THE GELFAND-KIRILLOV DIMENSION OF QUADRATIC ALGEBRAS SATISFYING THE CYCLIC CONDITION

FERRAN CEDÓ, ERIC JESPERS, AND JAN OKNIŃSKI

(Communicated by Martin Lorenz)

Abstract

We consider algebras over a field K presented by generators x_{1}, \ldots, x_{n} and subject to $\binom{n}{2}$ square-free relations of the form $x_{i} x_{j}=x_{k} x_{l}$ with every monomial $x_{i} x_{j}, i \neq j$, appearing in one of the relations. It is shown that for $n>1$ the Gelfand-Kirillov dimension of such an algebra is at least two if the algebra satisfies the so-called cyclic condition. It is known that this dimension is an integer not exceeding n. For $n \geq 4$, we construct a family of examples of Gelfand-Kirillov dimension two. We prove that an algebra with the cyclic condition with generators x_{1}, \ldots, x_{n} has Gelfand-Kirillov dimension n if and only if it is of I-type, and this occurs if and only if the multiplicative submonoid generated by x_{1}, \ldots, x_{n} is cancellative.

1. Introduction

In 44 Gateva-Ivanova and Van den Bergh studied the structure of monoids of left I-type and their algebras. These monoids originate from the work of Tate and Van den Bergh on homological properties of Sklyanin algebras [8. It was shown in (4) that a monoid of left I-type has a presentation with generators x_{1}, \ldots, x_{n} and $\binom{n}{2}$ relations of the form $x_{i} x_{j}=x_{k} x_{l}$ such that every monomial $x_{i} x_{j}$ with $1 \leq i, j \leq n$ appears at most once in one of the relations. Moreover, such monoids yield settheoretical solutions of the quantum Yang-Baxter equation, and the corresponding monoid algebras share many properties with commutative polynomial algebras. In particular, they are noetherian domains of finite global dimension, satisfy a polynomial identity, are Koszul, Auslander-Gorenstein, Cohen-Macaulay and have Gelfand-Kirillov dimension n. In [6 the monoids of left I-type are characterized as natural submonoids of semidirect products of the free abelian monoid of rank n and the symmetric group of degree n. As a consequence, it is proved that a monoid is of left I-type if and only if it is of right I-type, [6, Corollary 2.3].

A monoid S is said to be of skew type if it has a presentation with $n \geq 2$ generators x_{1}, \ldots, x_{n} and $\binom{n}{2}$ square-free relations of the form $x_{i} x_{j}=x_{k} x_{l}$ with every monomial $x_{i} x_{j}, i \neq j$, appearing in one of the relations (see [3], where a systematic study of these monoids and their algebras was initiated). Recall that

[^0]a monoid $S=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ of skew type is said to be right (respectively left) nondegenerate if for every $1 \leq i, k \leq n$ there exist $1 \leq j, l \leq n$ so that $x_{i} x_{j}=x_{k} x_{l}$ ($x_{l} x_{k}=x_{j} x_{i}$ respectively). Furthermore S is said to satisfy the cyclic condition if for every relation $x_{i} x_{j}=x_{k} x_{l}$ one also has a relation $x_{i} x_{k}=x_{r} x_{l}$ for some r (see [3, Lemma 2.1]). The latter is a powerful combinatorial condition that has already proved crucial in the study of monoids of I-type, their algebras and corresponding torsion-free groups, 4, 6]. The cyclic condition is symmetric, [3, Proposition 2.1]. Hence it is easy to see that it implies left and right non-degeneracy. It was shown in [3] that for monoids S satisfying the cyclic condition we have $1 \leq \operatorname{GK}(K[S]) \leq n$, where $\mathrm{GK}(K[S])$ denotes the Gelfand-Kirillov dimension of the monoid algebra $K[S]$. Furthermore there exist non-degenerate monoids S of skew type on 4^{m} generators (for any positive m) so that $\operatorname{GK}(K[S])=1$, 1 .

In this paper we prove that $\mathrm{GK}(K[S]) \geq 2$ for any monoid S of skew type that satisfies the cyclic condition. For any $n \geq 4$ we construct examples of such monoids on n generators with $\operatorname{GK}(K[S])=2$. Furthermore we show that $\operatorname{GK}(K[S])=n$ if and only if S is of I-type, and this occurs if and only if S is cancellative.

2. The Gelfand-Kirillov dimension

Let $S=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ be a monoid of skew type that satisfies the cyclic condition.

Let $F=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ be the free monoid of rank n and let $\pi: F \rightarrow S$ be the natural epimorphism, that is $\pi\left(y_{i}\right)=x_{i}$ for $i=1, \ldots, n$. Let $x \in S$. We say that a word $w \in F$ represents x if $\pi(w)=x$.

It is known that two words $w, w^{\prime} \in F$ represent the same element $x \in S$ if and only if there exists a finite sequence of words

$$
w=w_{0}, w_{1}, w_{2}, \ldots, w_{m}=w^{\prime}
$$

such that w_{i} is obtained from $w_{i-1}(i=1, \ldots, m)$ by substituting a subword $y_{j} y_{k}$ by $y_{p} y_{q}$, where $x_{j} x_{k}=x_{p} x_{q}$ is a defining relation of S. In this case, we say that w_{i} is obtained from w_{i-1} by an S-relation.

Lemma 2.1. If $x_{i_{1}} x_{j_{1}}=x_{j_{2}} x_{i_{2}}$ is a defining relation of S, then there exist positive integers r, s such that $r+s \leq n$ and the submonoid $\left\langle x_{i_{1}}^{r}, x_{j_{1}}^{s}\right\rangle$ is free abelian of rank 2.

