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Abstract. A group H is called capable if it is isomorphic to G/Z(G) for some
group G. Let H be a capable group. I. M. Isaacs (2001) showed that if H
is finite, then the index of the centre is bounded above by some function of

|H′|. We show that if |H′| < ∞, then |H : Z(H)| ≤ |H′|c log2 |H′| with some
constant c and this bound is essentially best possible. We complete a result of
Isaacs, showing that if H′ is a cyclic group, then |H : Z(H)| ≤ |H′|2.

1. Introduction

Let G be an arbitrary group. According to a classical theorem of Schur, if
|G : Z(G)| < ∞, then |G′| < ∞. An easy argument based on the ultra product
method shows that there is a bound for the order of the derived subgroup in terms
of the index of the centre. The best bound was given by Wiegold [7] showing that
if |G : Z(G)| = n, then |G′| ≤ n

1
2 log2n. Infinite extraspecial groups show that the

converse of the theorem of Schur does not hold in general. However, P. Hall (see
[6], p.423) observed that if |G′| < ∞, then |G : Z2(G)| is bounded above in terms
of |G′| (where Z2(G) denotes the second member of the upper central series of G).
The first explicit bound was given by I. D. Macdonald [3]. Improving this bound
we proved in [5] that

|G : Z2(G)| ≤ |G′|c log2 |G′|,

and our examples show that this estimate is sharp apart from the value of the
constant c.

A group H is said to be capable if there exists some group G such that G/Z(G) is
isomorphic to H. I. M. Isaacs [2] proved that if H is a capable group and |H ′| = n,
then |H : Z(H)| is bounded above by some function f of n, or equivalently, if G is
an arbitrary group and |G′ : G′∩Z(G)| = n, then |G : Z2(G)| ≤ f(n). However, he
has not given an explicit function f(n). In our present paper we give the essentially
best possible bound.

Theorem 1. If G is a group (not necessarily finite) and |G′ : G′∩Z(G)| = n, then
|G : Z2(G)| ≤ nc log2 n with c = 2.
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Using this result for H = G/Z(G) we obtain the following.

Corollary 2. If H is a capable group and |H ′| = n, then

|H : Z(H)| ≤ nc log2 n

with c = 2.

Actually, the preceding result can be regarded as a converse of Wiegold’s theo-
rem. The sequence of groups Gn we constructed in [5] shows that these estimates
are sharp apart from the value of the constant c. The proof of Theorem 1 shows
that the value of the constant c is at most 2. We also mention that H. Heineken
[1] constructed capable groups H for all odd prime numbers p and for all natural
numbers n such that |H ′| = |Z(H)| = pn and |H : Z(H)| = p2n+(n

2). Since these
are the best known examples, we think that the constant c can be further improved.
Although the above examples do not work for p = 2, similar estimates motivate us
to think that perhaps c = 1

2 is the best constant.

Question 3. Is it true that if H is a capable group and |H ′| = n, then |H : Z(H)| ≤
n

1
2 log2 n+c2 for some constant c2?

For groups with infinite derived subgroup a similar argument yields:

Theorem 4. If G is a group and |G′ : G′ ∩Z(G)| = κ is an infinite cardinal, then
|G : Z2(G)| ≤ 2κ.

Corollary 5. If H is a capable group and |H ′| = κ is an infinite cardinal, then
|H : Z(H)| ≤ 2κ.

Remark 6. Related to infinite groups, similar results are included in [4] and [5].
For each infinite cardinal κ we constructed a group G such that |G′| = κ, Z(G) = 1
and |G| = 2κ (see [5]). It follows that the previous estimates are sharp.

The second part of our paper deals with groups with cyclic derived subgroups.
For a capable group H, I. M. Isaacs [2] proved that if H is finite, H ′ is cyclic

and all elements of order 4 in H ′ are central in H, then |H : Z(H)| ≤ |H ′|2. In
the present paper we prove that the assumption about elements of order 4 can be
omitted.

Theorem 7. If H is a finite capable group and H ′ is cyclic, then |H : Z(H)| ≤
|H ′|2.

For an arbitrary group G, we prove the following estimate.

Theorem 8. If G is a finite group with G′ cyclic of order n, then |G : Z2(G)| ≤
nϕ(n), where ϕ is Euler’s totient function.

