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THE GELFAND-KIRILLOV DIMENSION OF QUADRATIC
ALGEBRAS SATISFYING THE CYCLIC CONDITION

FERRAN CEDÓ, ERIC JESPERS, AND JAN OKNIŃSKI

(Communicated by Martin Lorenz)

Abstract. We consider algebras over a field K presented by generators
x1, . . . , xn and subject to

(n
2

)
square-free relations of the form xixj = xkxl

with every monomial xixj , i �= j, appearing in one of the relations. It is shown
that for n > 1 the Gelfand-Kirillov dimension of such an algebra is at least
two if the algebra satisfies the so-called cyclic condition. It is known that this
dimension is an integer not exceeding n. For n ≥ 4, we construct a family of
examples of Gelfand-Kirillov dimension two. We prove that an algebra with
the cyclic condition with generators x1, . . . , xn has Gelfand-Kirillov dimension
n if and only if it is of I-type, and this occurs if and only if the multiplicative
submonoid generated by x1, . . . , xn is cancellative.

1. Introduction

In [4] Gateva-Ivanova and Van den Bergh studied the structure of monoids of left
I-type and their algebras. These monoids originate from the work of Tate and Van
den Bergh on homological properties of Sklyanin algebras [8]. It was shown in [4]
that a monoid of left I-type has a presentation with generators x1, . . . , xn and

(
n
2

)
relations of the form xixj = xkxl such that every monomial xixj with 1 ≤ i, j ≤ n
appears at most once in one of the relations. Moreover, such monoids yield set-
theoretical solutions of the quantum Yang-Baxter equation, and the corresponding
monoid algebras share many properties with commutative polynomial algebras.
In particular, they are noetherian domains of finite global dimension, satisfy a
polynomial identity, are Koszul, Auslander-Gorenstein, Cohen-Macaulay and have
Gelfand-Kirillov dimension n. In [6] the monoids of left I-type are characterized
as natural submonoids of semidirect products of the free abelian monoid of rank n
and the symmetric group of degree n. As a consequence, it is proved that a monoid
is of left I-type if and only if it is of right I-type, [6, Corollary 2.3].

A monoid S is said to be of skew type if it has a presentation with n ≥ 2
generators x1, . . . , xn and

(
n
2

)
square-free relations of the form xixj = xkxl with

every monomial xixj , i �= j, appearing in one of the relations (see [3], where a
systematic study of these monoids and their algebras was initiated). Recall that
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a monoid S = 〈x1, . . . , xn〉 of skew type is said to be right (respectively left) non-
degenerate if for every 1 ≤ i, k ≤ n there exist 1 ≤ j, l ≤ n so that xixj = xkxl

(xlxk = xjxi respectively). Furthermore S is said to satisfy the cyclic condition if
for every relation xixj = xkxl one also has a relation xixk = xrxl for some r (see
[3, Lemma 2.1]). The latter is a powerful combinatorial condition that has already
proved crucial in the study of monoids of I-type, their algebras and corresponding
torsion-free groups, [4, 6]. The cyclic condition is symmetric, [3, Proposition 2.1].
Hence it is easy to see that it implies left and right non-degeneracy. It was shown in
[3] that for monoids S satisfying the cyclic condition we have 1 ≤ GK(K[S]) ≤ n,
where GK(K[S]) denotes the Gelfand-Kirillov dimension of the monoid algebra
K[S]. Furthermore there exist non-degenerate monoids S of skew type on 4m

generators (for any positive m) so that GK(K[S]) = 1, [1].
In this paper we prove that GK(K[S]) ≥ 2 for any monoid S of skew type that

satisfies the cyclic condition. For any n ≥ 4 we construct examples of such monoids
on n generators with GK(K[S]) = 2. Furthermore we show that GK(K[S]) = n if
and only if S is of I-type, and this occurs if and only if S is cancellative.

2. The Gelfand-Kirillov dimension

Let S = 〈x1, x2, . . . , xn〉 be a monoid of skew type that satisfies the cyclic con-
dition.

Let F = 〈y1, y2, . . . , yn〉 be the free monoid of rank n and let π : F → S be the
natural epimorphism, that is π(yi) = xi for i = 1, . . . , n. Let x ∈ S. We say that a
word w ∈ F represents x if π(w) = x.

