpha}\right)$ onto $D\left((-A)^{\alpha-\beta}\right)$. Thus

$$
\sup _{t \in \mathbb{R}}\|P(t)\|_{B\left(\mathbb{X}, D\left((-A)^{\alpha-\beta}\right)\right)} \leq[P]
$$

Now combining the estimates in (3.8) and (3.9), we deduce

$$
|(G \varphi)(t)| \leq \int_{-\infty}^{t} M_{1} e^{-\epsilon(t-s)}(t-s)^{-\beta}[P] \mathcal{M}\left(\|\varphi\|_{\infty}\right) d s
$$

Letting $r=t-s$ in the integral gives

$$
\mid\left(G \varphi(t) \mid \leq \int_{0}^{\infty} M_{1} e^{-r} r^{-\beta}[P] \mathcal{M}(\|\varphi\|) d r\right.
$$

that is,

$$
\begin{equation*}
|(G \varphi)(t)| \leq C_{1}(\beta) \mathcal{M}\left(\|\varphi\|_{\infty}\right) \tag{3.10}
\end{equation*}
$$

where $C_{1}(\beta)$ depends on β, M_{1}, ϵ and $[P]$. Next, for $t_{2}>t_{1}$, we have

$$
\begin{aligned}
&\left|(G \varphi)\left(t_{2}\right)-(G \varphi)\left(t_{1}\right)\right| \\
& \leq\left|\left(\int_{-\infty}^{t_{2}}-\int_{-\infty}^{t_{1}}\right) T\left(t_{2}-s\right)(-A)^{\beta}(-A)^{-\beta} P(s) Q(\varphi(s)) d s\right| \\
&+\left|\int_{-\infty}^{t_{1}}\left(T\left(t_{2}-s\right)-T\left(t_{1}-s\right)\right)(-A)^{\beta}(-A)^{-\beta} P(s) Q(\varphi(s)) d s\right| \\
& \leq \int_{t_{1}}^{t_{2}}\left|T\left(t_{2}-s\right)(-A)^{\beta}(-A)^{-\beta} P(s) Q(\varphi(s))\right| d s \\
&+\int_{-\infty}^{t_{1}}\left|\left(T\left(t_{2}-t_{1}\right)-I\right) T\left(t_{1}-s\right)(-A)^{\beta}(-A)^{-\beta} P(s) Q(\varphi(s))\right| d s \\
&= J_{1}+J_{2}
\end{aligned}
$$

By the same argument leading to (3.10) we get

$$
\begin{aligned}
J_{1} & \leq \int_{0}^{t_{2}-t_{1}} M_{1} e^{-\epsilon r} r^{-\beta}[P] \mathcal{M}\left(\|\varphi\|_{\infty}\right) d r \\
& \leq C_{2}(\beta) \mathcal{M}\left(\|\varphi\|_{\infty}\right)\left(t_{2}-t_{1}\right)^{1-\beta}
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
J_{2} \leq & \int_{-\infty}^{t_{1}} \mid\left(T\left(t_{2}-t_{1}\right)-I\right)(-A)^{-\gamma}\left(T\left(t_{1}-s\right)(-A)^{(\beta-\gamma)}(-A)^{-\beta} P(s) Q(\varphi(s)) \mid d s\right. \\
\leq & \int_{-\infty}^{t_{1}}\left|\left(T\left(t_{2}-t_{1}\right)-I\right)(-A)^{-\gamma}\right| \\
\leq & \left|\left(T\left(t_{2}-t_{1}\right)-I\right)(-A)^{-\gamma}\right| \\
& \cdot \int_{-\infty}^{t_{1}}\left|T\left(t_{1}-s\right)(-A)^{(\beta-\gamma)}(-A)^{-\beta} P(s) Q(\varphi(s))\right| d s \\
& \leq\left|\left(T\left(t_{2}-t_{1}\right)-I\right)(-A)^{-\gamma}\right| C_{3}(\beta, \gamma) \mathcal{M}\left(\|\varphi\|_{\infty}\right)
\end{aligned}
$$