Proof. By [3, Proposition 2.1], since S satisfies the cyclic condition, there exist positive integers r, s and $s+r$ different integers

$$
i_{1}, i_{2}, \ldots, i_{s}, j_{1}, j_{2}, \ldots, j_{r} \in\{1,2, \ldots, n\}
$$

such that

$$
\begin{array}{cccc}
x_{i_{1}} x_{j_{1}}=x_{j_{2}} x_{i_{2}}, & x_{i_{2}} x_{j_{1}}=x_{j_{2}} x_{i_{3}}, & \ldots, & x_{i_{s}} x_{j_{1}}=x_{j_{2}} x_{i_{1}} \\
x_{i_{1}} x_{j_{2}}=x_{j_{3}} x_{i_{2}}, & x_{i_{2}} x_{j_{2}}=x_{j_{3}} x_{i_{3}}, & \ldots, & x_{i_{s}} x_{j_{2}}=x_{j_{3}} x_{i_{1}} \\
\vdots & \vdots & & \vdots \\
x_{i_{1}} x_{j_{r}}=x_{j_{1}} x_{i_{2}}, & x_{i_{2}} x_{j_{r}}=x_{j_{1}} x_{i_{3}}, & \ldots, & x_{i_{s}} x_{j_{r}}=x_{j_{1}} x_{i_{1}}
\end{array}
$$

From the relations in the first column we have

$$
x_{i_{1}}^{r} x_{j_{1}}=x_{j_{1}} x_{i_{2}}^{r}
$$

Similarly, from the other columns, we obtain

$$
x_{i_{2}}^{r} x_{j_{1}}=x_{j_{1}} x_{i_{3}}^{r}, \quad \ldots, \quad x_{i_{s}}^{r} x_{j_{1}}=x_{j_{1}} x_{i_{1}}^{r} .
$$

Hence $x_{i_{1}}^{r} x_{j_{1}}^{s}=x_{j_{1}}^{s} x_{i_{1}}^{r}$, and thus the submonoid $\left\langle x_{i_{1}}^{r}, x_{j_{1}}^{s}\right\rangle$ is abelian. Note that the only words that represent $x_{i_{1}}^{m}$ and $x_{j_{1}}^{m}$ are $y_{i_{1}}^{m}$ and $y_{j_{1}}^{m}$ respectively. Let p, q be positive integers and $x=x_{i_{1}}^{r p} x_{j_{1}}^{s q}$. We claim that any word $w \in F$ that represents x is of the form

$$
\begin{equation*}
w=y_{i_{l_{1}}}^{n_{1}} y_{j_{k_{1}}}^{m_{1}} y_{i_{l_{2}}}^{n_{2}} y_{j_{k_{2}}}^{m_{2}} \ldots y_{i_{i_{g-1}}}^{n_{g-1}} y_{j_{k_{g-1}}}^{m_{g-1}} y_{i_{l_{g}}}^{n_{g}}, \tag{1}
\end{equation*}
$$

where g is an integer greater than $1 ; n_{1}, n_{g}$ are non-negative integers; $l_{1}=l_{g}=1$, and $n_{2}, n_{3}, \ldots, n_{g-1}, m_{1}, m_{2}, \ldots, m_{g-1}$ are positive integers such that
(i) $n_{1}+k_{1} \equiv k_{g-1}-n_{g} \equiv 1(\bmod r)$ and $l_{t+1}-l_{t} \equiv m_{t}(\bmod s)$ for all $1 \leq t \leq g-1 ;$
(ii) if $g>2$, then $k_{u}-k_{u+1} \equiv n_{u+1}(\bmod r)$ for all $1 \leq u \leq g-2$;
(iii) $n_{1}+n_{2}+\cdots+n_{g}=r p$ and $m_{1}+m_{2}+\cdots+m_{g-1}=s q$.

Note that the word $y_{i_{1}}^{r p} y_{j_{1}}^{s q}$ represents x and satisfies conditions $(i),(i i)$ and (iii). Therefore, in order to prove the claim, it is sufficient to see that given any word w of the form (11) that satisfies conditions (i), (ii) and (iii), all the words obtained from w by an S-relation also satisfy conditions (i), (ii) and (iii). Suppose that $g=2$. In this case

$$
w=y_{i_{1}}^{n_{1}} y_{j_{k_{1}}}^{m_{1}} y_{i_{1}}^{n_{2}}
$$

with $m_{1}=s q>0, n_{1}+n_{2}=r p$ and $n_{1}+k_{1} \equiv k_{1}-n_{2} \equiv 1(\bmod r)$. If $n_{1}>0$, we can obtain by an S-relation (the relation $x_{i_{1}} x_{j_{k_{1}}}=x_{j_{k_{1}+1}} x_{i_{2}}$), the word

$$
w^{\prime}=y_{i_{1}}^{n_{1}-1} y_{j_{k_{1}+1}} y_{i_{2}} y_{j_{k_{1}}}^{m_{1}-1} y_{i_{1}}^{n_{2}}
$$

where $k_{1}+1$ is taken modulo r in the set $\{1, \ldots, r\}$, and it is easy to see that w^{\prime} satisfies conditions $(i),(i i)$ and $(i i i)$. If $n_{2}>0$, we can obtain by an S-relation the word

$$
w^{\prime}=y_{i_{1}}^{n_{1}} y_{j_{k_{1}}}^{m_{1}-1} y_{i_{s}} y_{j_{k_{1}-1}} y_{i_{1}}^{n_{2}-1}
$$

where $k_{1}-1$ is taken modulo r in the set $\{1, \ldots, r\}$, and it is easy to see that w^{\prime} satisfies the conditions $(i),(i i)$ and (iii). Similarly, it is straightforward to prove that, if $g>2$, all the words w^{\prime} obtained from w by an S-relation satisfy conditions $(i),(i i)$ and (iii). Now condition (iii) implies that the submonoid $\left\langle x_{i_{1}}^{r}, x_{j_{1}}^{s}\right\rangle$ is free abelian of rank 2 .

As a direct consequence of Lemma 2.1 we get the following result.
Corollary 2.2. Let $S=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ be a monoid of skew type that satisfies the cyclic condition. Let $m=(n-1)$!. Then the submonoid $A=\left\langle x_{1}^{m}, \ldots, x_{n}^{m}\right\rangle$ is commutative.