It is known that two words w, w′ ∈ F represent the same element x ∈ S if and
only if there exists a finite sequence of words

w = w0, w1, w2, . . . , wm = w′

such that wi is obtained from wi−1 (i = 1, . . . , m) by substituting a subword yjyk

by ypyq, where xjxk = xpxq is a defining relation of S. In this case, we say that wi

is obtained from wi−1 by an S-relation.

Lemma 2.1. If xi1xj1 = xj2xi2 is a defining relation of S, then there exist positive
integers r, s such that r + s ≤ n and the submonoid 〈xr

i1
, xs

j1
〉 is free abelian of rank

2.

Proof. By [3, Proposition 2.1], since S satisfies the cyclic condition, there exist
positive integers r, s and s + r different integers

i1, i2, . . . , is, j1, j2, . . . , jr ∈ {1, 2, . . . , n}
such that

xi1xj1 = xj2xi2 , xi2xj1 = xj2xi3 , . . . , xis
xj1 = xj2xi1 ,

xi1xj2 = xj3xi2 , xi2xj2 = xj3xi3 , . . . , xis
xj2 = xj3xi1 ,

...
...

...
xi1xjr

= xj1xi2 , xi2xjr
= xj1xi3 , . . . , xis

xjr
= xj1xi1 .

From the relations in the first column we have

xr
i1xj1 = xj1x

r
i2 .

Similarly, from the other columns, we obtain

xr
i2xj1 = xj1x

r
i3 , . . . , xr

is
xj1 = xj1x

r
i1 .
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Hence xr
i1

xs
j1

= xs
j1

xr
i1

, and thus the submonoid 〈xr
i1

, xs
j1
〉 is abelian. Note that

the only words that represent xm
i1

and xm
j1

are ym
i1

and ym
j1

respectively. Let p, q be
positive integers and x = xrp

i1
xsq

j1
. We claim that any word w ∈ F that represents x

is of the form

w = yn1
il1

ym1
jk1

yn2
il2

ym2
jk2

. . . y
ng−1
ilg−1

y
mg−1
jkg−1

y
ng

ilg
,(1)

where g is an integer greater than 1; n1, ng are non-negative integers; l1 = lg = 1,
and n2, n3, . . . , ng−1, m1, m2, . . . , mg−1 are positive integers such that

(i) n1 + k1 ≡ kg−1 − ng ≡ 1 (mod r) and lt+1 − lt ≡ mt (mod s) for all
1 ≤ t ≤ g − 1;

(ii) if g > 2, then ku − ku+1 ≡ nu+1 (mod r) for all 1 ≤ u ≤ g − 2;
(iii) n1 + n2 + · · · + ng = rp and m1 + m2 + · · · + mg−1 = sq.

Note that the word yrp
i1

ysq
j1

represents x and satisfies conditions (i), (ii) and (iii).
Therefore, in order to prove the claim, it is sufficient to see that given any word w
of the form (1) that satisfies conditions (i), (ii) and (iii), all the words obtained
from w by an S-relation also satisfy conditions (i), (ii) and (iii). Suppose that
g = 2. In this case

w = yn1
i1

ym1
jk1

yn2
i1

,

with m1 = sq > 0, n1 + n2 = rp and n1 + k1 ≡ k1 − n2 ≡ 1 (mod r). If n1 > 0, we
can obtain by an S-relation (the relation xi1xjk1

= xjk1+1xi2), the word

w′ = yn1−1
i1

yjk1+1yi2y
m1−1
jk1

yn2
i1

,

where k1 + 1 is taken modulo r in the set {1, . . . , r}, and it is easy to see that w′

satisfies conditions (i), (ii) and (iii). If n2 > 0, we can obtain by an S-relation the
word

w′ = yn1
i1

ym1−1
jk1

yis
yjk1−1y

n2−1
i1

,

where k1 − 1 is taken modulo r in the set {1, . . . , r}, and it is easy to see that w′

satisfies the conditions (i), (ii) and (iii). Similarly, it is straightforward to prove
that, if g > 2, all the words w′ obtained from w by an S-relation satisfy conditions
(i), (ii) and (iii). Now condition (iii) implies that the submonoid 〈xr

i1
, xs

j1
〉 is free

abelian of rank 2. �

As a direct consequence of Lemma 2.1 we get the following result.