provided $0<\gamma<\beta$. Next recall that $(T(r)-I) g=\int_{0}^{r} T(s) A g d s$ for $g \in D(A)$, by the fundamental theorem of calculus. Thus, for $f \in \mathbb{Y}$,

$$
\begin{aligned}
\left|(T(r)-I)(-A)^{-\gamma} f\right| & =\left\|\int_{0}^{r} T(s)(-A)^{1-\gamma-\alpha}(-A)^{\alpha} f d s\right\| \\
& \leq\left\|(-A)^{\alpha} f\right\| \int_{0}^{r} M_{1} e^{-\epsilon s} s^{1-\gamma-\alpha} d s \\
& =C_{4}\left(\gamma, \epsilon, M_{1}\right) r^{2-\gamma-\alpha}|f|
\end{aligned}
$$

since $1-\gamma-\alpha>-1$, because $0<\gamma<\beta<\alpha<1$.
In other words, $\left|(T(r)-I)(-A)^{-\gamma}\right| \leq C_{4} r^{2-\gamma-\alpha}$; consequently,

$$
J_{2} \leq C_{4}\left(t_{2}-t_{1}\right)^{2-\gamma-\alpha} C_{3} \mathcal{M}\left(\|\varphi\|_{\infty}\right)
$$

For $\delta=\min (2-\gamma-\alpha, 1-\beta)>0$, it follows that

$$
\begin{equation*}
\mid(G \varphi)\left(t_{2}\right)-\left(G \varphi\left(t_{1}\right)\left|\leq C_{5}\right| t_{2}-\left.t_{1}\right|^{\delta} \mathcal{M}\left(\|\varphi\|_{\infty}\right)\right. \tag{3.11}
\end{equation*}
$$

where C_{5} depends on $\epsilon, M_{1},[P], \alpha, \beta, \gamma$ and \mathbb{Y}, that is, on parameters of the problem.
It follows that, for $\varphi \in B C(\mathbb{R}, \mathbb{X})$ with $\|\varphi(t)\| \leq R$ for all $t \in \mathbb{R}$, then $G \varphi \in$ $B C^{\delta}(\mathbb{R}, \mathbb{Y})$ with $\|G \varphi(t)\| \leq R_{1}$ for all $t \in \mathbb{R}$ and some R_{1} that depends on R. This completes the proof.

Proposition 3.2. The function G maps bounded sets of $A A(\mathbb{X})$ into bounded sets of $B C^{\delta}(\mathbb{R}, \mathbb{Y}) \cap A A(\mathbb{X})$ for $0<\delta<\alpha$.
Proof. We just need to check that

$$
G(A A(\mathbb{X})) \subset A A(\mathbb{X})
$$

To this end, let $\varphi \in A A(\mathbb{X})$. Then given a sequence $\left(s_{n}^{\prime}\right) \subset \mathbb{R}$, there exists a subsequence $\left(s_{n}\right) \subset\left(s_{n}^{\prime}\right)$ such that

$$
\psi(t)=\lim _{n \rightarrow \infty} \varphi\left(t+s_{n}\right)
$$

is well defined for each $t \in \mathbb{R}$ and

$$
\lim _{n \rightarrow \infty} \psi\left(t-s_{n}\right)=\varphi(t)
$$

for each $t \in \mathbb{R}$. Since $\psi \in B C(\mathbb{R}, \mathbb{X})$, then

$$
(G \varphi)\left(t+s_{n}\right)=\int_{-\infty}^{t+s_{n}} T\left(t+s_{n}-s\right) P(s) Q(\varphi(s)) d s
$$