Theorem 2.3. Let $S=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ (with $n>1$) be a monoid of skew type that satisfies the cyclic condition. Let $A=\left\langle x_{1}^{m}, \ldots, x_{n}^{m}\right\rangle$, where $m=(n-1)$!. If K is a field, then the Gelfand-Kirillov dimension of the monoid algebra $K[S]$ is an integer such that $2 \leq \operatorname{GK}(K[S])=\mathrm{GK}(K[A]) \leq n$. Moreover, $\operatorname{GK}(K[S])$ is equal to the maximal rank k of a free abelian submonoid of the form $\left\langle x_{i_{1}}^{m}, \ldots, x_{i_{k}}^{m}\right\rangle \subseteq S$.

Proof. By [3, Theorem 4.5] and the comment after [3, Proposition 2.4], $K[S]$ is a finite left and right module over the commutative subring $K[A]$, where $A=$ $\left\langle x_{1}^{p}, \ldots, x_{n}^{p}\right\rangle$ for some $p \geq 1$. The proof actually shows that we may take $p=(n-1)$!. Hence $\operatorname{GK}(K[S])=\operatorname{GK}(K[A]) \leq n$ and it is an integer. By Lemma 2.1 we have that $2 \leq \operatorname{GK}(K[S])$. Let P be a prime ideal of $K[A]$. Then the image A_{P} of
A in $K[A] / P$ is a 0 -cancellative monoid. Let $C=\left\langle z_{i_{1}}^{m}, \ldots, z_{i_{r}}^{m}\right\rangle \subseteq A_{P}$ be a free abelian submonoid of maximal rank that is generated by certain images z_{i}^{m} of the elements x_{i}^{m}. Then $B=\left\langle x_{i_{1}}^{m}, \ldots, x_{i_{r}}^{m}\right\rangle \subseteq A$ is free abelian of rank r. It is easy to see that the group G_{P} of quotients of the cancellative semigroup of nonzero elements of A_{P} is of rank r, whence $\mathrm{GK}(K[A] / P) \leq \operatorname{GK}\left(K\left[A_{P}\right]\right) \leq \operatorname{GK}\left(K\left[G_{P}\right]\right)=r \leq k$. Therefore $\operatorname{GK}(A) \leq k$, since the Gelfand-Kirillov and the classical Krull dimensions coincide on finitely generated commutative algebras, [7, Theorem 4.5]. The result follows.

3. Examples of dimension two

For $n \geq 4$, let $T^{(n)}$ be the monoid of skew type generated by x_{1}, \ldots, x_{n} with defining relations

$$
\begin{aligned}
& x_{1} x_{2}=x_{3} x_{1}, \quad \ldots, \quad x_{1} x_{n-2}=x_{n-1} x_{1}, \quad x_{1} x_{n-1}=x_{2} x_{1}, \\
& x_{n} x_{1}=x_{n-1} x_{n}, \quad x_{n} x_{n-1}=x_{1} x_{n}, \\
& x_{i} x_{i+1}=x_{i+2} x_{i}, \quad \ldots, \quad x_{i} x_{n-1}=x_{n} x_{i}, \quad x_{i} x_{n}=x_{i+1} x_{i}
\end{aligned}
$$

for all $2 \leq i \leq n-2$. Note that $T^{(n)}$ satisfies the cyclic condition.
Lemma 3.1. Let ρ be the least cancellative congruence on $T^{(n)}$. If $n>4$, then $x_{2} x_{1} x_{2}=x_{n} x_{1} x_{2}$ and $x_{1} \rho x_{2} \rho \ldots \rho x_{n}$.
Proof. By using the defining relations, we have

$$
x_{2} x_{1} x_{2}=x_{1} x_{n-1} x_{2}=x_{1} x_{2} x_{n-2}=x_{3} x_{1} x_{n-2}=x_{3} x_{n-1} x_{1}=x_{n} x_{3} x_{1}=x_{n} x_{1} x_{2}
$$

Since $x_{2} x_{1} x_{2}=x_{n} x_{1} x_{2}$, it follows that $x_{2} \rho x_{n}$. Now the relations

$$
x_{2} x_{3}=x_{4} x_{2}, \quad \ldots, \quad x_{2} x_{n-1}=x_{n} x_{2}
$$

imply that $x_{2} \rho x_{3} \rho \ldots \rho x_{n}$. Since $x_{n} x_{1}=x_{n-1} x_{n}$, we also get

$$
x_{1} \rho x_{2} \rho \ldots \rho x_{n} .
$$

Let T_{n}^{\prime} be the subset of $T^{(n)}$ of all elements right divisible by all generators of $T^{(n)}$. Since $T^{(n)}$ is left non-degenerate, T_{n}^{\prime} is an ideal of $T^{(n)}$; see 3].

Lemma 3.2. Consider $z=x_{2} x_{1} x_{2} \in T^{(n)}$. Then $z \in T_{n}^{\prime}$.
Proof. For $n=4$ we have

$$
z=x_{2} x_{1} x_{2}=x_{2} x_{3} x_{1}=x_{4} x_{2} x_{1}=x_{4} x_{1} x_{3}=x_{3} x_{4} x_{3}=x_{3} x_{1} x_{4} \in T_{n}^{\prime}
$$

Suppose that $n>4$. By Lemma 3.1 $z=x_{n} x_{1} x_{2}$ and thus

$$
\begin{aligned}
z & =x_{n} x_{1} x_{2}=x_{n-1} x_{n} x_{2}=x_{n-1} x_{2} x_{n-1}=x_{2} x_{n-2} x_{n-1} \\
& =x_{2} x_{n} x_{n-2}=x_{3} x_{2} x_{n-2}=x_{3} x_{n-1} x_{2}=x_{n} x_{3} x_{2}=x_{n} x_{2} x_{n} \\
& =x_{2} x_{n-1} x_{n}=x_{2} x_{n} x_{1}=x_{3} x_{2} x_{1}=x_{3} x_{1} x_{n-1}=x_{1} x_{2} x_{n-1} \\
& =x_{1} x_{n} x_{2}=x_{n} x_{n-1} x_{2}=x_{n} x_{2} x_{n-2}=x_{2} x_{n-1} x_{n-2} .
\end{aligned}
$$