The previous estimate is sharp for the holomorph of a cyclic group.

2. Groups with arbitrary derived subgroups

In this section we prove Theorem 1 and Theorem 4.

Lemma 9. Let H be a subgroup of G generated by k elements and |G′| = n. Then
|G : CG(H)| ≤ nk.
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Proof. Let x1, x2, . . . , xk be a generating system of H. Let us denote the conjugacy
class of xi in G by Cl(xi). Then

|G : CG(H)| ≤
k∏

i=1

|G : CG(xi)| =
k∏

i=1

|Cl(xi)| ≤ |G′|k = nk.

�
Lemma 10. Let G be an arbitrary group and C < G be a proper subgroup. Then
G′ = [G − C, G].

Proof. It is enough to generate the commutators {[c, g] | c ∈ C; g ∈ G}. Let x be
an arbitrary element of G − C . Then

[c, g] = [x, c−1gc]−1[cx, g] ∈ [G − C, G].

�
Lemma 11. Let Z = G′ ∩ Z(G), and let U, V be subgroups of G such that Z ≤
U, V ≤ G′. Then there exist elements y, z of G with the following properties.

(1) If Z � U , then U ∩ CG(y) � U .
(2) If V � G′, then V � 〈V, [y, z]〉.

Proof. Set C = CG(U). Suppose that Z � U . Now, C � G; thus U ∩ CG(y) � U
for all y ∈ G−C. Lemma 10 yields that G′ = [G−C, G]. Consequently, if V � G′,
then we can choose y ∈ G − C and z ∈ G such that V � 〈V, [y, z]〉. In the case of
Z = U and V � G′, then we can choose arbitrary [y, z] /∈ V . �
Lemma 12. Let Z = G′∩Z(G), and suppose that |G′ : Z| = n. Let T be a subgroup
with G′ ≤ T ≤ G having the following properties.

(1) G′ = T ′Z.
(2) G′ ∩ Z(T ) = Z.
(3) T/Z can be generated by k elements.

Then there exists M ≤ G such that [M, G, G] = 1 and |G : M | ≤ nk.

Proof. Let M/Z = CG/Z(T/Z). Then by Lemma 9, |G : M | ≤ nk. Now [T, M, G] =
1, and in particular, [T, M, T ] = 1, so that [T ′, M ] = 1 by the Three Subgroup
Lemma, and hence [G′, M ] = 1. Now [G, T, M ] ≤ [G′, M ] = 1. Applying the Three
Subgroup Lemma again, we obtain that [M, G, T ] = 1. Consequently [M, G] ≤
G′ ∩ Z(T ) = Z, and thus [M, G, G] = 1. �
Remark 13. The statement of Lemma 12 is also true if n and k are infinite cardinals.

Lemma 14. Let G be a finite group and |G′ : Z| = n. Then there exists T as in
Lemma 12 with k ≤ 2 log2 n.

Proof. We define the elements yi+1, zi+1 (0 ≤ i ≤ l − 1) recursively by applying
Lemma 11 for Vi = 〈Z, [y1, z1], [y2, z2], . . . , [yi, zi]〉 and Ui = CG′(Vi). Now we have
that

Z = V0 ≤ V1 ≤ V2 ≤ · · · ≤ Vl = G′

and
G′ = U0 ≥ U1 ≥ U2 ≥ · · · ≥ Ul = Z,

where l is the smallest integer such that Vl = G′ and Ul = Z. It is clear that
l ≤ log2 n. Now T = 〈Z, y1, z1, y2, z2, · · · , yl, zl〉 has the required properties. �
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Proof of Theorem 1. It follows immediately from Lemma 12 and Lemma 14 that
there exists a subgroup M of G such that |G : M | ≤ n2 log2 n and M ≤ Z2(G). �

Proof of Theorem 4. First, we choose a subgroup T1 such that T ′
1Z = G′ and |T1| ≤

κ. Let Q be a coset representative system for Z in G′ \Z(G). We choose elements
yq for all q ∈ Q such that yq /∈ CG(q). The set T2 = {yq | q ∈ Q} has cardinality κ
and clearly CG′(Y ) = Z. Let T = 〈T1, T2〉. Then |T | = κ, and the same argument
as in Lemma 12 completes the proof. �

3. Groups with cyclic derived subgroups

In this section we focus our attention on groups with cyclic derived subgroups.