Let $\sigma=s-s_{n}$. Then

$$
\begin{aligned}
(G \varphi)\left(t+s_{n}\right) & =\int_{-\infty}^{t} T(t-\sigma) P\left(\sigma+s_{n}\right) Q\left(\varphi\left(\sigma+s_{n}\right)\right) d \sigma \\
& =\int_{-\infty}^{t} T(t-\sigma) P_{n}(\sigma) Q_{n}(\sigma) d \sigma
\end{aligned}
$$

where $P_{n}(\sigma)=P\left(\sigma+s_{n}\right), Q_{n}(\sigma)=Q\left(\varphi\left(\sigma+s_{n}\right)\right), n=1,2, \cdots, \sigma \in \mathbb{R}$.
Since $P \in A A(\mathbb{Z})$, there exists a subsequence of $\left(s_{n}\right)$, which we still denote by $\left(s_{n}\right)$, such that

$$
\hat{P}(\sigma)=\lim _{n \rightarrow \infty} P_{n}(\sigma)
$$

exists for each $\sigma \in \mathbb{R}$ and

$$
\lim _{n \rightarrow \infty} \hat{P}\left(\sigma-s_{n}\right)=P(\sigma)
$$

for each $\sigma \in \mathbb{R}$. Clearly we also have, by passing to a subsequence if necessary,

$$
\lim _{n \rightarrow \infty} \varphi\left(t+s_{n}\right)=\psi(t)
$$

and

$$
\lim _{n \rightarrow \infty} \psi\left(t-s_{n}\right)=\varphi(t)
$$

for each $t \in \mathbb{R}$. By the Bochner integral version of Lebesgue's dominated convergence theorem, we get

$$
\begin{aligned}
& (G \varphi)\left(t+s_{n}\right)=\int_{-\infty}^{t} T(t-\sigma) P_{n}(\sigma) Q_{n}(\sigma) d \sigma \\
& \longrightarrow \int_{-\infty}^{t} T(t-\sigma) \hat{P}(\sigma) Q(\varphi(\sigma)) d \sigma=\chi(t)
\end{aligned}
$$

for each $t \in \mathbb{R}$, and

$$
\begin{aligned}
\chi\left(t-s_{n}\right) & =\int_{-\infty}^{t-s_{n}} T\left(t-s_{n}-\sigma\right) \hat{P}(\sigma) Q(\psi(\sigma)) d \sigma \\
& =\int_{-\infty}^{t} T(t-r) \hat{P}\left(r-s_{n}\right) Q\left(\psi\left(r-s_{n}\right)\right) d r
\end{aligned}
$$

by letting $r=\sigma+s_{n}$. Thus we obtain

$$
\chi\left(t-s_{n}\right) \longrightarrow \int_{-\infty}^{t} T(t-r) P(r) Q(\varphi(r)) d r=(G \varphi)(t)
$$

again by Lebesgue's dominated convergence theorem. This shows that $G(A A(\mathbb{X}))$ $\subset A A(\mathbb{X})$, and the proof is now complete.
Proposition 3.3. $B C^{\delta}(\mathbb{R}, \mathbb{Y})$ is compactly contained in $B C(\mathbb{R}, \mathbb{X})$; in other words, the canonical injection id : BC $C^{\delta}(\mathbb{R}, \mathbb{Y}) \rightarrow B C(\mathbb{R}, \mathbb{X})$ is compact, which implies that

$$
i d: B C^{\delta}(\mathbb{R}, \mathbb{Y}) \cap A A(\mathbb{X}) \rightarrow A A(\mathbb{X})
$$

is compact too.

Proof. We show that $i d$ maps bounded sets of $B C^{\delta}(\mathbb{R}, \mathbb{Y})$ into relatively compact sets of $B C(\mathbb{R}, \mathbb{X})$. To this end, let $\left(\varphi_{\nu}\right)$ be a bounded sequence in $B C^{\delta}(\mathbb{R}, \mathbb{Y})$. Let $\mathbb{Q}=\left\{r_{n}\right\}$ be the set of all rational numbers. Then $\left(\varphi_{\nu}\left(r_{n}\right)\right)$ is a bounded sequence in \mathbb{Y}, for each n. By the well-known Cantor diagonalization process, there exists a subsequence $\left(\varphi_{\nu_{k}}\right)$ such that

