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ABSTRACT. We consider algebras over a field K presented by generators

ri,..., Tn and subject to (g) square-free relations of the form z;z; = zx;

with every monomial x;x;,7 # j, appearing in one of the relations. It is shown
that for n > 1 the Gelfand-Kirillov dimension of such an algebra is at least
two if the algebra satisfies the so-called cyclic condition. It is known that this
dimension is an integer not exceeding n. For n > 4, we construct a family of
examples of Gelfand-Kirillov dimension two. We prove that an algebra with
the cyclic condition with generators x1, ..., z, has Gelfand-Kirillov dimension
n if and only if it is of I-type, and this occurs if and only if the multiplicative
submonoid generated by x1,...,z, is cancellative.

1. INTRODUCTION

In [4] Gateva-Ivanova and Van den Bergh studied the structure of monoids of left
I-type and their algebras. These monoids originate from the work of Tate and Van
den Bergh on homological properties of Sklyanin algebras [8]. It was shown in [4]
that a monoid of left I-type has a presentation with generators x1,...,x, and (Z)
relations of the form z;x; = x,x; such that every monomial z;z; with 1 <4, <n
appears at most once in one of the relations. Moreover, such monoids yield set-
theoretical solutions of the quantum Yang-Baxter equation, and the corresponding
monoid algebras share many properties with commutative polynomial algebras.
In particular, they are noetherian domains of finite global dimension, satisfy a
polynomial identity, are Koszul, Auslander-Gorenstein, Cohen-Macaulay and have
Gelfand-Kirillov dimension n. In [6] the monoids of left I-type are characterized
as natural submonoids of semidirect products of the free abelian monoid of rank n
and the symmetric group of degree n. As a consequence, it is proved that a monoid
is of left I-type if and only if it is of right I-type, [0 Corollary 2.3].

A monoid S is said to be of skew type if it has a presentation with n > 2
generators i, ...,T, and (g) square-free relations of the form z;z; = xpx; with
every monomial x;z;,7 # j, appearing in one of the relations (see [3], where a
systematic study of these monoids and their algebras was initiated). Recall that
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a monoid S = (x1,...,x,) of skew type is said to be right (respectively left) non-
degenerate if for every 1 < i,k < n there exist 1 < j,I < n so that z;x; = xpx;
(x121, = x;jx; respectively). Furthermore S is said to satisfy the cyclic condition if
for every relation x;2; = xx; one also has a relation z;x = z,2; for some r (see
[B, Lemma 2.1]). The latter is a powerful combinatorial condition that has already
proved crucial in the study of monoids of I-type, their algebras and corresponding
torsion-free groups, [, [6]. The cyclic condition is symmetric, [3, Proposition 2.1].
Hence it is easy to see that it implies left and right non-degeneracy. It was shown in
[3] that for monoids S satisfying the cyclic condition we have 1 < GK(K[S]) < n,
where GK(K[S]) denotes the Gelfand-Kirillov dimension of the monoid algebra
K|[S]. Furthermore there exist non-degenerate monoids S of skew type on 4™
generators (for any positive m) so that GK(KS]) =1, [1].

In this paper we prove that GK(K[S]) > 2 for any monoid S of skew type that
satisfies the cyclic condition. For any n > 4 we construct examples of such monoids
on n generators with GK(K[S]) = 2. Furthermore we show that GK(KS]) = n if
and only if S is of I-type, and this occurs if and only if S is cancellative.

2. THE GELFAND-KIRILLOV DIMENSION

Let S = (z1,x9,...,z,) be a monoid of skew type that satisfies the cyclic con-
dition.

Let F = (y1,92,...,Yn) be the free monoid of rank n and let 7: F — S be the
natural epimorphism, that is m(y;) = x; for i = 1,...,n. Let z € S. We say that a
word w € F represents z if m(w) = x.

It is known that two words w,w’ € F represent the same element x € S if and
only if there exists a finite sequence of words

/
W = Wo, Wi, Wy «..y Wy =W

such that w; is obtained from w;_1 (i = 1,...,m) by substituting a subword y;yx
by ypyq, Where x;x, = x,7, is a defining relation of S. In this case, we say that w;
is obtained from w;_; by an S-relation.

Lemma 2.1. Ifz;,z;, = x;,%;, is a defining relation of S, then there exist positive

integers r, s such that r+s < n and the submonoid (xfl,x;) is free abelian of rank
2.

