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ALMOST-DISJOINT CODING
AND STRONGLY SATURATED IDEALS

PAUL B. LARSON

(Communicated by Alan Dow)

Abstract. We show that Martin’s Axiom plus c = ℵ2 implies that there is
no (ℵ2,ℵ2,ℵ0)-saturated σ-ideal on ω1.

Given cardinals λ, κ and γ, a σ-ideal I on a set X is said to be (λ, κ, γ)-saturated
if for every set {Aα : α < λ} ⊂ P(X) \ I there exists a set Y ∈ [λ]κ such that for
all Z ∈ [Y ]γ ,

⋂
{Aα : α ∈ Z} �∈ I. Laver [6] was the first to show the consistency

of an (ℵ2,ℵ2,ℵ0)-saturated ideal on ω1, using a huge cardinal. Shelah [10] later
showed that the nonstationary ideal on ω1 restricted to a given stationary set can
be (ℵ2,ℵ2,ℵ0)-saturated, using a supercompact cardinal.

The cardinal characteristic ap is defined to be the least κ such that there exist
an almost disjoint family {eα : α < κ} (i.e., each eα is an infinite subset of ω, and
for each distinct pair α, β < κ, eα ∩ eβ is finite) and a set A ⊂ κ such that for no
x ⊂ ω does it hold for all α < κ that α ∈ A if and only if eα ∩ x is infinite (in [5]
we called this q, but [1] shows that we should not have, as consistently every set of
reals of cardinality ap is a Q-set). We let c denote the cardinality of the continuum.
It follows easily that 2γ = c for every infinite γ < ap.

Given a cardinal γ, MAγ is the variant of Martin’s Axiom that says that if P is
a c.c.c. partial order and Dα (α < γ) are dense subsets of P , then there is a filter
G ⊂ P such that G ∩ Dα is nonempty for each α < γ. It is a standard fact that
MAγ implies that ap > γ [4].

In this note, we show that the statement ap = c = ℵ2 implies that there is no
countably complete (ℵ2,ℵ2,ℵ0)-saturated σ-ideal on ω1. This contradicts state-
ments in [7, 8] to the effect that the axiom PFA (see [10]) had been shown to be
consistent with the existence of a stationary subset of ω1 such that the nonstation-
ary ideal restricted to this set is (ℵ2,ℵ2,ℵ0)-saturated. This situation is addressed
by Nyikos in [9] and in another corrigendum to appear.

For a fixed cardinal κ, an ideal on a set X is κ-dense if there is a subset A of
P(X) \ I of cardinality κ such that every I-positive subset of X contains a member
of A modulo I. It follows easily that every ℵ1-dense σ-ideal is (ℵ2,ℵ2,ℵ0)-saturated.
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It is a classical fact due to Ulam that there is no ℵ0-dense σ-ideal on ω1 (see, for
instance, Lemma 10.13 of [3]). Taylor [11] showed that under MAℵ1 there is no
ℵ1-dense σ-ideal on ω1. The proof of Theorem 18 in [2] shows that ap > ℵ1 suffices,
i.e., that the following holds (a version of the argument appears also in [5]).

Fact 0.1. If ap > ℵ1, then there is no ℵ1-dense σ-ideal on ω1.

For the rest of this note, we fix an almost disjoint family {eα : α < ω1}. For
each n ∈ ω and each (possibly finite) σ ⊂ ω, we let En

σ = {α < ω1 | |eα ∩ σ| ≥ n},
and we let Fn

σ = ω1 \ En
σ .

Lemma 0.2. Assume that ap > ℵ1. Let I be a σ-ideal on ω1 and let β be a cardinal
such that P(ω1)/I is not β-dense. Let {Aα : α < β} be a subset of P(ω1) \ I. Then
there exist an x ⊂ ω and an n ∈ ω such that

• Fn
x �∈ I,

• for each α < β there exists an m ∈ ω such that En
x∩m ∩ Aα �∈ I.

Proof. Since P(ω1)/I is not β-dense, we may fix {Bα : α < β} ⊂ P(ω1) \ I and
D ∈ P(ω1) \ I such that each Bα ⊂ Aα and each Bα ∩D = ∅. Since ap > ℵ1, there
exists an x ⊂ ω such that eγ ∩ x is infinite for each γ ∈

⋃
{Bα : α < β} and eγ ∩ x

is finite for each γ ∈ D. Since D ⊂
⋃
{Fn

x : n < ω}, we may fix an n ∈ ω such
that Fn

x �∈ I. Similarly, for each α < β, since Bα ⊂
⋃
{En

x∩m : m < ω}, there is an
m ∈ ω such that En

x∩m ∩ Aα �∈ I. �

The following theorem shows that ap > ℵ1 implies that there is no σ-ideal I on
ω1 which is (γ, γ,ℵ0)-saturated, where γ is the least cardinality of a dense subset
of P(ω1)/I. In particular, if ap = c = ℵ2, then there is no (ℵ2,ℵ2,ℵ0)-saturated
σ-ideal on ω1.

Theorem 0.3. Assume that ap > ℵ1, and let I be a σ-ideal on ω1. Let γ be the least
cardinal such that there exists a dense (modulo I) subset of P(ω1) \ I of cardinality
γ. Then there is a sequence 〈Dα : α < γ〉 of members of P(ω1) \ I such that for
every cofinal X ⊂ γ there exists a countable y ⊂ X such that

⋂
{Dα : α ∈ y} ∈ I.