$$
\varphi_{\nu_{k}}\left(r_{n}\right) \rightarrow \varphi\left(r_{n}\right),
$$

as $k \rightarrow \infty$ in \mathbb{X}, for each n, and some $\varphi: \mathbb{Q} \rightarrow \mathbb{X}$. But the sequence $\left(\varphi_{n}\right)$ is an equicontinuous family in $B U C(\mathbb{R}, \mathbb{Y}) \subset B U C(\mathbb{R}, \mathbb{X})$, because of the uniform Hölder condition. Thus, as in the proof of the Arzela-Ascoli theorem, there is a further subsequence (which we still denote by $\left(\varphi_{\nu_{k}}\right)$) satisfying

$$
\begin{equation*}
\varphi_{\nu_{k}}(t) \rightarrow \varphi(t), \text { as } k \rightarrow \infty \tag{3.12}
\end{equation*}
$$

in \mathbb{X}, for all $t \in \mathbb{R}$. In addition the convergence is uniform in $t \in \mathbb{R}$. Note that $B U C(\mathbb{R}, \mathbb{X})$ can be identified with $C(K, \mathbb{X})$ for a suitable Hausdorff compactification K of \mathbb{R} (see for instance [3]). Thus the convergence $\varphi_{\nu_{k}} \rightarrow \varphi$ holds in $B U C(\mathbb{R}, \mathbb{X}) \subset$ $B C(\mathbb{R}, \mathbb{X})$. This completes the proof.

Proposition 3.4. The function G has a fixed point in $A A(\mathbb{X})$.
Proof. Let us recall that the estimates (3.10)-(3.11), $|G \varphi|_{\infty} \leq C_{1}(\beta) \mathcal{M}\left(\|\varphi\|_{\infty}\right)$ and $\mid(G \varphi)\left(t_{2}\right)-\left(G \varphi\left(t_{1}\right)\left|\leq C_{5}\right| t_{2}-t_{1} \mid \delta \mathcal{M}\left(\|\varphi\|_{\infty}\right)\right.$, hold for all $\varphi \in B C(\mathbb{R}, \mathbb{Y})$ and all $t_{1}, t_{2} \in \mathbb{R}$ with t_{2} not equal to t_{1}. It follows that there exists a constant $C_{6}=C_{6}\left(\epsilon, M, M_{1}, \alpha, \beta, \gamma\right)$ such that

$$
\begin{array}{rll}
\varphi \in B C(\mathbb{R}, \mathbb{X}) & \text { and } \quad\|\varphi\|_{\infty}<R \text { imply } \\
G \varphi \in B C^{\delta}(\mathbb{R}, \mathbb{Y}) & \text { and } & |G \varphi|<R_{1}
\end{array}
$$

where $R_{1}=C_{6} \mathcal{M}(R)$.
Since $\mathcal{M}(R) / R \rightarrow 0$ as $R \rightarrow \infty$, and since $\|y\| \leq C_{7}|y|$ holds for some constant C_{7} and all $y \in \mathbb{Y}$, it follows that there exists $\rho>0$ such that for all $R \geq \rho$, we have

$$
\begin{equation*}
G\left(B_{A A(\mathbb{X})}(0, R)\right) \subset B_{B C^{\delta}(\mathbb{R}, \mathbb{Y})}(0, R) \cap B_{A A(\mathbb{X})}(0, R) . \tag{3.13}
\end{equation*}
$$

Since G leaves $A A(\mathbb{X}) \subset B C(\mathbb{R}, \mathbb{X})$ invariant, the estimate (3.13) along with the continuity properties of G imply that G is a continuous, compact mapping $S \rightarrow S$, where S is the ball of radius R in $A A(\mathbb{X})$ and $R \geq \rho$. By the Schauder fixed point theorem, G has a fixed point in S, φ_{0}. Obviously, φ_{0} is a mild solution of (1.1).

