PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 133, Number 9, Pages 2737–2739 S 0002-9939(05)07824-X Article electronically published on March 22, 2005

ALMOST-DISJOINT CODING AND STRONGLY SATURATED IDEALS

PAUL B. LARSON

(Communicated by Alan Dow)

ABSTRACT. We show that Martin's Axiom plus $\mathfrak{c} = \aleph_2$ implies that there is no $(\aleph_2, \aleph_2, \aleph_0)$ -saturated σ -ideal on ω_1 .

Given cardinals λ , κ and γ , a σ -ideal I on a set X is said to be $(\lambda, \kappa, \gamma)$ -saturated if for every set $\{A_{\alpha} : \alpha < \lambda\} \subset \mathcal{P}(X) \setminus I$ there exists a set $Y \in [\lambda]^{\kappa}$ such that for all $Z \in [Y]^{\gamma}$, $\bigcap \{A_{\alpha} : \alpha \in Z\} \notin I$. Laver [6] was the first to show the consistency of an $(\aleph_2, \aleph_2, \aleph_0)$ -saturated ideal on ω_1 , using a huge cardinal. Shelah [10] later showed that the nonstationary ideal on ω_1 restricted to a given stationary set can be $(\aleph_2, \aleph_2, \aleph_0)$ -saturated, using a supercompact cardinal.

The cardinal characteristic \mathfrak{ap} is defined to be the least κ such that there exist an almost disjoint family $\{e_{\alpha}: \alpha < \kappa\}$ (i.e., each e_{α} is an infinite subset of ω , and for each distinct pair $\alpha, \beta < \kappa$, $e_{\alpha} \cap e_{\beta}$ is finite) and a set $A \subset \kappa$ such that for no $x \subset \omega$ does it hold for all $\alpha < \kappa$ that $\alpha \in A$ if and only if $e_{\alpha} \cap x$ is infinite (in [5] we called this \mathfrak{q} , but [1] shows that we should not have, as consistently every set of reals of cardinality \mathfrak{ap} is a Q-set). We let \mathfrak{c} denote the cardinality of the continuum. It follows easily that $2^{\gamma} = \mathfrak{c}$ for every infinite $\gamma < \mathfrak{ap}$.

Given a cardinal γ , MA_{γ} is the variant of Martin's Axiom that says that if P is a c.c.c. partial order and D_{α} ($\alpha < \gamma$) are dense subsets of P, then there is a filter $G \subset P$ such that $G \cap D_{\alpha}$ is nonempty for each $\alpha < \gamma$. It is a standard fact that MA_{γ} implies that $\mathfrak{ap} > \gamma$ [4].

In this note, we show that the statement $\mathfrak{ap} = \mathfrak{c} = \aleph_2$ implies that there is no countably complete $(\aleph_2, \aleph_2, \aleph_0)$ -saturated σ -ideal on ω_1 . This contradicts statements in [7, 8] to the effect that the axiom PFA (see [10]) had been shown to be consistent with the existence of a stationary subset of ω_1 such that the nonstationary ideal restricted to this set is $(\aleph_2, \aleph_2, \aleph_0)$ -saturated. This situation is addressed by Nyikos in [9] and in another corrigendum to appear.

For a fixed cardinal κ , an ideal on a set X is κ -dense if there is a subset \mathcal{A} of $\mathcal{P}(X) \setminus I$ of cardinality κ such that every I-positive subset of X contains a member of \mathcal{A} modulo I. It follows easily that every \aleph_1 -dense σ -ideal is $(\aleph_2, \aleph_2, \aleph_0)$ -saturated.

Received by the editors May 9, 2003 and, in revised form, May 14, 2004. 2000 Mathematics Subject Classification. Primary 03E50; Secondary 54D15.

The research in this paper was conducted with the support of a FAPESP fellowship (Grant # 02/11551-3) at the University of São Paulo.

It is a classical fact due to Ulam that there is no \aleph_0 -dense σ -ideal on ω_1 (see, for instance, Lemma 10.13 of [3]). Taylor [11] showed that under MA_R, there is no \aleph_1 -dense σ -ideal on ω_1 . The proof of Theorem 18 in [2] shows that $\mathfrak{ap} > \aleph_1$ suffices, i.e., that the following holds (a version of the argument appears also in [5]).