Proof. By [3, Proposition 2.1], since S satisfies the cyclic condition, there exist
positive integers r, s and s + r different integers

il;iZ,-~-7isvjlaj2a'"aj?“ € {1a2a"'7n}

such that
LiyTjy = TjaLigy, LigTjy = LjpLigy, ooy LigLjy = LjpLiy,
LiyLjy = LjgLias LigTjy = LjgLigy, -5 LigLjs = LjgLiy,
TiyTj, = Tj1 Tigs LipLj, = TjyTig, .-y Ti,Tj, = TjyTiy-

From the relations in the first column we have
x’;‘lle = lexgz'
Similarly, from the other columns, we obtain

T — R ‘s ‘s 3 — 3 r
T, Tj = TjTi, .., T Tj =TTy
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Hence xf x5 = zj i, and thus the submonoid (z} ,zj ) is abelian. Note that
the only words that represent z;} and 27} are y;7" and yj respectively. Let p,q be

il We claim that any word w € F' that represents x

positive integers and x = z
is of the form
Ng— mg— n

(1) W= Yi Y Yirs Yien - Yir Ve Yire
where g is an integer greater than 1; nq,n, are non-negative integers; l; =1, =1,
and ng,n3,...,Ng_1, M1, M2, ..., Mg_1 are positive integers such that

(i) ni + k1 = kg—1 —ng =1 (mod ) and l;41 — Iy = my (mod s) for all

1<t<g-1

(ii) if g > 2, then ky — ky+1 = nyy1 (mod r) for all 1 <u < g — 2;

(49) ni+na+---+ng=rpand m; +mao+---+my_1 = sq.
Note that the word y;"y;! represents x and satisfies conditions (i), (i) and (iii).
Therefore, in order to prove the claim, it is sufficient to see that given any word w
of the form () that satisfies conditions (¢), (i) and (4i4), all the words obtained
from w by an S-relation also satisfy conditions (i), (#4) and (i7). Suppose that
g = 2. In this case

w =y Yy
with my =8¢ >0,n+ny=rpand ny + k1 = k1 —ngo =1 (mod 7). If ny > 0, we
can obtain by an S-relation (the relation z;,x;, = zj, ., ¥;,), the word

w/ _ yzl_lyjklﬂyizy;,ji_ly?f’

where k1 4+ 1 is taken modulo r in the set {1,...,7}, and it is easy to see that w’
satisfies conditions (4), (#4) and (i4i). If ny > 0, we can obtain by an S-relation the
word

-1 -1
U)/ = yZl y;:i yisyjkl,l yZZ )
where k1 — 1 is taken modulo 7 in the set {1,...,r}, and it is easy to see that w’

satisfies the conditions (i), (i¢) and (i4¢). Similarly, it is straightforward to prove
that, if g > 2, all the words w’ obtained from w by an S-relation satisfy conditions
(¢), (i) and (ii). Now condition (i) implies that the submonoid (zj , 7 ) is free
abelian of rank 2.

As a direct consequence of Lemma 2Tl we get the following result.

Corollary 2.2. Let S = (x1,22,...,2Z,) be a monoid of skew type that satisfies
the cyclic condition. Let m = (n — 1)!. Then the submonoid A = (z7",...,z™) is

commautative. O

Theorem 2.3. Let S = (x1,x9,...,%,) (with n > 1) be a monoid of skew type
that satisfies the cyclic condition. Let A = (a7*,...,a2"), where m = (n — 1)!. If
K is a field, then the Gelfand-Kirillov dimension of the monoid algebra K[S] is an
integer such that 2 < GK(K[S]) = GK(K[A]) < n. Moreover, GK(KIS]) is equal

to the maximal rank k of a free abelian submonoid of the form (z7",...,x") C S.