Finally, the above results can be summarized as follows.
Theorem 3.5. Let A generate an exponentially stable C_{0}-semigroup \mathcal{T} in $\mathcal{B}(\mathbb{X})$. Assume assumptions (1.1) and (3.2)-(3.5). Then (1.1) has a mild solution in $A A(\mathbb{X})$.

Now we end this paper with the following
Example of nonuniqueness. Let $\mathbb{X}=\mathbb{R}, A=-1$ and

$$
u(t)= \begin{cases}t^{3 / 2} e^{1-t}, & \text { for } t \in\left[0, \frac{3}{2}\right] \\ 0, & \text { for } t \in\left[-\frac{3}{2}, 0\right]\end{cases}
$$

Then for $t \in\left[0, \frac{3}{2}\right]$ we have

$$
u^{\prime}(t)=-u(t)+\frac{3}{2} t^{1 / 2} e^{(1-t)}=-u(t)+\frac{3}{2} u(t)^{1 / 3} e^{\frac{2}{3}(1-t)}=-u(t)+f(t, u(t))
$$

where

$$
f(t, \varphi)= \begin{cases}\frac{3}{2} \varphi^{1 / 3} e^{\frac{2}{3}(1-t)}, & \text { for } t \in\left[0, \frac{3}{2}\right] \times \mathbb{R} \\ \frac{3}{2} \varphi^{1 / 3} e^{2 / 3}, & \text { for } t \in\left[-\frac{3}{2}, 0\right] \times \mathbb{R}\end{cases}
$$

Note that $u^{\prime}\left(\frac{3}{2}\right)=0$ and $u\left(\frac{3}{2}\right)=\left(\frac{3}{2}\right)^{\frac{3}{2}} e^{-\frac{3}{2}}$.
Now let $f(t, \varphi)=f\left(\frac{3}{2}, \varphi\right)$ on $\left[\frac{3}{2}, 3\right] \times \mathbb{R}$ and $f(t, \varphi)=f\left(\frac{9}{2}-t, \varphi\right)$ on $\left[3, \frac{9}{2}\right] \times \mathbb{R}$; let $u(t)=u\left(\frac{3}{2}\right)$ on $\left[\frac{3}{2}, 3\right]$, and $u(t)=u\left(\frac{9}{2}-t\right)$ on $\left[3, \frac{9}{2}\right]$. Then $u^{\prime}=-u+f(t, u)$ on $\left[-\frac{3}{2}, \frac{9}{2}\right]$, together with $u(0)=0$.

Extend u to be a periodic function of period 6 (hence an almost automorphic function). Then u and $v \equiv 0$ both satisfy

$$
\frac{d x}{d t}=-x+f(t, x), \quad x(0)=0
$$

References

[1] S. Bochner, Continuous mappings of almost automorphic and almost periodic functions, Proc. Nat. Acad. Sci. USA 52(1964), 407-410. MR0168997(29:6252)
[2] T. Diagana, G. M. N'Guérékata and N. V. Minh, Almost automorphic solutions of evolution equations, Proc. Amer. Math. Soc. 132 (2004), 3289-3298. MR 2073304
[3] N. Dunford and J. T. Schwartz, Linear Operators. Vol. I, Interscience, New York, 1964. MR 0117523 (22:8302)
[4] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, Oxford, 1985. MR0790497 (87c:47056)
[5] G. M. N'Guérékata, Existence and uniqueness of almost automorphic mild solutions to some semilinear abstract differential equations, Semigroup Forum 69 (2004), no. 1, 80-86. MR 2063980
[6] G. M. N'Guérékata, Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Academic/ Plenum Publishers, New York, 2001. MR1880351 (2003d:43001)

Department of Mathematical Sciences, University of Memphis, Memphis, Tennessee 38152-3240

E-mail address: jgoldste@memphis.edu
Department of Mathematics, Morgan State University, Baltimore, Maryland 21251
E-mail address: gnguerek@jewel.morgan.edu

[^0]: Received by the editors February 11, 2004 and, in revised form, April 12, 2004.
 2000 Mathematics Subject Classification. Primary 34A05, 34K05, 47D60, 34G20.

