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Abstract. We are concerned with the semilinear differential equation in a
Banach space X,

x′(t) = Ax(t) + F (t, x(t)), t ∈ R ,

where A generates an exponentially stable C0-semigroup and F (t, x) : R ×
X → X is a function of the form F (t, x) = P (t)Q(x). Under appropriate
conditions on P and Q, and using the Schauder fixed point theorem, we prove
the existence of an almost automorphic mild solution to the above equation.

1. Introduction

Consider in a Banach space (X, ‖ · ‖) the semilinear differential equation

(1.1) x′(t) = Ax(t) + F (t, x(t)), t ∈ R,

where the linear operator A : D(A) ⊂ X → X generates an exponentially stable
C0-semigroup T = (T (t))t≥0; that is, T satisfies the estimate

(1.2) ‖T (t)‖ ≤Me−εt,

for some constants M > 0, ε > 0 and all t ≥ 0. Let F : R × X → X be jointly
continuous. A mild solution to (1.1) is a function x ∈ C(R,X) satisfying the integral
equation

(1.3) x(t) = T (t− a)x(a) +
∫ t

a

T (t− s)F (s, x(s))ds

for every a ∈ R and every t ≥ a.
A fundamental problem is the existence of almost automorphic mild solutions

to (1.1). Recently, G. M. N’Guérékata [5] showed, using the Banach fixed point
theorem, that if

i) F is Lipschitzian in x ∈ X, uniformly in t ∈ R, that is,

(1.4) ‖F (t, x) − F (t, y)‖ ≤ L‖x− y‖

for all x, y ∈ X, and t ≥ 0, and L is sufficiently small, namely L <
ε

M
,

where ε and M are as in (1.2), and
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ii) F (t, x) is almost automorphic in t ∈ R for each x ∈ X,

then problem (1.1) has a unique almost automorphic mild solution.
In this paper, we are going to prove the existence of almost automorphic mild

solutions to (1.1), F being not necessarily Lipschitzian. But first, let us recall some
definitions.

Definition 1.1. A continuous function f : R → X is said to be almost automorphic
if for every sequence of real numbers (s′n), there exists a subsequence (sn) such that

g(t) = lim
n→∞ f(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞ g(t− sn) = f(t)

for each t ∈ R.

It is well known that the range Rf = {f(t)|t ∈ R} of an almost automorphic
function f is relatively compact in X, thus bounded in norm (see [6], Theorem
2.13). The function g in the definition is also bounded and strongly measurable.
Also, the set AA(X) of all almost automorphic functions f : R → X equipped with
the sup-norm

‖f‖∞ = sup
t∈R

‖f(t)‖,

is a Banach space (see [6], page 20).
Also, given two Banach spaces (X1, ‖ · ‖1) and (X2, ‖ · ‖2), B(X1,X2) will denote

the Banach space of bounded linear operators L : X1 → X2, BC(R,X1) is the
Banach space of all continuous and bounded functions f : R → X1, andBUC(R,X1)
is the Banach space of all bounded and uniformly continuous functions f : R → X1.

2. Preliminaries

In this paper (Y, | · |) will denote a Banach space algebraically contained in X

such that the canonical injection Y → X is compact. An example of such a space
Y is an abstract Sobolev space that we construct as follows:

Let A be as in (1.1), (1.2). By (1.2), 0 ∈ ρ(A), so that the fractional powers
(−A)α, 0 < α < 1, are well defined. Also, since 0 ∈ ρ(A), the norm

|f | = ‖(−A)αf‖(2.1)

is equivalent to the graph norm

‖f‖α = ‖(−A)αf‖ + ‖f‖.

Now we take X = Lp(Ω), where 1 < p < ∞ and Ω ⊂ Rn is a smooth bounded
domain in Rn. Let A be a linear uniformly elliptic operator (with suitable boundary
conditions), of order 2m. Then let Y be the domain of (−A)α with norm (2.1); we
have

W 2mα,p
0 (Ω) ⊂ Y ⊂W 2mα,p(Ω)

and the norm | · | in Y is equivalent to the usual norm in W 2mα,p(Ω). Also, the
injection Y → X is compact in this case, by Sobolev embedding.
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3. Main results

Now let Y = D((−A)α), the domain of (−A)α, with norm

|y| = ‖(−A)αy‖, y ∈ D((−A)α),

where 0 < α < 1 is fixed. We get

|T (t)y| = ‖T (t)(−A)αy‖ ≤Me−εt‖(−A)αy‖ = Me−εt|y|(3.1)

for each y ∈ Y and every t ≥ 0, by (1.2).
We also make the following assumptions:

(3.2) F (t, x) = P (t)Q(x), for all t ∈ R, x ∈ X,

where P (t) ∈ AA(Z) for each t ∈ R with Z = B(X,Y); P is continuous from R to
AA(Z), and Q : BC(R,X) → BC(R,X) is continuous and satisfies the estimate

(3.3) ‖Qϕ‖∞ ≤ M(‖ϕ‖∞),

where ‖f‖∞ := supt∈R
‖f(t)‖ and M ∈ C(R+,R+) satisfies

(3.4) lim
r→∞

M(r)
r

= 0.