Proof. By [3, Theorem 4.5] and the comment after [3, Proposition 2.4], K[S] is
a finite left and right module over the commutative subring K[A], where A =
(«¥,...,xP) for some p > 1. The proof actually shows that we may take p = (n—1)!.
Hence GK(KS]) = GK(K[A]) < n and it is an integer. By Lemma 2] we have
that 2 < GK(K[S]). Let P be a prime ideal of K[A]. Then the image Ap of
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A in K[A]/P is a 0-cancellative monoid. Let C' = (z{",...,2") C Ap be a free
abelian submonoid of maximal rank that is generated by certain images 2" of the
elements x7". Then B = (z",...,2") C Ais free abelian of rank 7. It is easy to see
that the group Gp of quotients of the cancellative semigroup of nonzero elements
of Ap is of rank r, whence GK(K[A]/P) < GK(K[Ap]) < GK(K[Gp]) =7 < k.
Therefore GK(A) < k, since the Gelfand-Kirillov and the classical Krull dimensions
coincide on finitely generated commutative algebras, [7, Theorem 4.5]. The result

follows. O

3. EXAMPLES OF DIMENSION TWO

For n > 4, let T™ be the monoid of skew type generated by z,...,z, with
defining relations

T1T2 = X3L1, ...y, T1Tp—2 = Tp-1T1, T1Tp—1 = T2T1,
TpTl = Tp—1Tn, Tplpn—1 = T1Tn,
LTiTit1 = Ti42T5, ) TiTp—1 = Tpli, TiTp = Ti41L4,

for all 2 < i <n — 2. Note that T satisfies the cyclic condition.

Lemma 3.1. Let p be the least cancellative congruence on T . If n > 4, then
ToT1To = TpX1xo aNd L1 PT2 P ... PTy.

Proof. By using the defining relations, we have
T2T1T2 = T1Tp—1T2 = T1T2Tp—2 = T3L1Tp—2 = L3Tp—-1TL1 = TpI3T1 = TpT1T2.
Since xox1T2 = THx1X2, it follows that zo px,. Now the relations
ToX3 = 42, ceey To2Xp—_1 = Tpky
imply that o px3p ... pz,. Since z,21 = ,_12,, We also get
TLPT2P .. Py

O

Let T, be the subset of T of all elements right divisible by all generators of
T™). Since T is left non-degenerate, T, is an ideal of T(™); see [3].

Lemma 3.2. Consider z = xom1x0 € T . Then z € T!.
Proof. For n = 4 we have

2 = TaT1Ty = ToT3T| = T4ToT| = T4T1T3 = T3T4T3 = T3T12T4 € T).
Suppose that n > 4. By Lemma[31] z = x, 7122 and thus

2 = ITnpnTiT2 = Tp-1Tpl2 = Tp-1T2Tp—-1 = L2Tn—-2Tn—1
= T2T¥pTp—2 = T3T2Tp—-2 = T3TLp—-1T2 = Tpd3T2 = Tpl2Tn
= X2Tp—-1Tp = 2Tpx1] = T3X2T1 = L3T1Tp—-1 = T1T2Tn—1
= T1TpT2 = TpTp-1T2 = Tpl2Tp—-2 = T2Tn-1Tn—2-

We claim that z = xox;412; for all n — 2 > ¢ > 3. We prove this by induction. If
n = 5 the claim is proved. Suppose that n > 5 and that we know z = xox;12; for
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some 4 <43 <n—2. Then

Z = I2T41T = T2X3Tp = Tj41X2Tp = Tj41T3T2
= T3TiT2 = T3X2Xj—1 = T2XpnLij—1 = T2T;—1Tp—1

= TiX2Tp—1 = TiTpT2 = Tj4+1TiXL2 = Tj4+1T2Ti—1 = L2LiTi—1,

which proves the inductive claim. It follows that z € T(”)xi, forall3<i<n-2.
Since z = XoZ1 Ty = ToX3T] = Tp_1T2Tp_1 = TpTaky,, we have that z € T). [l

Let m = (n — 1)!. By Corollary 22 the submonoid A = (z*,...,2™) of T(" is
commutative.

Lemma 3.3. Ifn > 4, then ximx?mﬁm €T foralll<i<j<k<n.
Proof. Note that from the relations

T1To = T3X1, ..., T1Tp_9 = Tp_1T1, T1Tp_1 = T2x1,
it follows that
(2) wlx;, = xij{, 2%y = w2
forall2<i<n-—1and 1 <j <n—1. From the relations
(3) TpTl = Tpno1Tn, TnTn_1 = T1Tn,
it follows that
(4) w2z =222 and 222, 1 = 1, 122
For each 2 < i < n — 2, the relations

TiTir1 = TjgoTiy vny  TiTp_1 = TpTi, XTilp = Tip1T;
imply that
(5) D R
forall 2 <i<j<n.