Fact 0.1. If $\mathfrak{ap} > \aleph_1$, then there is no \aleph_1 -dense σ -ideal on ω_1 .

For the rest of this note, we fix an almost disjoint family $\{e_{\alpha}: \alpha < \omega_1\}$. For each $n \in \omega$ and each (possibly finite) $\sigma \subset \omega$, we let $E_{\sigma}^{n} = \{\alpha < \omega_{1} \mid |e_{\alpha} \cap \sigma| \geq n\}$, and we let $F_{\sigma}^{n} = \omega_{1} \setminus E_{\sigma}^{n}$.

Lemma 0.2. Assume that $\mathfrak{ap} > \aleph_1$. Let I be a σ -ideal on ω_1 and let β be a cardinal such that $\mathcal{P}(\omega_1)/I$ is not β -dense. Let $\{A_\alpha : \alpha < \beta\}$ be a subset of $\mathcal{P}(\omega_1) \setminus I$. Then there exist an $x \subset \omega$ and an $n \in \omega$ such that

- $F_x^n \notin I$, for each $\alpha < \beta$ there exists an $m \in \omega$ such that $E_{x \cap m}^n \cap A_\alpha \notin I$.

Proof. Since $\mathcal{P}(\omega_1)/I$ is not β -dense, we may fix $\{B_\alpha : \alpha < \beta\} \subset \mathcal{P}(\omega_1) \setminus I$ and $D \in \mathcal{P}(\omega_1) \setminus I$ such that each $B_{\alpha} \subset A_{\alpha}$ and each $B_{\alpha} \cap D = \emptyset$. Since $\mathfrak{ap} > \aleph_1$, there exists an $x \subset \omega$ such that $e_{\gamma} \cap x$ is infinite for each $\gamma \in \bigcup \{B_{\alpha} : \alpha < \beta\}$ and $e_{\gamma} \cap x$ is finite for each $\gamma \in D$. Since $D \subset \bigcup \{F_x^n : n < \omega\}$, we may fix an $n \in \omega$ such that $F_x^n \notin I$. Similarly, for each $\alpha < \beta$, since $B_\alpha \subset \bigcup \{E_{x \cap m}^n : m < \omega\}$, there is an $m \in \omega$ such that $E_{x \cap m}^n \cap A_\alpha \notin I$.

The following theorem shows that $\mathfrak{ap} > \aleph_1$ implies that there is no σ -ideal I on ω_1 which is $(\gamma, \gamma, \aleph_0)$ -saturated, where γ is the least cardinality of a dense subset of $\mathcal{P}(\omega_1)/I$. In particular, if $\mathfrak{ap} = \mathfrak{c} = \aleph_2$, then there is no $(\aleph_2, \aleph_2, \aleph_0)$ -saturated σ -ideal on ω_1 .

Theorem 0.3. Assume that $\mathfrak{ap} > \aleph_1$, and let I be a σ -ideal on ω_1 . Let γ be the least cardinal such that there exists a dense (modulo I) subset of $\mathcal{P}(\omega_1) \setminus I$ of cardinality γ . Then there is a sequence $\langle D_{\alpha} : \alpha < \gamma \rangle$ of members of $\mathcal{P}(\omega_1) \setminus I$ such that for every cofinal $X \subset \gamma$ there exists a countable $y \subset X$ such that $\bigcap \{D_{\alpha} : \alpha \in y\} \in I$.

Proof. Let $\{A_{\alpha} : \alpha < \gamma\}$ enumerate a dense subset of $\mathcal{P}(\omega_1) \setminus I$ modulo I. For each $\beta < \gamma$, apply Lemma 0.2 to $\{A_{\alpha} : \alpha < \beta\}$, obtaining x_{β}, n_{β} and $D_{\beta} = F_{x_{\beta}}^{n_{\beta}}$ such that $D_{\beta} \notin I$ and such that for each $\alpha < \beta$ there exists an $m \in \omega$ such that $A_{\alpha} \cap E_{x_{\beta} \cap m}^{n_{\beta}} \not\in I.$