We claim that $z=x_{2} x_{i+1} x_{i}$ for all $n-2 \geq i \geq 3$. We prove this by induction. If $n=5$ the claim is proved. Suppose that $n>5$ and that we know $z=x_{2} x_{i+1} x_{i}$ for
some $4 \leq i \leq n-2$. Then

$$
\begin{aligned}
z & =x_{2} x_{i+1} x_{i}=x_{2} x_{i} x_{n}=x_{i+1} x_{2} x_{n}=x_{i+1} x_{3} x_{2} \\
& =x_{3} x_{i} x_{2}=x_{3} x_{2} x_{i-1}=x_{2} x_{n} x_{i-1}=x_{2} x_{i-1} x_{n-1} \\
& =x_{i} x_{2} x_{n-1}=x_{i} x_{n} x_{2}=x_{i+1} x_{i} x_{2}=x_{i+1} x_{2} x_{i-1}=x_{2} x_{i} x_{i-1}
\end{aligned}
$$

which proves the inductive claim. It follows that $z \in T^{(n)} x_{i}$, for all $3 \leq i \leq n-2$. Since $z=x_{2} x_{1} x_{2}=x_{2} x_{3} x_{1}=x_{n-1} x_{2} x_{n-1}=x_{n} x_{2} x_{n}$, we have that $z \in T_{n}^{\prime}$.

Let $m=(n-1)$!. By Corollary 2.2, the submonoid $A=\left\langle x_{1}^{m}, \ldots, x_{n}^{m}\right\rangle$ of $T^{(n)}$ is commutative.

Lemma 3.3. If $n>4$, then $x_{k}^{2 m} x_{j}^{2 m} x_{i}^{2 m} \in T_{n}^{\prime}$ for all $1 \leq i<j<k \leq n$.
Proof. Note that from the relations

$$
x_{1} x_{2}=x_{3} x_{1}, \quad \ldots, \quad x_{1} x_{n-2}=x_{n-1} x_{1}, \quad x_{1} x_{n-1}=x_{2} x_{1}
$$

it follows that

$$
\begin{equation*}
x_{1}^{j} x_{i}=x_{j+i} x_{1}^{j}, \quad x_{1}^{n-2} x_{i}=x_{i} x_{1}^{n-2} \tag{2}
\end{equation*}
$$

for all $2 \leq i \leq n-1$ and $1 \leq j<n-i$. From the relations

$$
\begin{equation*}
x_{n} x_{1}=x_{n-1} x_{n}, \quad x_{n} x_{n-1}=x_{1} x_{n}, \tag{3}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
x_{n}^{2} x_{1}=x_{1} x_{n}^{2} \quad \text { and } \quad x_{n}^{2} x_{n-1}=x_{n-1} x_{n}^{2} \tag{4}
\end{equation*}
$$

For each $2 \leq i \leq n-2$, the relations

$$
x_{i} x_{i+1}=x_{i+2} x_{i}, \quad \ldots, \quad x_{i} x_{n-1}=x_{n} x_{i}, \quad x_{i} x_{n}=x_{i+1} x_{i}
$$

imply that

$$
\begin{equation*}
x_{i}^{n-i} x_{j}=x_{j} x_{i}^{n-i} \tag{5}
\end{equation*}
$$

for all $2 \leq i<j \leq n$.
Case 1. $1<i<j<k \leq n$. In this case it is easy to see that

$$
\begin{equation*}
x_{k} x_{j}^{k-j-1}=x_{j}^{k-j-1} x_{j+1} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{j} x_{i}^{j-i+1}=x_{i}^{j-i+1} x_{n-1} . \tag{7}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
& x_{k}^{2 m} x_{j}^{2 m} x_{i}^{2 m}=x_{j}^{k-j-1} x_{j+1}^{2 m} x_{j}^{2 m-k+j+1} x_{i}^{2 m} \quad \text { (by (6)) } \\
& \left.=x_{j}^{k-j-1} x_{j+1}^{2 m} x_{j}^{m} x_{i}^{2 m} x_{j}^{m-k+j+1} \quad \text { (by (5) }\right) \\
& =x_{j}^{k-j-1} x_{j}^{m} x_{j+1}^{2 m} x_{i}^{2 m} x_{j}^{m-k+j+1} \quad \text { (by (5)) } \\
& =x_{j}^{k-j-1} x_{i}^{j-i+1} x_{n-1}^{m} x_{n}^{2 m} x_{i}^{2 m-j+i-1} x_{j}^{m-k+j+1} \quad \text { (by (7)) } \\
& =x_{j}^{k-j-1} x_{i}^{j-i+1} x_{n} x_{1}^{m} x_{n}^{2 m-1} x_{i}^{2 m-j+i-1} x_{j}^{m-k+j+1} \quad \text { (by (3)) } \\
& =x_{j}^{k-j-1} x_{i}^{j-i+1} x_{n} x_{1}^{m} x_{n}^{2} x_{i}^{m} x_{n}^{2 m-3} x_{i}^{m-j+i-1} x_{j}^{m-k+j+1} \quad \text { (by (5)) } \\
& =x_{j}^{k-j-1} x_{i}^{j-i+1} x_{n}^{3} x_{1}^{m} x_{i}^{m} x_{n}^{2 m-3} x_{i}^{m-j+i-1} x_{j}^{m-k+j+1} \quad \text { (by (4)) } \\
& =x_{j}^{k-j-1} x_{i}^{j-i+1} x_{n}^{3} x_{1}^{m-n+i} x_{2}^{m} x_{1}^{n-i} x_{n}^{2 m-3} \\
& \text { • } x_{i}^{m-j+i-1} x_{j}^{m-k+j+1} \quad\left(\text { since } x_{2} x_{1}^{n-i}=x_{1}^{n-i} x_{i}\right) \\
& =x_{j}^{k-j-1} x_{i}^{j-i+1} x_{n} x_{1}^{m-n+i-1} x_{n}^{2} x_{1} x_{2}^{m} x_{1}^{n-i} x_{n}^{2 m-3} \\
& \cdot x_{i}^{m-j+i-1} x_{j}^{m-k+j+1} \quad \text { (by (4)) } \\
& =\left(x_{j}^{k-j-1} x_{i}^{j-i+1} x_{n} x_{1}^{m-n+i-1} x_{n}\right) z\left(x_{2}^{m-1} x_{1}^{n-i} x_{n}^{2 m-3}\right. \\
& \text { - } \left.x_{i}^{m-j+i-1} x_{j}^{m-k+j+1}\right) \text {. }
\end{aligned}
$$

By Lemma 3.2 we know that $z \in T_{n}^{\prime}$. Since T_{n}^{\prime} is an ideal of $T^{(n)}$, it follows that $x_{k}^{2 m} x_{j}^{2 m} x_{i}^{2 m} \in T_{n}^{\prime}$.