Corollary 2.2. Let S = 〈x1, x2, . . . , xn〉 be a monoid of skew type that satisfies
the cyclic condition. Let m = (n − 1)!. Then the submonoid A = 〈xm

1 , . . . , xm
n 〉 is

commutative. �

Theorem 2.3. Let S = 〈x1, x2, . . . , xn〉 (with n > 1) be a monoid of skew type
that satisfies the cyclic condition. Let A = 〈xm

1 , . . . , xm
n 〉, where m = (n − 1)!. If

K is a field, then the Gelfand-Kirillov dimension of the monoid algebra K[S] is an
integer such that 2 ≤ GK(K[S]) = GK(K[A]) ≤ n. Moreover, GK(K[S]) is equal
to the maximal rank k of a free abelian submonoid of the form 〈xm

i1
, . . . , xm

ik
〉 ⊆ S.

Proof. By [3, Theorem 4.5] and the comment after [3, Proposition 2.4], K[S] is
a finite left and right module over the commutative subring K[A], where A =
〈xp

1, . . . , x
p
n〉 for some p ≥ 1. The proof actually shows that we may take p = (n−1)!.

Hence GK(K[S]) = GK(K[A]) ≤ n and it is an integer. By Lemma 2.1, we have
that 2 ≤ GK(K[S]). Let P be a prime ideal of K[A]. Then the image AP of
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A in K[A]/P is a 0-cancellative monoid. Let C = 〈zm
i1

, . . . , zm
ir
〉 ⊆ AP be a free

abelian submonoid of maximal rank that is generated by certain images zm
i of the

elements xm
i . Then B = 〈xm

i1
, . . . , xm

ir
〉 ⊆ A is free abelian of rank r. It is easy to see

that the group GP of quotients of the cancellative semigroup of nonzero elements
of AP is of rank r, whence GK(K[A]/P ) ≤ GK(K[AP ]) ≤ GK(K[GP ]) = r ≤ k.
Therefore GK(A) ≤ k, since the Gelfand-Kirillov and the classical Krull dimensions
coincide on finitely generated commutative algebras, [7, Theorem 4.5]. The result
follows. �

3. Examples of dimension two

For n ≥ 4, let T (n) be the monoid of skew type generated by x1, . . . , xn with
defining relations

x1x2 = x3x1, . . . , x1xn−2 = xn−1x1, x1xn−1 = x2x1,
xnx1 = xn−1xn, xnxn−1 = x1xn,
xixi+1 = xi+2xi, . . . , xixn−1 = xnxi, xixn = xi+1xi,

for all 2 ≤ i ≤ n − 2. Note that T (n) satisfies the cyclic condition.

Lemma 3.1. Let ρ be the least cancellative congruence on T (n). If n > 4, then
x2x1x2 = xnx1x2 and x1 ρ x2 ρ . . . ρ xn.

Proof. By using the defining relations, we have

x2x1x2 = x1xn−1x2 = x1x2xn−2 = x3x1xn−2 = x3xn−1x1 = xnx3x1 = xnx1x2.

Since x2x1x2 = xnx1x2, it follows that x2 ρ xn. Now the relations

x2x3 = x4x2, . . . , x2xn−1 = xnx2

imply that x2 ρ x3 ρ . . . ρ xn. Since xnx1 = xn−1xn, we also get

x1 ρ x2 ρ . . . ρ xn.

�

Let T ′
n be the subset of T (n) of all elements right divisible by all generators of

T (n). Since T (n) is left non-degenerate, T ′
n is an ideal of T (n); see [3].

Lemma 3.2. Consider z = x2x1x2 ∈ T (n). Then z ∈ T ′
n.

Proof. For n = 4 we have

z = x2x1x2 = x2x3x1 = x4x2x1 = x4x1x3 = x3x4x3 = x3x1x4 ∈ T ′
n.

Suppose that n > 4. By Lemma 3.1, z = xnx1x2 and thus

z = xnx1x2 = xn−1xnx2 = xn−1x2xn−1 = x2xn−2xn−1

= x2xnxn−2 = x3x2xn−2 = x3xn−1x2 = xnx3x2 = xnx2xn

= x2xn−1xn = x2xnx1 = x3x2x1 = x3x1xn−1 = x1x2xn−1

= x1xnx2 = xnxn−1x2 = xnx2xn−2 = x2xn−1xn−2.