Now let $X \subset \gamma$ be cofinal. Let Z be the set of pairs (n, σ) $(n \in \omega, \sigma \subset \omega)$ finite) such that there exists a $\beta \in X$ with $E_{\sigma}^n \cap D_{\beta} \in I$. We claim that $\{E_{\sigma}^n : (n, \sigma) \in Z\}$ is predense in $\mathcal{P}(\omega_1) \setminus I$, i.e., that for every $\alpha < \gamma$ there exist a $\beta \in X$, an $n \in \omega$ and a finite $\sigma \subset \omega$ such that $E_{\sigma}^n \cap D_{\beta} \in I$ and $E_{\sigma}^n \cap A_{\alpha} \notin I$. To verify this, fix $\alpha < \gamma$ and let β be any member of X greater than α . Then $D_{\beta} = F_{x_{\beta}}^{n_{\beta}}$ and there exists an m such that $E_{x_{\beta} \cap m}^{n_{\beta}} \cap A_{\alpha} \notin I$, so β , n_{β} and $x_{\beta} \cap m$ suffice for α .

Now, for each $(n,\sigma) \in Z$, choose $\beta_{(n,\sigma)} \in X$ such that $E_{\sigma}^n \cap D_{\beta_{(n,\sigma)}} \in I$. Then since $\{E_{\sigma}^n : (n,\sigma) \in Z\}$ is predense in $\mathcal{P}(\omega_1) \setminus I$, $\bigcap \{D_{\beta_{(n,\sigma)}} : (n,\sigma) \in Z\} \in I$.

We do not know whether some forcing axiom implies that the nonstationary ideal on ω_1 is not $(\aleph_2, \aleph_1, \aleph_0)$ -saturated. On the other hand, for all we know, some forcing axiom implies that the nonstationary ideal on ω_1 is $(\aleph_2, \aleph_1, \aleph_0)$ -saturated.

References

- J. Brendle, Dow's principle and Q-sets, Canad. Math. Bull. 42 (1999), no. 1, 13–24 MR1695894 (2000h:03093)
- [2] M. Foreman, M. Magidor, S. Shelah, Martin's Maximum, saturated ideals, and non-regular ultrafilters. Part I, Annals of Mathematics 127 (1988), 1–47 MR0924672 (89f:03043)
- [3] T. Jech, Set Theory, The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003 MR1940513 (2004g:03071)
- [4] R.B. Jensen, R.M. Solovay, Some applications of almost disjoint sets, Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., J erusalem, 1968), North-Holland, Amsterdam, pp. 84–104, 1970 MR0289291 (44:6482)
- [5] P. Larson, A uniqueness theorem for iterations, J. Symbolic Logic 67 (2002), no. 4, 1344–1350 MR1955241 (2003m:03081)
- [6] R. Laver, An (\aleph_2 , \aleph_2 , \aleph_0)-saturated ideal on ω_1 , Logic Colloquium '80 (Prague, 1980), pp. 173–180, Stud. Logic Foundations Math., 108, North-Holland, Amsterdam-New York, 1982. MR0673792 (84a:03060)
- [7] P. Nyikos, Complete normality and metrization theory of manifolds, Top. Appl. 123 (1) (2002), 181–192 MR1921659 (2003f:54048)
- [8] P. Nyikos, Applications of some strong set-theoretic axioms to locally compact T₅ and hereditarily scwH spaces, Fund. Math. 176 (2003), no. 1, 25–45 MR1971471 (2004k:54008)
- [9] P. Nyikos, Correction to: "Complete normality and metrization theory of manifolds" [Topology Appl. 123 (2002), no. 1, 181–192], Topology Appl. 138 (2004), no. 1-3, 325–327 MR2035491 (2004k:54030)
- [10] S. Shelah, Proper and improper forcing, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1998 MR1623206 (98m:03002)
- [11] A.D. Taylor, Regularity properties of ideals and ultrafilters, Ann. Math. Logic 16 (1979), no. 1, 33–55 MR0530430 (83b:04003)

DEPARTMENT OF MATHEMATICS, MIAMI UNIVERSITY, OXFORD, OHIO 45056 $E\text{-}mail\ address$: larsonpb@muohio.edu