Case 1. 1 <i < j <k <n. In this case it is easy to see that

(6) apa I = fk_j_1$j+1
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Then we have

2m ,.2m  2m
Ty J)J x; =

k—j—1_2m _2m—k+j+1 2m (by (ﬂ))

z; i)
l‘f Ji— 1$?T1xmx2mx;n k+]+1 (by @)

l‘f Jj— ll‘ml’?Tlem!I};n k+j+1 (by (ﬂ))

xf Jj— 1$Z—z+1$nm 1x2mx3m ]+z—1x;n k4741 (by (IZI))
ZE?_j_lmg_iHmnx{”me 11712m J+z—1m;n k4+j+1 (by (BD)
m?—j—1mj—z‘+1mnx§nx2mmm2m Sxm ]-‘rz—lm;n k+j+1 (by @)
JJ? J— 1mg—z+lm3x§nxmm2m 3 :n j+z—1x;n k+7+1 (by @))
mﬁ—j—lmg Z+1m3x'in n+zxgzx?—zxim73

-xzn_ﬁi_lx}n_kﬂﬂ (since wox ™" = a7 a;)

gh I g =iy g2 g =i 2m =3

J
I by @)

k—j—1_j—i+1 m—n-+i— m—1,_n— 2m73
(z; x] Tn XY Yen)z(ay e i
m—j+i—1 m—k+j+1
-y T} ).

By Lemma we know that z € T/,. Since T, is an ideal of T(™, it follows that

2m .2m .2m /
P S S

Case 2. 1=i<j<k<nandj<n—1 Then we have

2m , .2m . 2m
Xy, l‘] 1

By Lemma 3.2 z7™

Case 3. i=1,j5=

2m,.2m

k—j—1 Im—k4j+1
= T & m?inlxjm T 3™ (by (@)

= xf i= lx?fflxmxfmx;” R (py @)

— :1:;€ i= lmmxfflemx;” R (by @)

= 2 e et T (by @)

= m?ﬂ_lm?’x{_%gaﬁm j+2x3ff1 1:1:}” ML by @)
= mﬁ_j_lm{_Z% meim j+2$g2T1 113? SRS (by @)
= e Py e ),

x3™a?™ € Ty, in this case.

n — 1 and £ = n. Then we have

Ly Lp— 11‘1%m = 2mxn 1x%mximll (by (IZ))

n—
2m—1_mn—4 2m—n—+3 _2m—1
Tp—1TnT1T2Ty 2 (by @)

R e EC i)

T
_ x2mx? 3 Tol %m n+3x2m11 (by (IZ))
Xy,

Again, by Lemma [3.2] ximx?mx?m € T/ in this case.

Therefore ximxzmx?m eT) forall1<i<j<k<n. O

J

Theorem 3.4. Let K be a field. Then GK(K[T™]) =2 for all n > 4.
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Proof. For n = 4 the result follows from [5, Proposition 2.1], because T¥) coincides
with the monoid C) of [5]. Suppose that n > 4. As above, let m = (n — 1)..
From [3, Proposition 6.3] we know that (77,)9I(p) = 0 for some ¢, where I(p) is
the ideal of K[T™] determined by the least cancellative congruence p on 7). In
particular, by Lemma B} z}" — zr el (p) for all k,j. Therefore, from Lemma B3]
it follows that

2mgq_2mgq_2mgq (x'gL _ xm) =0
] ) - )

zy, xy g ;
for all 1 <4 < j <k < n, which implies that 27", 27", 27" do not generate a free
abelian semigroup. Therefore Theorem 23] implies that GK(K[T(]) = 2. O

Corollary 3.5. For any integers n > 4 and 2 < j < n, there exists a monoid
M = (x1,22,...,2,) of skew type, satisfying the cyclic condition and such that
GK(K[M]) = j for any field K.

Proof. If j = n, then the free abelian monoid of rank n, M = FaM,,, satisfies the
conditions.

Suppose that j = n — 1. By [B], there exists a monoid A of skew type with 4
generators that satisfies the cyclic condition such that, for any field K, GK(K[A]) =
3. Let M = A x FaM,,_4. Then it is easy to see that M is a monoid of skew type
with n generators that satisfies the cyclic condition. Since K[M] is the polynomial
algebra over K[A] with n — 4 indeterminates, by [7, Example 3.6], GK(K[M]) =
3+(n—4)=n-1.