We claim that z = x2xi+1xi for all n − 2 ≥ i ≥ 3. We prove this by induction. If
n = 5 the claim is proved. Suppose that n > 5 and that we know z = x2xi+1xi for
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some 4 ≤ i ≤ n − 2. Then

z = x2xi+1xi = x2xixn = xi+1x2xn = xi+1x3x2

= x3xix2 = x3x2xi−1 = x2xnxi−1 = x2xi−1xn−1

= xix2xn−1 = xixnx2 = xi+1xix2 = xi+1x2xi−1 = x2xixi−1,

which proves the inductive claim. It follows that z ∈ T (n)xi, for all 3 ≤ i ≤ n − 2.
Since z = x2x1x2 = x2x3x1 = xn−1x2xn−1 = xnx2xn, we have that z ∈ T ′

n. �

Let m = (n− 1)!. By Corollary 2.2, the submonoid A = 〈xm
1 , . . . , xm

n 〉 of T (n) is
commutative.

Lemma 3.3. If n > 4, then x2m
k x2m

j x2m
i ∈ T ′

n for all 1 ≤ i < j < k ≤ n.

Proof. Note that from the relations

x1x2 = x3x1, . . . , x1xn−2 = xn−1x1, x1xn−1 = x2x1,

it follows that

xj
1xi = xj+ix

j
1, xn−2

1 xi = xix
n−2
1 ,(2)

for all 2 ≤ i ≤ n − 1 and 1 ≤ j < n − i. From the relations

xnx1 = xn−1xn, xnxn−1 = x1xn,(3)

it follows that

x2
nx1 = x1x

2
n and x2

nxn−1 = xn−1x
2
n.(4)

For each 2 ≤ i ≤ n − 2, the relations

xixi+1 = xi+2xi, . . . , xixn−1 = xnxi, xixn = xi+1xi

imply that

xn−i
i xj = xjx

n−i
i ,(5)

for all 2 ≤ i < j ≤ n.

Case 1. 1 < i < j < k ≤ n. In this case it is easy to see that

xkxk−j−1
j = xk−j−1

j xj+1(6)

and

xjx
j−i+1
i = xj−i+1

i xn−1.(7)
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Then we have

x2m
k x2m

j x2m
i = xk−j−1

j x2m
j+1x

2m−k+j+1
j x2m

i (by (6))

= xk−j−1
j x2m

j+1x
m
j x2m

i xm−k+j+1
j (by (5))

= xk−j−1
j xm

j x2m
j+1x

2m
i xm−k+j+1

j (by (5))

= xk−j−1
j xj−i+1

i xm
n−1x

2m
n x2m−j+i−1

i xm−k+j+1
j (by (7))

= xk−j−1
j xj−i+1

i xnxm
1 x2m−1

n x2m−j+i−1
i xm−k+j+1

j (by (3))

= xk−j−1
j xj−i+1

i xnxm
1 x2

nxm
i x2m−3

n xm−j+i−1
i xm−k+j+1

j (by (5))

= xk−j−1
j xj−i+1

i x3
nxm

1 xm
i x2m−3

n xm−j+i−1
i xm−k+j+1

j (by (4))

= xk−j−1
j xj−i+1

i x3
nxm−n+i

1 xm
2 xn−i

1 x2m−3
n

·xm−j+i−1
i xm−k+j+1

j (since x2x
n−i
1 = xn−i

1 xi)

= xk−j−1
j xj−i+1

i xnxm−n+i−1
1 x2

nx1x
m
2 xn−i

1 x2m−3
n

·xm−j+i−1
i xm−k+j+1

j (by (4))

= (xk−j−1
j xj−i+1

i xnxm−n+i−1
1 xn)z(xm−1

2 xn−i
1 x2m−3

n

·xm−j+i−1
i xm−k+j+1

j ).

By Lemma 3.2 we know that z ∈ T ′
n. Since T ′

n is an ideal of T (n), it follows that
x2m

k x2m
j x2m

i ∈ T ′
n.

Case 2. 1 = i < j < k ≤ n and j < n − 1. Then we have

x2m
k x2m

j x2m
1 = xk−j−1

j x2m
j+1x

2m−k+j+1
j x2m

1 (by (6))

= xk−j−1
j x2m

j+1x
m
j x2m

1 xm−k+j+1
j (by (2))

= xk−j−1
j xm

j x2m
j+1x

2m
1 xm−k+j+1

j (by (5))

= xk−j−1
j xm

j xj+1x
2m
1 x2m−1

j+1 xm−k+j+1
j (by (2))

= xk−j−1
j xm

j xj−2
1 x3x

2m−j+2
1 x2m−1

j+1 xm−k+j+1
j (by (2))

= xk−j−1
j xj−2

1 xm
2 x3x

2m−j+2
1 x2m−1

j+1 xm−k+j+1
j (by (2))

= (xk−j−1
j xj−2

1 xm−1
2 )z(x2m−j+1

1 x2m−1
j+1 xm−k+j+1

j ).