Case 2. $1=i<j<k \leq n$ and $j<n-1$. Then we have

$$
\begin{aligned}
x_{k}^{2 m} x_{j}^{2 m} x_{1}^{2 m} & =x_{j}^{k-j-1} x_{j+1}^{2 m} x_{j}^{2 m-k+j+1} x_{1}^{2 m} \quad(\text { by (6) }) \\
& =x_{j}^{k-j-1} x_{j+1}^{2 m} x_{j}^{m} x_{1}^{2 m} x_{j}^{m-k+j+1} \quad(\text { by (2) }) \\
& =x_{j}^{k-j-1} x_{j}^{m} x_{j+1}^{2 m} x_{1}^{2 m} x_{j}^{m-k+j+1} \quad(\text { by (5) }) \\
& =x_{j}^{k-j-1} x_{j}^{m} x_{j+1} x_{1}^{2 m} x_{j+1}^{2 m-1} x_{j}^{m-k+j+1} \quad(\text { by (22) }) \\
& =x_{j}^{k-j-1} x_{j}^{m} x_{1}^{j-2} x_{3} x_{1}^{2 m-j+2} x_{j+1}^{2 m-1} x_{j}^{m-k+j+1} \quad(\text { by (22) }) \\
& =x_{j}^{k-j-1} x_{1}^{j-2} x_{2}^{m} x_{3} x_{1}^{2 m-j+2} x_{j+1}^{2 m-1} x_{j}^{m-k+j+1} \quad \text { (by (21)) } \\
& =\left(x_{j}^{k-j-1} x_{1}^{j-2} x_{2}^{m-1}\right) z\left(x_{1}^{2 m-j+1} x_{j+1}^{2 m-1} x_{j}^{m-k+j+1}\right) .
\end{aligned}
$$

By Lemma 3.2, $x_{k}^{2 m} x_{j}^{2 m} x_{i}^{2 m} \in T_{n}^{\prime}$ in this case.
Case 3. $i=1, j=n-1$ and $k=n$. Then we have

$$
\begin{aligned}
x_{n}^{2 m} x_{n-1}^{2 m} x_{1}^{2 m} & =x_{n}^{2 m} x_{n-1} x_{1}^{2 m} x_{n-1}^{2 m-1} \quad(\text { by (2) }) \\
& =x_{n}^{2 m} x_{1}^{n-3} x_{2} x_{1}^{2 m-n+3} x_{n-1}^{2 m-1} \quad(\text { by (22) }) \\
& =x_{n}^{2 m-1} x_{n-1}^{n-4} x_{n} x_{1} x_{2} x_{1}^{2 m-n+3} x_{n-1}^{2 m-1} \quad(\text { by (3) }) \\
& =\left(x_{n}^{2 m-1} x_{n-1}^{n-4}\right) z\left(x_{1}^{2 m-n+3} x_{n-1}^{2 m-1}\right) .
\end{aligned}
$$

Again, by Lemma 3.2, $x_{k}^{2 m} x_{j}^{2 m} x_{i}^{2 m} \in T_{n}^{\prime}$ in this case.
Therefore $x_{k}^{2 m} x_{j}^{2 m} x_{i}^{2 m} \in T_{n}^{\prime}$ for all $1 \leq i<j<k \leq n$.
Theorem 3.4. Let K be a field. Then $\operatorname{GK}\left(K\left[T^{(n)}\right]\right)=2$ for all $n \geq 4$.

Proof. For $n=4$ the result follows from [5, Proposition 2.1], because $T^{(4)}$ coincides with the monoid $C^{(1)}$ of [5]. Suppose that $n>4$. As above, let $m=(n-1)$!. From [3, Proposition 6.3] we know that $\left(T_{n}^{\prime}\right)^{q} I(\rho)=0$ for some q, where $I(\rho)$ is the ideal of $K\left[T^{(n)}\right]$ determined by the least cancellative congruence ρ on $T^{(n)}$. In particular, by Lemma 3.1, $x_{k}^{m}-x_{j}^{m} \in I(\rho)$ for all k, j. Therefore, from Lemma 3.3 it follows that

$$
x_{k}^{2 m q} x_{j}^{2 m q} x_{i}^{2 m q}\left(x_{k}^{m}-x_{j}^{m}\right)=0
$$

for all $1 \leq i<j<k \leq n$, which implies that $x_{k}^{m}, x_{j}^{m}, x_{i}^{m}$ do not generate a free abelian semigroup. Therefore Theorem 2.3 implies that $\mathrm{GK}\left(K\left[T^{(n)}\right]\right)=2$.

Corollary 3.5. For any integers $n \geq 4$ and $2 \leq j \leq n$, there exists a monoid $M=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ of skew type, satisfying the cyclic condition and such that $\mathrm{GK}(K[M])=j$ for any field K.
Proof. If $j=n$, then the free abelian monoid of rank $n, M=\mathrm{FaM}_{n}$, satisfies the conditions.

Suppose that $j=n-1$. By [5], there exists a monoid A of skew type with 4 generators that satisfies the cyclic condition such that, for any field $K, \operatorname{GK}(K[A])=$ 3. Let $M=A \times \mathrm{FaM}_{n-4}$. Then it is easy to see that M is a monoid of skew type with n generators that satisfies the cyclic condition. Since $K[M]$ is the polynomial algebra over $K[A]$ with $n-4$ indeterminates, by [7, Example 3.6], $\operatorname{GK}(K[M])=$ $3+(n-4)=n-1$.