Suppose that j < n — 2. Let M = T(n—3+2) x FaM;_». It is easy to see that
M is a monoid of skew type with n generators that satisfies the cyclic condition.
Since K[M] is the polynomial algebra over K[T("~7+2)] with j — 2 indeterminates,
by [7, Example 3.6], GK(K[M]) = GK(K[T(=7+2)]) 4 (j — 2). By Theorem 34,
GK(K[M]) = j. O

4. I-TYPE MONOIDS

Let FaM,, be the multiplicative free abelian monoid of rank n with basis uq, ...,
uy. Recall that a monoid S generated by x1,...,z, is said to be of left I-type if
there exists a bijection (called a left I-structure)

v: FaM,, — S
such that
v(l)=1 and {v(uja),...,v(una)} = {z1v(a),...,zyv(a)}

for all @ € FaM,,. As mentioned in the introduction, it is proved in [] that a
monoid S is of left I-type if and only if it is of right I-type. So we call a monoid of
left or right I-type simply a monoid of I-type.

Let S = (x1,29,...,2,) be a monoid of skew type. Let X = {z1,za,...,z,}.
As in [6], we define the associated bijective map r: X x X — X x X by

T(-/I:iwxj) = (xka IZ)

if x;2; = xRy is a defining relation of S, and r(x;, ;) = (x4, x;). For each z € X,
we also denote by f: X — X and g,: X — X the mappings defined by f,(z;) =
p1(r(z,z;)) and g, (z;) = p2(r(z;,x)), where p; and py denote the projections onto
the first and second component respectively. So 7(x,2;) = (fz, (), gz, (2:)). Sup-
pose that S is right non-degenerate. So f, is bijective for all z € X. We denote by
o; € Sym,, the permutation defined by f,,(z;) = 2,
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The next result is a partial generalization of Proposition 2.2(c) of [2].

Theorem 4.1. Let S = (x1,29,...,2Z,) be a right non-degenerate monoid of skew
type. Then the following conditions are equivalent.

(i) S is of I-type.
(ii) oy 0 Tori(s) = T3 °T51(s) foralli,j.
(ili) For every defining relation x;x; = xrx; of S we have o; 0 0 = oy, 0 0y.

Proof. We denote by r;: X2 — X3, for i = 1,2, the mappings defined by r; =
r X idx and r9 = idx X r. Then

(riorgor) (i, xj, 1) = (r1072)(T0, (), ‘Eo;il(j)(i), xy)
(8) = 711(%0, (), "chf(,;il(j)(i)(k)7 xo;;l i)(k)(o;il(j)(i)))
o;(3)
and
(rzom o) (@i zj k) = (r20m)(Ti To,w) ot ()
(9) = 2 (xai(gj (%)) xo-;il(aj(k)) (i)’ I‘T(:jl(k) (j))'

Recall from [6, Corollary 3.1] that S is of I-type if and only if r yields a solution
of the quantum Yang-Baxter equation, that is vy ory 07y = r9 01y o ry. Therefore,
if S is of I-type, then by () and (9), we have

UUz‘(j)(Ua;il(j)(i)(k)) = 0i(0;(k)),
for all 4, j, k. Thus
(10) Taii) © To 50 = 91090
for all 4, j. By putting j' = 04(j), we can write (I0) as

0 O 00;1(“ =0;0 O'O_i—l(j/)7
for all 4, j’. Therefore (i) is a consequence of (7).
Suppose that

000 -1,y =0;00_-1/,
¢ e (d) A P OL

for all 4,7. We will prove that r yields a solution of the quantum Yang-Baxter
equation and thus S is of I-type. By (8) and (@), it is sufficient to prove the
following equalities:

(@) o, (0571 (i) (k) = 0il0;(R));

®) 7, o, (i) =0

—1 Y.
(75 iy )

—1 .
" NN

() o, (055 = N AN ()2
“ @™ oy 0Tt () 030
The equality (a) follows from
951295 i) T 9% % ()

with j* = 0;(j). By (a), the equality (b) is equivalent to
(11) 0;1(0j(1€))(0i(j)) =0,-

1 .
To (o) ()

(J;jl(k)(j))y
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and the latter follows from our assumption

