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BRANGESIAN SPACES IN Hp(T2)

D. A. REDETT

(Communicated by Joseph A. Ball)

Abstract. In this note, we characterize certain algebraic subspaces of Hp(T2)
extending D. Singh’s H2(T2) result.

1. Introduction

The so-called Brangesian spaces (Hilbert spaces contained in Banach spaces)
were first introduced by L. de Branges in his proof of the famous Bieberbach con-
jecture. L. de Branges characterized the contractively contained Hilbert spaces in
H2(T) (see [5]). Since then, many authors have examined this notation in various
settings (see [4], [5] for some results in this area). In [4], D. Singh characterized
certain algebraic subspaces of H2(T2). His main result follows.

Singh’s Theorem. N is a Hilbert space contained in H2(T2) such that N is in-
variant under S1 and S2 and for which S1 and S2 are doubly commuting isometries
on N if and only if there exists g in H∞(T2) unique up to a factor of modulus one
such that N = gH2(T2) with norm ‖gf‖N = ‖f‖2 for all f in H2(T2).

This is a generalization of Mandrekar’s main result in [1], since every subspace
(closed linear manifold) of H2(T2) is a Hilbert space in the H2(T2)-norm.

Mandrekar’s Theorem. N is a subspace in H2(T2) such that N is invariant
under S1 and S2 and for which S1 and S2 are doubly commuting on N if and only
if there exists g in H∞(T2) which is inner and unique up to a constant factor of
modulus one such that N = gH2(T2).

Both results weigh heavily on the doubly commuting condition. Rudin in [3]
constructed an invariant subspace in H2(T2) that contains no bounded elements
and an invariant subspace that is not generated by a single function; in fact, it is
not even finitely generated. Of course, on these subspaces S1 and S2 are not doubly
commuting. These examples show that even subspaces of H2(T2) can get pretty
complicated if the doubly commuting condition is removed. In fact, it is still an
open question to describe all of the invariant subspaces of H2(T2). In this note we
do not concern ourselves with subspaces, but rather Brangesian spaces. Our main
result is to extend Singh’s result to Hp(T2). As a corollary, we prove a result about
certain algebraic subspaces of BMOA(T2).
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2. Notation and terminology

We let C2 denote the cartesian product of two copies of C. The unit bidisc in
C2 is denoted by U2 and the distinguished boundary by T2, where U and T are
the unit disc and unit circle in the complex plane, respectively.

The Hardy space Hp(U2) (1 ≤ p < ∞) is the Banach space of holomorphic
functions over U2 which satisfy the inequality

sup
0≤r<1

∫
T2

|f(rξ1, rξ2)|p dm2(ξ1, ξ2) < ∞

where m2 denotes normalized Lebesgue measure on T2. Note that holomorphic here
means holomorphic in each variable. The norm ‖f‖p of a function f in Hp(U2) is
defined by

‖f‖p = sup
0≤r<1

(∫
T2

|f(rξ1, rξ2)|p dm2(ξ1, ξ2)

)1/p

.

The Hardy space H∞(U2) is the Banach space of holomorphic functions over
U2 which satisfy the inequality

sup
(z1,z2)∈U2

|f(z1, z2)| < ∞.

The norm ‖f‖∞ of a function f in H∞(U2) is defined by

‖f‖∞ = sup
(z1,z2)∈U2

|f(z1, z2)|.

It is well known (see [3]) that every function in Hp(U2) (1 ≤ p ≤ ∞) has a
nontangential limit at [m2] almost every point of T2. Let f∗ denote the boundary
function of an f in Hp(U2). Then

f∗ ∈ Hp(T2) ≡ spanLp(T2,m2)
{

ξn
1 ξm

2 : n, m ≥ 0
}

.

It is also known (see [3]) that f can be reconstructed by the Poisson integral as
well as the Cauchy integral of f∗. Further,

‖f‖p = ‖f∗‖p

where the second norm is the Lp(T2, m2) norm. For this reason, we identify Hp(U2)
and Hp(T2) and no longer distinguish between f and f∗. Therefore, these Ba-
nach spaces of holomorphic functions Hp(U2) may be viewed as a subspace of
Lp(T2, m2).