By Lemma 3.2, x2m
k x2m

j x2m
i ∈ T ′

n in this case.

Case 3. i = 1, j = n − 1 and k = n. Then we have

x2m
n x2m

n−1x
2m
1 = x2m

n xn−1x
2m
1 x2m−1

n−1 (by (2))

= x2m
n xn−3

1 x2x
2m−n+3
1 x2m−1

n−1 (by (2))

= x2m−1
n xn−4

n−1xnx1x2x
2m−n+3
1 x2m−1

n−1 (by (3))

= (x2m−1
n xn−4

n−1)z(x2m−n+3
1 x2m−1

n−1 ).

Again, by Lemma 3.2, x2m
k x2m

j x2m
i ∈ T ′

n in this case.

Therefore x2m
k x2m

j x2m
i ∈ T ′

n for all 1 ≤ i < j < k ≤ n. �

Theorem 3.4. Let K be a field. Then GK(K[T (n)]) = 2 for all n ≥ 4.
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Proof. For n = 4 the result follows from [5, Proposition 2.1], because T (4) coincides
with the monoid C(1) of [5]. Suppose that n > 4. As above, let m = (n − 1)!.
From [3, Proposition 6.3] we know that (T ′

n)qI(ρ) = 0 for some q, where I(ρ) is
the ideal of K[T (n)] determined by the least cancellative congruence ρ on T (n). In
particular, by Lemma 3.1, xm

k − xm
j ∈ I(ρ) for all k, j. Therefore, from Lemma 3.3

it follows that
x2mq

k x2mq
j x2mq

i (xm
k − xm

j ) = 0,

for all 1 ≤ i < j < k ≤ n, which implies that xm
k , xm

j , xm
i do not generate a free

abelian semigroup. Therefore Theorem 2.3 implies that GK(K[T (n)]) = 2. �
Corollary 3.5. For any integers n ≥ 4 and 2 ≤ j ≤ n, there exists a monoid
M = 〈x1, x2, . . . , xn〉 of skew type, satisfying the cyclic condition and such that
GK(K[M ]) = j for any field K.

Proof. If j = n, then the free abelian monoid of rank n, M = FaMn, satisfies the
conditions.

Suppose that j = n − 1. By [5], there exists a monoid A of skew type with 4
generators that satisfies the cyclic condition such that, for any field K, GK(K[A]) =
3. Let M = A × FaMn−4. Then it is easy to see that M is a monoid of skew type
with n generators that satisfies the cyclic condition. Since K[M ] is the polynomial
algebra over K[A] with n − 4 indeterminates, by [7, Example 3.6], GK(K[M ]) =
3 + (n − 4) = n − 1.

Suppose that j ≤ n − 2. Let M = T (n−j+2) × FaMj−2. It is easy to see that
M is a monoid of skew type with n generators that satisfies the cyclic condition.
Since K[M ] is the polynomial algebra over K[T (n−j+2)] with j − 2 indeterminates,
by [7, Example 3.6], GK(K[M ]) = GK(K[T (n−j+2)]) + (j − 2). By Theorem 3.4,
GK(K[M ]) = j. �

4. I-type monoids

Let FaMn be the multiplicative free abelian monoid of rank n with basis u1, . . . ,
un. Recall that a monoid S generated by x1, . . . , xn is said to be of left I-type if
there exists a bijection (called a left I-structure)

v : FaMn → S

such that

v(1) = 1 and {v(u1a), . . . , v(una)} = {x1v(a), . . . , xnv(a)}
for all a ∈ FaMn. As mentioned in the introduction, it is proved in [6] that a
monoid S is of left I-type if and only if it is of right I-type. So we call a monoid of
left or right I-type simply a monoid of I-type.