Suppose that $j \leq n-2$. Let $M=T^{(n-j+2)} \times \mathrm{FaM}_{j-2}$. It is easy to see that M is a monoid of skew type with n generators that satisfies the cyclic condition. Since $K[M]$ is the polynomial algebra over $K\left[T^{(n-j+2)}\right]$ with $j-2$ indeterminates, by [7, Example 3.6], $\operatorname{GK}(K[M])=\operatorname{GK}\left(K\left[T^{(n-j+2)}\right]\right)+(j-2)$. By Theorem 3.4, $\operatorname{GK}(K[M])=j$.

4. I-TYPE MONOIDS

Let FaM_{n} be the multiplicative free abelian monoid of rank n with basis u_{1}, \ldots, u_{n}. Recall that a monoid S generated by x_{1}, \ldots, x_{n} is said to be of left I-type if there exists a bijection (called a left I-structure)

$$
v: \mathrm{FaM}_{n} \rightarrow S
$$

such that

$$
v(1)=1 \quad \text { and } \quad\left\{v\left(u_{1} a\right), \ldots, v\left(u_{n} a\right)\right\}=\left\{x_{1} v(a), \ldots, x_{n} v(a)\right\}
$$

for all $a \in \mathrm{FaM}_{n}$. As mentioned in the introduction, it is proved in [6] that a monoid S is of left I-type if and only if it is of right I-type. So we call a monoid of left or right I-type simply a monoid of I-type.

Let $S=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ be a monoid of skew type. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. As in [6], we define the associated bijective map $r: X \times X \rightarrow X \times X$ by

$$
r\left(x_{i}, x_{j}\right)=\left(x_{k}, x_{l}\right)
$$

if $x_{i} x_{j}=x_{k} x_{l}$ is a defining relation of S, and $r\left(x_{i}, x_{i}\right)=\left(x_{i}, x_{i}\right)$. For each $x \in X$, we also denote by $f_{x}: X \rightarrow X$ and $g_{x}: X \rightarrow X$ the mappings defined by $f_{x}\left(x_{i}\right)=$ $p_{1}\left(r\left(x, x_{i}\right)\right)$ and $g_{x}\left(x_{i}\right)=p_{2}\left(r\left(x_{i}, x\right)\right)$, where p_{1} and p_{2} denote the projections onto the first and second component respectively. So $r\left(x_{i}, x_{j}\right)=\left(f_{x_{i}}\left(x_{j}\right), g_{x_{j}}\left(x_{i}\right)\right)$. Suppose that S is right non-degenerate. So f_{x} is bijective for all $x \in X$. We denote by $\sigma_{i} \in \operatorname{Sym}_{n}$ the permutation defined by $f_{x_{i}}\left(x_{j}\right)=x_{\sigma_{i}(j)}$.

The next result is a partial generalization of Proposition 2.2(c) of [2].
Theorem 4.1. Let $S=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ be a right non-degenerate monoid of skew type. Then the following conditions are equivalent.
(i) S is of I-type.
(ii) $\sigma_{i} \circ \sigma_{\sigma_{i}^{-1}(j)}=\sigma_{j} \circ \sigma_{\sigma_{j}^{-1}(i)}$ for all i, j.
(iii) For every defining relation $x_{i} x_{j}=x_{k} x_{l}$ of S we have $\sigma_{i} \circ \sigma_{j}=\sigma_{k} \circ \sigma_{l}$.

Proof. We denote by $r_{i}: X^{3} \rightarrow X^{3}$, for $i=1,2$, the mappings defined by $r_{1}=$ $r \times i d_{X}$ and $r_{2}=i d_{X} \times r$. Then

$$
\left.\begin{array}{rl}
\left(r_{1} \circ r_{2} \circ r_{1}\right)\left(x_{i}, x_{j}, x_{k}\right) & =\left(r_{1} \circ r_{2}\right)\left(x_{\sigma_{i}(j)}, x_{\sigma_{\sigma_{i}(j)}^{-1}(i)}, x_{k}\right) \\
& =r_{1}\left(x_{\sigma_{i}(j)}, x_{\sigma_{\sigma_{\sigma_{i}(j)}^{-1}(i)}(k)}, x_{\sigma_{\sigma_{\sigma_{i}(j)}^{-1}}-1}(k)\left(\sigma_{\sigma_{i}(j)}^{-1}(i)\right)\right. \tag{8}
\end{array}\right)
$$

and

$$
\begin{align*}
\left(r_{2} \circ r_{1} \circ r_{2}\right)\left(x_{i}, x_{j}, x_{k}\right) & =\left(r_{2} \circ r_{1}\right)\left(x_{i}, x_{\sigma_{j}(k)}, x_{\sigma_{\sigma_{j}(k)}^{-1}(j)}\right) \\
& =r_{2}\left(x_{\sigma_{i}\left(\sigma_{j}(k)\right)}, x_{\sigma_{\sigma_{i}\left(\sigma_{j}(k)\right)}^{-1}}, x_{\sigma_{\sigma_{j}(k)}^{-1}(j)}\right) . \tag{9}
\end{align*}
$$

Recall from [6, Corollary 3.1] that S is of I-type if and only if r yields a solution of the quantum Yang-Baxter equation, that is $r_{1} \circ r_{2} \circ r_{1}=r_{2} \circ r_{1} \circ r_{2}$. Therefore, if S is of I-type, then by (8) and (9), we have

$$
\sigma_{\sigma_{i}(j)}\left(\sigma_{\sigma_{\sigma_{i}(j)}^{-1}(i)}(k)\right)=\sigma_{i}\left(\sigma_{j}(k)\right),
$$

for all i, j, k. Thus

$$
\begin{equation*}
\sigma_{\sigma_{i}(j)} \circ \sigma_{\sigma_{\sigma_{i}(j)}^{-1}(i)}=\sigma_{i} \circ \sigma_{j} \tag{10}
\end{equation*}
$$