For f in Lp(T2) = Lp(T2, m2), S1 and S2 will denote the operators of multipli-
cation by the first and second coordinate functions, respectively. That is,

S1(f)(ξ1, ξ2) = ξ1f(ξ1, ξ2)

and
S2(f)(ξ1, ξ2) = ξ2f(ξ1, ξ2).

When S1 commutes with S2 and S1 commutes with S∗
2 (S1 commuting with S∗

2

is equivalent to S∗
1 commuting with S2) we say that S1 and S2 are doubly com-

muting. This concept is used throughout this paper. We finally recall two other
concepts from operator theory used in this note. An operator S from a Hilbert
space H into itself is called an isometry if

‖Sx‖H = ‖x‖H
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for all x in H and a shift if ⋂
n≥0

Sn(H) = {0}.

3. Main result

In the following theorem, when we say a Hilbert space is contained in a Banach
space we mean the Hilbert space sits inside of the Banach space as an algebraic
subspace.

Theorem. If M is a Hilbert space contained in Hp(T2), invariant under S1 and
S2 and if S1 and S2 are doubly commuting isometries on M, then

M = bH2(T2)

for a unique b (unique up to a factor of modulus one):

(1) If 1 ≤ p ≤ 2, b ∈ H
2p

2−p (T2). When p = 2, we mean H∞(T2).
(2) If p > 2, b = 0.

Further, ‖bf‖M = ‖f‖2 for all f in H2(T2) (1 ≤ p ≤ 2).

When p = 2, we get D. Singh’s main result in [4]. We also point out that the
converse of this theorem is true. This theorem was motivated by D. Singh and
S. Agrawal’s work in [5]. Before we prove this theorem, we give several lemmas.
The first two lemmas are due to Slocinski [6].

Lemma 1 (Slocinski [6]). Suppose that V1 and V2 are commuting isometries on
a Hilbert space H and write R⊥

i = H � Vi(H) (i = 1, 2). Then the following are
equivalent:

(1) There is a wandering subspace L for the semigroup
{

V n
1 V m

2

}
n,m≥0

such

that

H =
∞∑

n=0

∞∑
m=0

⊕V n
1 V m

2 (L).

(2) V1 and V2 are doubly commuting shifts.
(3) R⊥

1 ∩ R⊥
2 is a wandering subspace for the semigroup

{
V n

1 V m
2

}
n,m≥0

and

H =
∞∑

n=0

∞∑
m=0

⊕V n
1 V m

2 (R⊥
1 ∩ R⊥

2 ).

Lemma 2 (Slocinski [6]). Suppose V1 and V2 are commuting isometries on the
Hilbert space H 
= {0}. If R⊥

1 ∩ R⊥
2 = {0} where R⊥

i = H� Vi(H) (i = 1, 2), then
V1 and V2 are not doubly commuting shifts.

Lemma 3. If ψ is positive and lower semicontinuous (l.s.c.) on T2 and ψ ∈
Lp(T2), then ψ = |f | a.e. for some f ∈ Hp(T2).

We point out that this lemma was proved for the case p = ∞ in [3].

Proof. Since l.s.c. functions attain their minimum on compact sets, we may assume
without loss of generality that ψ > 1. Applying Theorem 2.4.2 from [3] to log ψ
asserts the existence of a singular measure σ ≥ 0 and a holomorphic function g in
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U2 such that Re(g) = P [log ψ − dσ]. Put f = exp(g). Then f is holomorphic in
U2 and

|f | = exp(P [log ψ − dσ]) ≤ exp(P [log ψ]) ≤ P [ψ]
in U2. Since ψ ∈ Lp(T2), f ∈ Hp(T2) and

|f | = | exp(g)| = exp(log ψ) = ψ

a.e. on T2 as desired. �

In the above proof, P [log ψ − dσ] means the Poisson integral of log ψ − dσ.