Proof. Let {Aα : α < γ} enumerate a dense subset of P(ω1) \ I modulo I. For
each β < γ, apply Lemma 0.2 to {Aα : α < β}, obtaining xβ , nβ and Dβ = F

nβ
xβ

such that Dβ �∈ I and such that for each α < β there exists an m ∈ ω such that
Aα ∩ E

nβ

xβ∩m �∈ I.
Now let X ⊂ γ be cofinal. Let Z be the set of pairs (n, σ) (n ∈ ω, σ ⊂ ω finite)

such that there exists a β ∈ X with En
σ ∩Dβ ∈ I. We claim that {En

σ : (n, σ) ∈ Z}
is predense in P(ω1) \ I, i.e., that for every α < γ there exist a β ∈ X, an n ∈ ω
and a finite σ ⊂ ω such that En

σ ∩ Dβ ∈ I and En
σ ∩ Aα �∈ I. To verify this, fix

α < γ and let β be any member of X greater than α. Then Dβ = F
nβ
xβ and there

exists an m such that E
nβ

xβ∩m ∩ Aα �∈ I, so β, nβ and xβ ∩ m suffice for α.
Now, for each (n, σ) ∈ Z, choose β(n,σ) ∈ X such that En

σ ∩ Dβ(n,σ) ∈ I. Then
since {En

σ : (n, σ) ∈ Z} is predense in P(ω1) \ I,
⋂
{Dβ(n,σ) : (n, σ) ∈ Z} ∈ I. �

We do not know whether some forcing axiom implies that the nonstationary
ideal on ω1 is not (ℵ2,ℵ1,ℵ0)-saturated. On the other hand, for all we know, some
forcing axiom implies that the nonstationary ideal on ω1 is (ℵ2,ℵ1,ℵ0)-saturated.



ALMOST-DISJOINT CODING AND STRONGLY SATURATED IDEALS 2739

References

[1] J. Brendle, Dow’s principle and Q-sets, Canad. Math. Bull. 42 (1999), no. 1, 13–24
MR1695894 (2000h:03093)

[2] M. Foreman, M. Magidor, S. Shelah, Martin’s Maximum, saturated ideals, and non-regular
ultrafilters. Part I, Annals of Mathematics 127 (1988), 1–47 MR0924672 (89f:03043)

[3] T. Jech, Set Theory, The third millennium edition, revised and expanded. Springer Mono-
graphs in Mathematics. Springer-Verlag, Berlin, 2003 MR1940513 (2004g:03071)

[4] R.B. Jensen, R.M. Solovay, Some applications of almost disjoint sets, Mathematical Logic
and Foundations of Set Theory (Proc. Internat. Colloq., J erusalem, 1968), North-Holland,
Amsterdam, pp. 84–104, 1970 MR0289291 (44:6482)

[5] P. Larson, A uniqueness theorem for iterations, J. Symbolic Logic 67 (2002), no. 4, 1344–1350
MR1955241 (2003m:03081)

[6] R. Laver, An (ℵ2, ℵ2, ℵ0)-saturated ideal on ω1, Logic Colloquium ’80 (Prague, 1980), pp.
173–180, Stud. Logic Foundations Math., 108, North-Holland, Amsterdam-New York, 1982.
MR0673792 (84a:03060)

[7] P. Nyikos, Complete normality and metrization theory of manifolds, Top. Appl. 123 (1)

(2002), 181–192 MR1921659 (2003f:54048)
[8] P. Nyikos, Applications of some strong set-theoretic axioms to locally compact T5 and hered-

itarily scwH spaces, Fund. Math. 176 (2003), no. 1, 25–45 MR1971471 (2004k:54008)
[9] P. Nyikos, Correction to: “Complete normality and metrization theory of manifolds” [Topol-

ogy Appl. 123 (2002), no. 1, 181–192], Topology Appl. 138 (2004), no. 1-3, 325–327
MR2035491 (2004k:54030)

[10] S. Shelah, Proper and improper forcing, Perspectives in Mathematical Logic, Springer-Verlag,
Berlin, 1998 MR1623206 (98m:03002)

[11] A.D. Taylor, Regularity properties of ideals and ultrafilters, Ann. Math. Logic 16 (1979), no.
1, 33–55 MR0530430 (83b:04003)

Department of Mathematics, Miami University, Oxford, Ohio 45056

E-mail address: larsonpb@muohio.edu

http://www.ams.org/mathscinet-getitem?mr=1695894
http://www.ams.org/mathscinet-getitem?mr=1695894
http://www.ams.org/mathscinet-getitem?mr=0924672
http://www.ams.org/mathscinet-getitem?mr=0924672
http://www.ams.org/mathscinet-getitem?mr=1940513
http://www.ams.org/mathscinet-getitem?mr=1940513
http://www.ams.org/mathscinet-getitem?mr=0289291
http://www.ams.org/mathscinet-getitem?mr=0289291
http://www.ams.org/mathscinet-getitem?mr=1955241
http://www.ams.org/mathscinet-getitem?mr=1955241
http://www.ams.org/mathscinet-getitem?mr=0673792
http://www.ams.org/mathscinet-getitem?mr=0673792
http://www.ams.org/mathscinet-getitem?mr=1921659
http://www.ams.org/mathscinet-getitem?mr=1921659
http://www.ams.org/mathscinet-getitem?mr=1971471
http://www.ams.org/mathscinet-getitem?mr=1971471
http://www.ams.org/mathscinet-getitem?mr=2035491
http://www.ams.org/mathscinet-getitem?mr=2035491
http://www.ams.org/mathscinet-getitem?mr=1623206
http://www.ams.org/mathscinet-getitem?mr=1623206
http://www.ams.org/mathscinet-getitem?mr=0530430
http://www.ams.org/mathscinet-getitem?mr=0530430

	References