Note that M can be unbounded but must grow slower than a linear function. Let

(3.5) [P ] := sup
t∈R

‖P (t)‖Z <∞.

Define G : BC(R,X) → BC(R,Y) by

(3.6) (Gϕ)(t) =
∫ t

−∞
T (t− s)F (s, ϕ(s))ds.

For ϕ ∈ BC(R,X), this integral exists. Indeed, we have

|(Gϕ)(t)| ≤
∫ t

−∞
|T (t− s)||P (t)Q(ϕ(s))|ds

≤
∫ t

−∞
Me−ε(t−s)[P ]M(‖ϕ‖∞)ds

using (3.1), (3.3) and (3.5). Consequently

|Gϕ|∞ = sup
t∈R

|(Gϕ)(t)|

≤Mε−1[P ]M(‖ϕ‖∞).(3.7)

Continuity of G is straightforward by virtue of continuity of both P and Q. Thus
we have

G(BC(R,X)) ⊂ BC(R,Y).
Finally, for 0 < δ ≤ 1, let

BCδ(R,Y) ≡ {f ∈ BC(R,Y) : |f |δ,Y <∞},
where

|f |δ,Y ≡ sup
t∈R

|f(t)| + δ sup
t,s∈R,t�=s

|f(t) − f(s)|
|t− s|δ .

With the norm | · |δ,Y, BCδ(R,Y) turns out to be a Banach space of all bounded
Hölder continuous Y-valued functions on R of Hölder exponent δ.
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Proposition 3.1. The function G defined above maps bounded sets of BC(R,X)
into bounded sets of BCδ(R,Y) for any δ > 0 satisfying δ < α, where 0 < α < 1 is
the exponent defining Y = D(−A)−α.

Proof. The proof is basically a modification of the above remarks. Let 0 < β < α.
Then

|(Gϕ)(t)| = |
∫ t

−∞
T (t− s)(−A)β(−A)−βF (s, ϕ(s))ds|

≤
∫ t

−∞
|T (t− s)(−A)β ||(−A)−βP (s)||Q(ϕ(s)|ds.(3.8)

Now, by semigroup theory (see for instance [4]), there exists a constant M1 such
that

‖T (r)(−A)β‖ ≤ M1e
−εr

rβ

for all r > 0. Thus we obtain, as previously,

|T (r)(−A)β | ≤M1e
−εrr−β , r > 0.(3.9)

Next, we observe that the function s 	→ (−A)−βP (s) is a uniformly bounded
function R → B(X, D((−A)α−β). Indeed, it is the composition of P (·) : R →
B(X, D((−A)α)), which is bounded by [P ], with (−A)−β , an isometry from
D((−A)α) onto D((−A)α−β). Thus

sup
t∈R

‖P (t)‖B(X,D((−A)α−β)) ≤ [P ].

Now combining the estimates in (3.8) and (3.9), we deduce

|(Gϕ)(t)| ≤
∫ t

−∞
M1e

−ε(t−s)(t− s)−β [P ]M(‖ϕ‖∞)ds.

Letting r = t− s in the integral gives

|(Gϕ(t)| ≤
∫ ∞

0

M1e
−rr−β [P ]M(‖ϕ‖)dr;

that is,

(3.10) |(Gϕ)(t)| ≤ C1(β)M(‖ϕ‖∞),

where C1(β) depends on β,M1, ε and [P ]. Next, for t2 > t1, we have

|(Gϕ)(t2) − (Gϕ)(t1)|

≤ |(
∫ t2

−∞
−

∫ t1

−∞
)T (t2 − s)(−A)β(−A)−βP (s)Q(ϕ(s))ds|

+ |
∫ t1

−∞
(T (t2 − s) − T (t1 − s))(−A)β(−A)−βP (s)Q(ϕ(s))ds|

≤
∫ t2

t1

|T (t2 − s)(−A)β(−A)−βP (s)Q(ϕ(s))|ds

+
∫ t1

−∞
|(T (t2 − t1) − I)T (t1 − s)(−A)β(−A)−βP (s)Q(ϕ(s))|ds

= J1 + J2.
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By the same argument leading to (3.10) we get

J1 ≤
∫ t2−t1

0

M1e
−εrr−β [P ]M(‖ϕ‖∞)dr

≤ C2(β)M(‖ϕ‖∞)(t2 − t1)1−β .