Lemma 4. For all h ∈ Lp(T2) with 1 ≤ p < ∞, there exists a positive l.s.c.
φ ∈ Lp(T2) such that φ ≥ |h| a.e. on T2.

Proof. If h ∈ Lp(T2), then |h| ∈ Lp(T2) and is real-valued. So, by Lemma 1 of [2],
there exist two positive l.s.c. functions φ and ψ in Lp(T2) such that

|h| = φ − ψ a.e. on T2.

So
|h| ≤ φ a.e. on T2.

�

Lemma 5. Let f be an element of Hp(T2) that multiplies H2(T2) into Hp(T2).
Then f multiplies L2(T2) into Lp(T2).

Proof. Let g be an element of L2(T2). Then by Lemma 4 there exists a positive
l.s.c. function φ in L2(T2) such that |g| ≤ φ a.e. on T2. Then by Lemma 3 there
exists an h in H2(T2) such that |h| = φ a.e. on T2. Now consider∫

T2
|fg|p dm2 =

∫
T2

|f |p|g|p dm2

≤
∫
T2

|f |p|h|p dm2 since |g| ≤ φ = |h| a.e. on T2

=
∫
T2

|fh|p dm2 < ∞ by hypothesis.

�

This next lemma is a straightforward calculation found in [5].

Lemma 6. If g is a measurable function on T2 that multiplies L2(T2) into Lq(T2)
where 1 ≤ q ≤ 2, then g ∈ L

2q
2−q (T2). When q = 2, we mean L∞(T2).

We now prove our theorem.

Proof. We first consider the case 1 ≤ p ≤ 2. Observe that
⋂∞

n=0 Sn
i (M) = {0}

(i = 1, 2). This observation and our doubly commuting hypothesis give us that

M =
∞∑

n=0

∞∑
m=0

⊕V n
1 V m

2 (R⊥
1 ∩ R⊥

2 ) by Lemma 1

and that
R⊥

1 ∩ R⊥
2 
= {0} by Lemma 2

where R⊥
i = H�Vi(H) (i = 1, 2). So we may take g from R⊥

1 ∩R⊥
2 , with ‖g‖M = 1.

Then
{

geinθ1eimθ2

}
n, m≥0

is an orthonormal sequence in M. Let f be an arbitrary
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element of H2(T2). Then f(eiθ1 , eiθ2) =
∑∞

n=0

∑∞
m=0 f̂(n, m)einθ1eimθ2 . Let

fnm(eiθ1 , eiθ2) =
∑n

k=0

∑m
l=0 f̂(k, l)eikθ1eilθ2 . Then fnm converges to f in L2(T2)

and a.e. along rectangles. We make the following computation:

‖fnm‖2
2 =

n∑
k=0

m∑
l=0

|f̂(k, l)|2

=
n∑

k=0

m∑
l=0

|f̂(k, l)|2‖geikθ1eilθ2‖2
M(1)

=
n∑

k=0

m∑
l=0

‖f̂(k, l)geikθ1eilθ2‖2
M

=

∥∥∥∥∥
n∑

k=0

m∑
l=0

f̂(k, l)geikθ1eilθ2

∥∥∥∥∥
2

M

.

Since
(
fnm

)
(n,m)

is Cauchy in L2(T2),
( ∑n

k=0

∑m
l=0 f̂(k, l)geikθ1eilθ2

)
(n,m)

is

Cauchy in M. Since M is a Hilbert space, there exists an h in M such that∥∥∥∥∥
n∑

k=0

m∑
l=0

f̂(k, l)geikθ1eilθ2 − h

∥∥∥∥∥
M

−→ 0 as (n, m) −→ ∞ along rectangles.