for all i, j. By putting $j^{\prime}=\sigma_{i}(j)$, we can write (10) as

$$
\sigma_{j^{\prime}} \circ \sigma_{\sigma_{j^{\prime}}^{-1}(i)}=\sigma_{i} \circ \sigma_{\sigma_{i}^{-1}\left(j^{\prime}\right)}
$$

for all i, j^{\prime}. Therefore $(i i)$ is a consequence of (i).
Suppose that

$$
\sigma_{i} \circ \sigma_{\sigma_{i}^{-1}(j)}=\sigma_{j} \circ \sigma_{\sigma_{j}^{-1}(i)}
$$

for all i, j. We will prove that r yields a solution of the quantum Yang-Baxter equation and thus S is of I-type. By (8) and (9), it is sufficient to prove the following equalities:
(a) $\sigma_{\sigma_{i}(j)}\left(\sigma_{\sigma_{\sigma_{i}(j)}^{-1}(i)}(k)\right)=\sigma_{i}\left(\sigma_{j}(k)\right)$;
(b) $\sigma_{\sigma_{\sigma_{i}(j)}^{-1}\left(\sigma_{\sigma_{\sigma_{i}(j)}^{-1}(i)}^{-1}(k)\right)}\left(\sigma_{i}(j)\right)=\sigma_{\sigma_{\sigma_{i}\left(\sigma_{j}(k)\right)}^{-1}(i)}\left(\sigma_{\sigma_{j}(k)}^{-1}(j)\right)$;
(c) $\sigma_{\sigma_{\sigma_{i}(j)}^{-1}(i)}^{-1}(k)\left(\sigma_{\sigma_{i}(j)}^{-1}(i)\right)=\sigma_{\sigma_{\sigma_{i}\left(\sigma_{j}(k)\right)}^{-1}\left(\sigma_{\sigma_{j}(k)}^{-1}(j)\right)}\left(\sigma_{\sigma_{i}\left(\sigma_{j}(k)\right)}^{-1}(i)\right)$.

The equality (a) follows from

$$
\sigma_{j^{\prime}} \circ \sigma_{\sigma_{j^{\prime}}^{-1}(i)}=\sigma_{i} \circ \sigma_{\sigma_{i}^{-1}\left(j^{\prime}\right)}
$$

with $j^{\prime}=\sigma_{i}(j)$. By (a), the equality (b) is equivalent to

$$
\begin{equation*}
\sigma_{\sigma_{i}\left(\sigma_{j}(k)\right)}^{-1}\left(\sigma_{i}(j)\right)=\sigma_{\sigma_{\sigma_{i}\left(\sigma_{j}(k)\right)}^{-1}(i)}\left(\sigma_{\sigma_{j}(k)}^{-1}(j)\right) \tag{11}
\end{equation*}
$$

and the latter follows from our assumption

$$
\sigma_{l}^{-1} \circ \sigma_{i}=\sigma_{\sigma_{l}^{-1}(i)} \circ \sigma_{\sigma_{i}^{-1}(l)}^{-1}
$$

with $l=\sigma_{i}\left(\sigma_{j}(k)\right) . \mathrm{By}(a)$, the equality (c) is equivalent to

In view of (11), this equality is equivalent to

$$
\sigma_{\sigma_{\sigma_{i}(j)}^{-1}\left(\sigma_{i}\left(\sigma_{j}(k)\right)\right)}^{-1}\left(\sigma_{\sigma_{i}(j)}^{-1}(i)\right)=\sigma_{\sigma_{\sigma_{i}\left(\sigma_{j}(k)\right)}^{-1}\left(\sigma_{i}(j)\right)}^{-1}\left(\sigma_{\sigma_{i}\left(\sigma_{j}(k)\right)}^{-1}(i)\right)
$$

and the latter follows from our assumption

$$
\sigma_{\sigma_{j^{\prime}}^{-1}(l)}^{-1} \circ \sigma_{j^{\prime}}^{-1}=\sigma_{\sigma_{l}^{-1}\left(j^{\prime}\right)}^{-1} \circ \sigma_{l}^{-1}
$$

with $l=\sigma_{i}\left(\sigma_{j}(k)\right)$ and $j^{\prime}=\sigma_{i}(j)$. Hence r yields a solution of the quantum Yang-Baxter equation and (ii) implies (i).

Finally, notice that $x_{i} x_{p}=x_{j} x_{q}$ if and only if $\sigma_{i}(p)=j$ and $\sigma_{j}(q)=i$. The latter is equivalent to $\sigma_{i}^{-1}(j)=p$ and $\sigma_{j}^{-1}(i)=q$. Hence, saying that $\sigma_{i} \sigma_{p}=$ $\sigma_{j} \sigma_{q}$ whenever $x_{i} x_{p}=x_{j} x_{q}$ is equivalent to saying that $\sigma_{i} \sigma_{\sigma_{i}^{-1}(j)}=\sigma_{j} \sigma_{\sigma_{j}^{-1}(i)}$. So conditions (ii) and (iii) are equivalent. This completes the proof.

5. The dimension n case

Let $S=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ be a monoid of skew type that satisfies the cyclic condition. In this section we study the second extreme case, namely the case where $\operatorname{GK}(K[S])=n$ for any field K. As in Section 4] we define $\sigma_{i} \in \operatorname{Sym}_{n}$ by

$$
\sigma_{i}(j)=\left\{\begin{array}{lll}
i & \text { if } \quad j=i, \\
k & \text { if } \quad x_{i} x_{j}=x_{k} x_{l} \quad \text { is a defining relation of } S
\end{array}\right.
$$

Let $m=(n-1)$!. Since S satisfies the cyclic condition, for all i, j we have that

$$
\begin{equation*}
x_{i} x_{j}^{m}=x_{\sigma_{i}(j)}^{m} x_{i} \tag{12}
\end{equation*}
$$

Theorem 5.1. Let $S=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ be a monoid of skew type that satisfies the cyclic condition. Let K be a field. Then the following conditions are equivalent:
(i) $\operatorname{GK}(K[S])=n$.
(ii) S is of I-type.
(iii) S is cancellative.