-1 _ -1
0 00;=0,-13;0 00;1(1),

with | = 0;(0;(k)). By (a), the equality (c) is equivalent to

—1 -1 Y — -1 .
Uo';_l(j)(ﬁi(aj(k)))(Uoi(j)(Z)) % (i)(a;_l(k)(j))(UUri(Uj(k))(Z))'
: i (o (k) J
In view of ([[I), this equality is equivalent to
-1 -1 Y o —1 —1 .
Torty st Tr @ =00 () Toitos 0 ()
and the latter follows from our assumption
-1 -1 _ -1 -1
Tont @) T = ot © %

with | = o;(0j(k)) and j° = 0,(j). Hence r yields a solution of the quantum
Yang-Baxter equation and (i) implies (7).

Finally, notice that z;z, = ;x4 if and only if o;(p) = j and o;(¢) = i. The
latter is equivalent to O’;l(j) = p and 0]71(1') = ¢. Hence, saying that o,0, =

004 Whenever x;x, = 2,7, is equivalent to saying that Ti0,-1(j) = 03051 (5)- So

)
conditions (i) and (ii4) are equivalent. This completes the proof. O

5. THE DIMENSION 71 CASE

Let S = (x1,22,...,2,) be a monoid of skew type that satisfies the cyclic con-
dition. In this section we study the second extreme case, namely the case where
GK(K]|S]) = n for any field K. As in Section ] we define o; € Sym,, by

0i(j) = ) if j=1,
)=k if x;x; =xpx; is a defining relation of S.

Let m = (n — 1)!. Since S satisfies the cyclic condition, for all ¢, j we have that

(12) LT = )i

Theorem 5.1. Let S = (x1,2a,...,2,) be a monoid of skew type that satisfies the
cyclic condition. Let K be a field. Then the following conditions are equivalent:
(i) GK(KI[S]) =n.
(i) S is of I-type.
(@i) S is cancellative.

Proof. (i) = (ii). Suppose that GK(K[S]) = n. Let m = (n — 1)I. We know
that A = (a",...,2)7) is abelian. Moreover GK(K[A]) = GK(K[S]) = n by
Theorem [2.31 This implies that A is a free abelian monoid of rank n. Indeed,
otherwise the natural map K[yi,...,ys] — K[A] has a nontrivial kernel, whence
the classical Krull dimension of K[A] is smaller than n, while it is equal to the
Gelfand-Kirillov dimension; see [7, Theorem 4.5].

Suppose that x;x; = zxx; is a defining relation of S. Then for all t € {1,...,n}
we have, by ([I2)),

m f— . m . = m . .
Tiljly = 'Izl'o_j(t)l'] = xo.i(o_j(t))l'zx_].
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Also we have
rpxiTyt = xkxffr;(t)xl = x?k(m(t))xkxl.

Since

m—1_m—1 __ m,m—1 m m—1 m,.m
! . '

LT . =ay iz, =T,

multiplying the two previous equalities by x}"ilxznfl on the right, we get

Tai(os (DT LT = Loy (o (1) Tk i -
Since A is free abelian, this implies that

0i(0;(t)) = ar(ou(t)).

By Theorem 11 S is of I-type.

(#4) = (7). The definition of a monoid of I-type implies that the growth function
of S is the same as that of a free abelian monoid of rank n. Hence GK(K[S]) = n.

(#4) = (741). This follows from [4, Corollary 1.5].

(i13) = (t1). Suppose that x;z; = xx; is a defining relation of S. Then for all
t € {1,...,n}, as in the proof of the implication (i) = (i7) we get

Cai(05 () TiT] = Loy (o (1) TRLL-
Since S is cancellative, this implies that

Tgi(o5(8) = Lor(o(t)"

By the form of the defining relations of .S, it is then clear that

0i(0;(t)) = onr(ou(t)).
By Theorem [11 S is of I-type. d

Corollary 5.2. Let S be a monoid of skew type. Then S is of I-type if and only if
S is cancellative and satisfies the cyclic condition.

Proof. Suppose that S = (z1,...,z,) is of I-type. By [4] Theorem 1.3], the associ-
ated map 7: X% — X2, where X = {x1,...,2,}, yields a solution of the quantum
Yang-Baxter equation. By [6, Corollary 3.1], S satisfies the cyclic condition. Now
the result follows from Theorem [B.11 O
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