Thus,

h =
∞∑

k=0

∞∑
l=0

f̂(k, l)geikθ1eilθ2

and since

g =
∞∑

k=0

∞∑
l=0

ĝ(k, l)eikθ1eilθ2 ,

we have for fixed m and n,

h = f̂(0, 0)g + f̂(0, 1)geiθ2 + f̂(1, 0)geiθ1

+ · · · + f̂(m, n)geimθ1einθ2 + h1e
i(m+1)θ1 + h2e

i(n+1)θ2(2)

where
h1 = f̂(m + 1, 0)g + f̂(m + 1, 1)geiθ2 + f̂(m + 2, 0)geiθ1 + · · ·

and
h2 = f̂(0, n + 1)g + f̂(0, n + 2)geiθ2 + f̂(1, n + 1)geiθ1 + · · · .

It is clear that h1 and h2 are in M and hence in Hp(T2). Thus from equation (2),
we see that the (m, n)-th Fourier coefficients of h are the same as the (m, n)-th
Fourier coefficients of the formal product of the series of g and f . This means that
h = gf in Hp(T2) and hence in M. This observation along with equation (1) gives
us that

‖gf‖M = ‖f‖2.

Since f was an arbitrary element of H2(T2), we see that g multiplies H2(T2) into
M ⊆ Hp(T2). By Lemma 5 we conclude that g multiplies L2(T2) into Lp(T2).
Lemma 6 shows us that any d that multiplies L2(T2) into Lp(T2) must be a member
of L

2p
2−p (T2). Thus g must be in H

2p
2−p (T2).

It is left to show that R⊥
1 ∩ R⊥

2 is one dimensional. Note that 2p
2−p ≥ 2 when

1 ≤ p ≤ 2, so g is in H2(T2). Suppose there is a g1 in R⊥
1 ∩R⊥

2 with unit norm and
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g ⊥ g1 in M. Then by the same computations as above we get that g1H
2(T2) is

also contained in M and by our decomposition we get that gH2(T2) ⊥ g1H
2(T2) in

M. Further, gg1 = g1g is in gH2(T2) as well as g1H
2(T2). So, gg1 = 0. As g and

g1 do not vanish on a set of positive Lebesgue measure unless they are identically
zero we get a contradiction. Hence R⊥

1 ∩ R⊥
2 is one dimensional as desired.

Now we consider the case p > 2. Suppose M 
= {0}. Proceeding as in the
previous case we get that g multiples L2(T2) into Lp(T2) ⊂ L2(T2) and hence g is
in H∞(T2). Choosing an appropriate ε > 0 such that

E =
{
(eiθ1 , eiθ2) : |g(eiθ1 , eiθ2)| > ε

}
has positive measure, let b be a function that vanishes on the complement of E
which is in L2(T2) but not Lp(T2). But then, gb is in Lp(T2) and so b will lie in
Lp(T2) since g is invertible on E, hence a contradiction. So our supposition must
be incorrect. So, M = {0}. �

Before we give a corollary we recall some definitions. Let BMO(T2) be the class
of all L1(T2) functions f such that

‖f‖∗ = sup
1
|I|

∫
I

|f − 1
|I|

∫
I

f | < ∞

where the supremum is taken over all squares of T2 and |I| denotes the normalized
Lebesgue measure of I.

BMO(T2) is a Banach space under the norm

‖f‖ = ‖f‖∗ + |f̂(0, 0)|.

V MO(T2) is the closure of the continuous functions in BMO(T2). BMOA(T2) =
BMO(T2) ∩ H1(T2) and V MOA(T2) = V MO(T2) ∩ H1(T2). By the John-
Nirenberg theorem [7], we get that BMOA(T2) ⊂ Hp(T2) for p < ∞. We are now
ready to state our corollary.

Corollary. If M is a Hilbert space contained in BMOA(T2) (V MOA(T2)), in-
variant under S1 and S2 and if S1 and S2 are doubly commuting isometries on M,
then M = {0}.

Proof. By the John-Nirenberg Theorem mentioned above we get that BMOA(T2)
⊂ Hp(T2) for p < ∞. So in particular, BMOA(T2) ⊂ Hp(T2) for p > 2. So by
our theorem, M = {0}. �

Remark. We point out that the above corollary holds for M in any vector space of
analytic functions contained in Hp(T2) for any p > 2. We specified BMOA(T2)
only to parallel the results in [5].
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