Proof. $(i) \Rightarrow(i i)$. Suppose that $\mathrm{GK}(K[S])=n$. Let $m=(n-1)$!. We know that $A=\left\langle x_{1}^{m}, \ldots, x_{n}^{m}\right\rangle$ is abelian. Moreover $\operatorname{GK}(K[A])=\operatorname{GK}(K[S])=n$ by Theorem 2.3. This implies that A is a free abelian monoid of rank n. Indeed, otherwise the natural map $K\left[y_{1}, \ldots, y_{n}\right] \rightarrow K[A]$ has a nontrivial kernel, whence the classical Krull dimension of $K[A]$ is smaller than n, while it is equal to the Gelfand-Kirillov dimension; see [7, Theorem 4.5].

Suppose that $x_{i} x_{j}=x_{k} x_{l}$ is a defining relation of S. Then for all $t \in\{1, \ldots, n\}$ we have, by (12),

$$
x_{i} x_{j} x_{t}^{m}=x_{i} x_{\sigma_{j}(t)}^{m} x_{j}=x_{\sigma_{i}\left(\sigma_{j}(t)\right)}^{m} x_{i} x_{j} .
$$

Also we have

$$
x_{k} x_{l} x_{t}^{m}=x_{k} x_{\sigma_{l}(t)}^{m} x_{l}=x_{\sigma_{k}\left(\sigma_{l}(t)\right)}^{m} x_{k} x_{l} .
$$

Since

$$
x_{i} x_{j} x_{j}^{m-1} x_{i}^{m-1}=x_{i} x_{j}^{m} x_{i}^{m-1}=x_{k}^{m} x_{i} x_{i}^{m-1}=x_{k}^{m} x_{i}^{m}
$$

multiplying the two previous equalities by $x_{j}^{m-1} x_{i}^{m-1}$ on the right, we get

$$
x_{\sigma_{i}\left(\sigma_{j}(t)\right)}^{m} x_{k}^{m} x_{i}^{m}=x_{\sigma_{k}\left(\sigma_{l}(t)\right)}^{m} x_{k}^{m} x_{i}^{m} .
$$

Since A is free abelian, this implies that

$$
\sigma_{i}\left(\sigma_{j}(t)\right)=\sigma_{k}\left(\sigma_{l}(t)\right)
$$

By Theorem 4.1, S is of I-type.
$($ ii $) \Rightarrow(i)$. The definition of a monoid of I-type implies that the growth function of S is the same as that of a free abelian monoid of rank n. Hence $\operatorname{GK}(K[S])=n$.
$(i i) \Rightarrow(i i i)$. This follows from [4, Corollary 1.5].
$($ iii $) \Rightarrow(i i)$. Suppose that $x_{i} x_{j}=x_{k} x_{l}$ is a defining relation of S. Then for all $t \in\{1, \ldots, n\}$, as in the proof of the implication $(i) \Rightarrow(i i)$ we get

$$
x_{\sigma_{i}\left(\sigma_{j}(t)\right)}^{m} x_{i} x_{j}=x_{\sigma_{k}\left(\sigma_{l}(t)\right)}^{m} x_{k} x_{l}
$$

Since S is cancellative, this implies that

$$
x_{\sigma_{i}\left(\sigma_{j}(t)\right)}^{m}=x_{\sigma_{k}\left(\sigma_{l}(t)\right)}^{m}
$$

By the form of the defining relations of S, it is then clear that

$$
\sigma_{i}\left(\sigma_{j}(t)\right)=\sigma_{k}\left(\sigma_{l}(t)\right)
$$

By Theorem 4.1, S is of I-type.
Corollary 5.2. Let S be a monoid of skew type. Then S is of I-type if and only if S is cancellative and satisfies the cyclic condition.

Proof. Suppose that $S=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is of I-type. By [4, Theorem 1.3], the associated map $r: X^{2} \rightarrow X^{2}$, where $X=\left\{x_{1}, \ldots, x_{n}\right\}$, yields a solution of the quantum Yang-Baxter equation. By [6, Corollary 3.1], S satisfies the cyclic condition. Now the result follows from Theorem 5.1.

References

[1] F. Cedó, E. Jespers and J. Okniński, Semiprime quadratic algebras of Gelfand-Kirillov dimension one, J. Algebra Appl. 3(2004), 283-300. MR2096451
[2] P. Etingof, T. Schedler and A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100(1999), 169-209. MR1722951 (2001c:16076)
[3] T. Gateva-Ivanova, E. Jespers and J. Okniński, Quadratic algebras of skew type and the underlying semigroups, J. Algebra 270(2003), 635-659. MR2019633 (2004m:16039)
[4] T. Gateva-Ivanova and M. Van den Bergh, Semigroups of I-Type, J. Algebra 206(1998), 97-112. MR 1637256 (99h:20090)
[5] E. Jespers and J. Okniński, Quadratic algebras of skew type satisfying the cyclic condition, Int. J. Algebra and Computation 14(2004), 479-498. MR2084381
[6] E. Jespers and J. Okniński, Monoids and groups of I-type, Algebras and Representation Theory, to appear.
[7] G.R. Krause and T.H. Lenagan, Growth of Algebras and Gelfand-Kirillov Dimension, Revised edition. Graduate Studies in Mathematics, 22. American Mathematical Society, Providence, RI, 2000. MR1721834 (2000j:16035)
[8] J. Tate and M. Van den Bergh, Homological properties of Sklyanin algebras, Invent. Math. 124(1996), 619-647. MR1369430 (98c:16057)

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain

E-mail address: cedo@mat.uab.es
Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium

E-mail address: efjesper@vub.ac.be
Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland
E-mail address: okninski@mimuw.edu.pl

[^0]: Received by the editors March 24, 2004 and, in revised form, October 19, 2004.
 2000 Mathematics Subject Classification. Primary 16P90, 16S36, 16S15, 20M25; Secondary 16P40, 20M05, 20F05.

 This work was supported in part by the Flemish-Polish bilateral agreement BIL $01 / 31$ and KBN research grant 2P03A 03325 (Poland), the MCyT-Spain and FEDER through grant BFM200201390, and by the Generalitat de Catalunya (Grup de Recerca consolidat 2001SGR00171).