Let S = 〈x1, x2, . . . , xn〉 be a monoid of skew type. Let X = {x1, x2, . . . , xn}.
As in [6], we define the associated bijective map r : X × X → X × X by

r(xi, xj) = (xk, xl)

if xixj = xkxl is a defining relation of S, and r(xi, xi) = (xi, xi). For each x ∈ X,
we also denote by fx : X → X and gx : X → X the mappings defined by fx(xi) =
p1(r(x, xi)) and gx(xi) = p2(r(xi, x)), where p1 and p2 denote the projections onto
the first and second component respectively. So r(xi, xj) = (fxi

(xj), gxj
(xi)). Sup-

pose that S is right non-degenerate. So fx is bijective for all x ∈ X. We denote by
σi ∈ Symn the permutation defined by fxi

(xj) = xσi(j).
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The next result is a partial generalization of Proposition 2.2(c) of [2].

Theorem 4.1. Let S = 〈x1, x2, . . . , xn〉 be a right non-degenerate monoid of skew
type. Then the following conditions are equivalent.

(i) S is of I-type.
(ii) σi ◦ σσ−1

i (j) = σj ◦ σσ−1
j (i) for all i, j.

(iii) For every defining relation xixj = xkxl of S we have σi ◦ σj = σk ◦ σl.

Proof. We denote by ri : X3 → X3, for i = 1, 2, the mappings defined by r1 =
r × idX and r2 = idX × r. Then

(r1 ◦ r2 ◦ r1)(xi, xj , xk) = (r1 ◦ r2)(xσi(j), xσ−1
σi(j)(i)

, xk)

= r1(xσi(j), xσ
σ
−1
σi(j)(i)

(k), xσ−1
σ

σ
−1
σi(j)(i)

(k)(σ
−1
σi(j)(i))

)(8)

and

(r2 ◦ r1 ◦ r2)(xi, xj , xk) = (r2 ◦ r1)(xi, xσj(k), xσ−1
σj(k)(j)

)

= r2(xσi(σj(k)), xσ−1
σi(σj(k))(i)

, xσ−1
σj(k)(j)

).(9)

Recall from [6, Corollary 3.1] that S is of I-type if and only if r yields a solution
of the quantum Yang-Baxter equation, that is r1 ◦ r2 ◦ r1 = r2 ◦ r1 ◦ r2. Therefore,
if S is of I-type, then by (8) and (9), we have

σσi(j)(σσ−1
σi(j)(i)

(k)) = σi(σj(k)),

for all i, j, k. Thus

σσi(j) ◦ σσ−1
σi(j)(i)

= σi ◦ σj ,(10)

for all i, j. By putting j′ = σi(j), we can write (10) as

σj′ ◦ σσ−1
j′ (i) = σi ◦ σσ−1

i (j′),

for all i, j′. Therefore (ii) is a consequence of (i).
Suppose that

σi ◦ σσ−1
i (j) = σj ◦ σσ−1

j (i),

for all i, j. We will prove that r yields a solution of the quantum Yang-Baxter
equation and thus S is of I-type. By (8) and (9), it is sufficient to prove the
following equalities:

(a) σσi(j)(σσ−1
σi(j)(i)

(k)) = σi(σj(k));

(b) σ−1
σσi(j)(σσ

−1
σi(j)(i)

(k))(σi(j)) = σσ−1
σi(σj(k))(i)

(σ−1
σj(k)(j));

(c) σ−1
σ

σ
−1
σi(j)(i)

(k)(σ
−1
σi(j)

(i)) = σ−1

σ
σ
−1
σi(σj(k))(i)

(σ−1
σj(k)(j))

(σ−1
σi(σj(k))(i)).

The equality (a) follows from

σj′ ◦ σσ−1
j′ (i) = σi ◦ σσ−1

i (j′),

with j′ = σi(j). By (a), the equality (b) is equivalent to

σ−1
σi(σj(k))(σi(j)) = σσ−1

σi(σj(k))(i)
(σ−1

σj(k)(j)),(11)
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and the latter follows from our assumption

σ−1
l ◦ σi = σσ−1

l (i) ◦ σ−1

σ−1
i (l)

,

with l = σi(σj(k)). By (a), the equality (c) is equivalent to

σ−1

σ−1
σi(j)(σi(σj(k)))

(σ−1
σi(j)

(i)) = σ−1

σ
σ
−1
σi(σj(k))(i)

(σ−1
σj(k)(j))

(σ−1
σi(σj(k))(i)).