Also, we have

J2 ≤
∫ t1

−∞
|(T (t2 − t1) − I)(−A)−γ(T (t1 − s)(−A)(β−γ)(−A)−βP (s)Q(ϕ(s))|ds

≤
∫ t1

−∞
|(T (t2 − t1) − I)(−A)−γ |

·|(T (t1 − s)(−A)(β−γ)(−A)−βP (s)Q(ϕ(s))|ds
≤ |(T (t2 − t1) − I)(−A)−γ |

·
∫ t1

−∞
|T (t1 − s)(−A)(β−γ)(−A)−βP (s)Q(ϕ(s))|ds

≤ |(T (t2 − t1) − I)(−A)−γ |C3(β, γ)M(‖ϕ‖∞)

provided 0 < γ < β. Next recall that (T (r) − I)g =
∫ r

0 T (s)Agds for g ∈ D(A), by
the fundamental theorem of calculus. Thus, for f ∈ Y,

|(T (r) − I)(−A)−γf | = ‖
∫ r

0

T (s)(−A)1−γ−α(−A)αfds‖

≤ ‖(−A)αf‖
∫ r

0

M1e
−εss1−γ−αds

= C4(γ, ε,M1)r2−γ−α|f |,
since 1 − γ − α > −1, because 0 < γ < β < α < 1.

In other words, |(T (r) − I)(−A)−γ | ≤ C4r
2−γ−α; consequently,

J2 ≤ C4(t2 − t1)2−γ−αC3M(‖ϕ‖∞).

For δ = min(2 − γ − α, 1 − β) > 0, it follows that

(3.11) |(Gϕ)(t2) − (Gϕ(t1)| ≤ C5|t2 − t1|δM(‖ϕ‖∞),

where C5 depends on ε,M1, [P ], α, β, γ and Y, that is, on parameters of the problem.
It follows that, for ϕ ∈ BC(R,X) with ‖ϕ(t)‖ ≤ R for all t ∈ R, then Gϕ ∈

BCδ(R,Y) with ‖Gϕ(t)‖ ≤ R1 for all t ∈ R and some R1 that depends on R. This
completes the proof. �
Proposition 3.2. The function G maps bounded sets of AA(X) into bounded sets
of BCδ(R,Y) ∩AA(X) for 0 < δ < α.

Proof. We just need to check that

G(AA(X)) ⊂ AA(X).

To this end, let ϕ ∈ AA(X). Then given a sequence (s′n) ⊂ R, there exists a
subsequence (sn) ⊂ (s′n) such that

ψ(t) = lim
n→∞ϕ(t+ sn)

is well defined for each t ∈ R and

lim
n→∞ψ(t− sn) = ϕ(t)
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for each t ∈ R. Since ψ ∈ BC(R,X), then

(Gϕ)(t + sn) =
∫ t+sn

−∞
T (t+ sn − s)P (s)Q(ϕ(s))ds.

Let σ = s− sn. Then

(Gϕ)(t + sn) =
∫ t

−∞
T (t− σ)P (σ + sn)Q(ϕ(σ + sn))dσ

=
∫ t

−∞
T (t− σ)Pn(σ)Qn(σ)dσ,

where Pn(σ) = P (σ + sn), Qn(σ) = Q(ϕ(σ + sn)), n = 1, 2, · · · , σ ∈ R.
Since P ∈ AA(Z), there exists a subsequence of (sn), which we still denote by

(sn), such that
P̂ (σ) = lim

n→∞Pn(σ)

exists for each σ ∈ R and

lim
n→∞ P̂ (σ − sn) = P (σ)

for each σ ∈ R. Clearly we also have, by passing to a subsequence if necessary,

lim
n→∞ϕ(t+ sn) = ψ(t)

and
lim

n→∞ψ(t− sn) = ϕ(t),

for each t ∈ R. By the Bochner integral version of Lebesgue’s dominated conver-
gence theorem, we get

(Gϕ)(t + sn) =
∫ t

−∞
T (t− σ)Pn(σ)Qn(σ)dσ

−→
∫ t

−∞
T (t− σ)P̂ (σ)Q(ϕ(σ))dσ = χ(t)

for each t ∈ R, and

χ(t− sn) =
∫ t−sn

−∞
T (t− sn − σ)P̂ (σ)Q(ψ(σ))dσ

=
∫ t

−∞
T (t− r)P̂ (r − sn)Q(ψ(r − sn))dr

by letting r = σ + sn. Thus we obtain

χ(t− sn) −→
∫ t

−∞
T (t− r)P (r)Q(ϕ(r))dr = (Gϕ)(t),

again by Lebesgue’s dominated convergence theorem. This shows that G(AA(X))
⊂ AA(X), and the proof is now complete. �

Proposition 3.3. BCδ(R,Y) is compactly contained in BC(R,X); in other words,
the canonical injection id : BCδ(R,Y) → BC(R,X) is compact, which implies that

id : BCδ(R,Y) ∩AA(X) → AA(X)

is compact too.
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Proof. We show that id maps bounded sets of BCδ(R,Y) into relatively compact
sets of BC(R,X). To this end, let (ϕν) be a bounded sequence in BCδ(R,Y). Let
Q = {rn} be the set of all rational numbers. Then (ϕν(rn)) is a bounded sequence
in Y, for each n. By the well-known Cantor diagonalization process, there exists a
subsequence (ϕνk

) such that

ϕνk
(rn) → ϕ(rn),

as k → ∞ in X, for each n, and some ϕ : Q → X. But the sequence (ϕn) is an
equicontinuous family in BUC(R,Y) ⊂ BUC(R,X), because of the uniform Hölder
condition. Thus, as in the proof of the Arzela-Ascoli theorem, there is a further
subsequence (which we still denote by (ϕνk

)) satisfying

(3.12) ϕνk
(t) → ϕ(t), as k → ∞

in X, for all t ∈ R. In addition the convergence is uniform in t ∈ R. Note that
BUC(R,X) can be identified with C(K,X) for a suitable Hausdorff compactification
K of R (see for instance [3]). Thus the convergence ϕνk

→ ϕ holds in BUC(R,X) ⊂
BC(R,X). This completes the proof. �
Proposition 3.4. The function G has a fixed point in AA(X).

Proof. Let us recall that the estimates (3.10)-(3.11), |Gϕ|∞ ≤ C1(β)M(‖ϕ‖∞)
and |(Gϕ)(t2) − (Gϕ(t1)| ≤ C5|t2 − t1|δM(‖ϕ‖∞), hold for all ϕ ∈ BC(R,Y)
and all t1, t2 ∈ R with t2 not equal to t1. It follows that there exists a constant
C6 = C6(ε,M,M1, α, β, γ) such that

ϕ ∈ BC(R,X) and ‖ϕ‖∞ < R imply

Gϕ ∈ BCδ(R,Y) and |Gϕ| < R1,

where R1 = C6M(R).
Since M(R)/R → 0 as R → ∞, and since ‖y‖ ≤ C7|y| holds for some constant

C7 and all y ∈ Y, it follows that there exists ρ > 0 such that for all R ≥ ρ, we have

(3.13) G(BAA(X)(0, R)) ⊂ BBCδ(R,Y)(0, R) ∩BAA(X)(0, R).

Since G leaves AA(X) ⊂ BC(R,X) invariant, the estimate (3.13) along with the
continuity properties of G imply that G is a continuous, compact mapping S → S,
where S is the ball of radius R in AA(X) and R ≥ ρ. By the Schauder fixed point
theorem, G has a fixed point in S, ϕ0. Obviously, ϕ0 is a mild solution of (1.1). �

Finally, the above results can be summarized as follows.

Theorem 3.5. Let A generate an exponentially stable C0-semigroup T in B(X).
Assume assumptions (1.1) and (3.2)-(3.5). Then (1.1) has a mild solution in
AA(X).

Now we end this paper with the following

Example of nonuniqueness. Let X = R, A = −1 and

u(t) =

{
t3/2e1−t, for t ∈ [0, 3

2 ],
0, for t ∈ [− 3

2 , 0].

Then for t ∈ [0, 3
2 ] we have

u′(t) = −u(t) +
3
2
t1/2e(1−t) = −u(t) +

3
2
u(t)1/3e

2
3 (1−t) = −u(t) + f(t, u(t))
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where

f(t, ϕ) =

{
3
2ϕ

1/3e
2
3 (1−t), for t ∈ [0, 3

2 ] × R,
3
2ϕ

1/3e2/3, for t ∈ [− 3
2 , 0] × R.

Note that u′(3
2 ) = 0 and u(3

2 ) = (3
2 )

3
2 e−

3
2 .

Now let f(t, ϕ) = f(3
2 , ϕ) on [32 , 3] × R and f(t, ϕ) = f(9

2 − t, ϕ) on [3, 9
2 ] × R;

let u(t) = u(3
2 ) on [32 , 3], and u(t) = u(9

2 − t) on [3, 9
2 ]. Then u′ = −u+ f(t, u) on

[− 3
2 ,

9
2 ], together with u(0) = 0.

Extend u to be a periodic function of period 6 (hence an almost automorphic
function). Then u and v ≡ 0 both satisfy

dx

dt
= −x+ f(t, x), x(0) = 0.
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