Lemma 15. Let G be a group, and write Z = G′ ∩ Z(G). Assume that G′ is a
p-group and G′/Z is cyclic of order n. Then there exists a subgroup M ≤ G such
that [M, G, G] = 1 and |G : M | ≤ n2.

Proof. Let x ∈ G′ − Z such that xp ∈ Z(G). Set C = CG(x). It follows that
CG(y)∩G′ = Z(G)∩G′ for all y ∈ G−C. Using Lemma 10 we can find a ∈ G−C
and b ∈ G such that 〈Z, [a, b]〉 = G′. Let T = 〈Z, a, b〉, and note that T satisfies the
three conditions of Lemma 12 with k = 2. �

Proof of Theorem 7. We reduce to the case where G′ is a p-group. For each prime
divisor p of |G′| let Np be the normal p-complement of G′ and work in the factor
group G/Np. This factor group satisfies the hypotheses with n replaced by a divisor
of np, the p-part of n. Using the preceding lemma, we know that there exists
a subgroup Mp ≤ G such that [Mp, G, G] ≤ Np and |G : Mp| ≤ (np)2. Let
M =

⋂
Mp. Then [M, G, G] ≤

⋂
Np = 1 and |G : M | ≤

∏
(np)2 = n2. �

Proof of Theorem 8. Using the multiplicativity of Euler’s ϕ function, as in the pre-
vious proof, we can reduce to the case where G′ is a p-group. If G′∩Z(G) > 1, then
by Theorem 7, the index of the second center is at most (n/p)2 < nϕ(n). In the case
of p = 2 the unique element of order 2 in G′ is central in G, thus G′ ∩ Z(G) > 1.
We can assume therefore that G′ ∩ Z(G) = 1 and in particular p > 2. Now let
D = CG(G′), and note that [G, D, D] = 1. Therefore D′ ≤ Z(G) by the Three
Subgroup Lemma. Then D′ ≤ G′ ∩ Z(G) = 1; so D is abelian. It is obvious that
G/D ≤ Aut(G′). Since G′ is a cyclic p-group and p > 2, we have that G/D is
cyclic of order dividing ϕ(n). If x generates G modulo D, let C = CD(x). Then C
centralizes D〈x〉 = G, and hence C ≤ Z(G). Consequently |D : C| = |[D, x]| ≤ n,
and we deduce that |G : Z(G)| ≤ |G : D||D : C| ≤ nϕ(n). �

Remark 16. I. M. Isaacs [2] proved that if H is a capable nilpotent group with
cyclic derived subgroup and all elements of order 4 are central in H, then |H :
Z(H)| = |H ′|2. In this result the assumption about elements of order 4 cannot be
omitted as the example of the dihedral group D of order 2n (n ≥ 3) shows. It is a
capable group, D′ is a cyclic group of order 2n−2 and |D : Z(D)| = 2n−1.
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Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, POB 127,

H-1364 Budapest, Hungary

E-mail address: szegedy@renyi.hu

http://www.ams.org/mathscinet-getitem?mr=1101296
http://www.ams.org/mathscinet-getitem?mr=1101296
http://www.ams.org/mathscinet-getitem?mr=1840087
http://www.ams.org/mathscinet-getitem?mr=1840087
http://www.ams.org/mathscinet-getitem?mr=0124433
http://www.ams.org/mathscinet-getitem?mr=0124433
http://www.ams.org/mathscinet-getitem?mr=1848059
http://www.ams.org/mathscinet-getitem?mr=1848059
http://www.ams.org/mathscinet-getitem?mr=1931369
http://www.ams.org/mathscinet-getitem?mr=1931369
http://www.ams.org/mathscinet-getitem?mr=0648604
http://www.ams.org/mathscinet-getitem?mr=0648604
http://www.ams.org/mathscinet-getitem?mr=0179262
http://www.ams.org/mathscinet-getitem?mr=0179262

	1. Introduction
	2. Groups with arbitrary derived subgroups
	3. Groups with cyclic derived subgroups
	Acknowledgments
	References