In view of (11), this equality is equivalent to

σ−1

σ−1
σi(j)(σi(σj(k)))

(σ−1
σi(j)

(i)) = σ−1

σ−1
σi(σj(k))(σi(j))

(σ−1
σi(σj(k))(i)),

and the latter follows from our assumption

σ−1

σ−1
j′ (l)

◦ σ−1
j′ = σ−1

σ−1
l (j′)

◦ σ−1
l ,

with l = σi(σj(k)) and j′ = σi(j). Hence r yields a solution of the quantum
Yang-Baxter equation and (ii) implies (i).

Finally, notice that xixp = xjxq if and only if σi(p) = j and σj(q) = i. The
latter is equivalent to σ−1

i (j) = p and σ−1
j (i) = q. Hence, saying that σiσp =

σjσq whenever xixp = xjxq is equivalent to saying that σiσσ−1
i (j) = σjσσ−1

j (i). So
conditions (ii) and (iii) are equivalent. This completes the proof. �

5. The dimension n case

Let S = 〈x1, x2, . . . , xn〉 be a monoid of skew type that satisfies the cyclic con-
dition. In this section we study the second extreme case, namely the case where
GK(K[S]) = n for any field K. As in Section 4, we define σi ∈ Symn by

σi(j) =
{

i if j = i,
k if xixj = xkxl is a defining relation of S.

Let m = (n − 1)!. Since S satisfies the cyclic condition, for all i, j we have that

xix
m
j = xm

σi(j)
xi.(12)

Theorem 5.1. Let S = 〈x1, x2, . . . , xn〉 be a monoid of skew type that satisfies the
cyclic condition. Let K be a field. Then the following conditions are equivalent:

(i) GK(K[S]) = n.
(ii) S is of I-type.
(iii) S is cancellative.

Proof. (i) ⇒ (ii). Suppose that GK(K[S]) = n. Let m = (n − 1)!. We know
that A = 〈xm

1 , . . . , xm
n 〉 is abelian. Moreover GK(K[A]) = GK(K[S]) = n by

Theorem 2.3. This implies that A is a free abelian monoid of rank n. Indeed,
otherwise the natural map K[y1, . . . , yn] → K[A] has a nontrivial kernel, whence
the classical Krull dimension of K[A] is smaller than n, while it is equal to the
Gelfand-Kirillov dimension; see [7, Theorem 4.5].

Suppose that xixj = xkxl is a defining relation of S. Then for all t ∈ {1, . . . , n}
we have, by (12),

xixjx
m
t = xix

m
σj(t)

xj = xm
σi(σj(t))

xixj .
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Also we have

xkxlx
m
t = xkxm

σl(t)
xl = xm

σk(σl(t))
xkxl.

Since

xixjx
m−1
j xm−1

i = xix
m
j xm−1

i = xm
k xix

m−1
i = xm

k xm
i ,

multiplying the two previous equalities by xm−1
j xm−1

i on the right, we get

xm
σi(σj(t))

xm
k xm

i = xm
σk(σl(t))

xm
k xm

i .

Since A is free abelian, this implies that

σi(σj(t)) = σk(σl(t)).

By Theorem 4.1, S is of I-type.
(ii) ⇒ (i). The definition of a monoid of I-type implies that the growth function

of S is the same as that of a free abelian monoid of rank n. Hence GK(K[S]) = n.
(ii) ⇒ (iii). This follows from [4, Corollary 1.5].
(iii) ⇒ (ii). Suppose that xixj = xkxl is a defining relation of S. Then for all

t ∈ {1, . . . , n}, as in the proof of the implication (i) ⇒ (ii) we get

xm
σi(σj(t))

xixj = xm
σk(σl(t))

xkxl.

Since S is cancellative, this implies that

xm
σi(σj(t))

= xm
σk(σl(t))

.

By the form of the defining relations of S, it is then clear that

σi(σj(t)) = σk(σl(t)).

By Theorem 4.1, S is of I-type. �

Corollary 5.2. Let S be a monoid of skew type. Then S is of I-type if and only if
S is cancellative and satisfies the cyclic condition.

Proof. Suppose that S = 〈x1, . . . , xn〉 is of I-type. By [4, Theorem 1.3], the associ-
ated map r : X2 → X2, where X = {x1, . . . , xn}, yields a solution of the quantum
Yang-Baxter equation. By [6, Corollary 3.1], S satisfies the cyclic condition. Now
the result follows from Theorem 5.1. �
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