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ON THE CONVERGENCE
OF MAXIMAL MONOTONE OPERATORS
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(Communicated by Jonathan M. Borwein)

Dedicated to F.E. Browder for the impact of his work on nonlinear analysis

Abstract. We study the convergence of maximal monotone operators with
the help of representations by convex functions. In particular, we prove the
convergence of a sequence of sums of maximal monotone operators under a
general qualification condition of the Attouch–Brezis type.

1. Introduction

Maximal monotone operators represent one of the cornerstones of modern non-
linear analysis. They have been used to model several nonlinear phenomena, and
their properties make them valuable in the study of evolution equations and for
surjectivity results. For these reasons they have been the subject of several mono-
graphs ([2], [4], [5], [23]), and they appear in many books.

One of the incentives for obtaining representations of maximal monotone oper-
ators by convex functions is the hope of finding new results about such operators
by using tools from convex analysis. Other motivations stem from the analogies
between many results concerning the class of maximal monotone operators with
corresponding results about closed proper convex functions. Up to now, the rep-
resentations introduced in [6], [7], [8], [13], [14], [20] have enabled one to devise
simple proofs of known results, but they have not been used to establish new re-
sults. In the present note we give a general convergence result for sums of maximal
monotone operators. It relies on a series of papers by the authors and their col-
laborators ([13], [14], [15], [16], [17], [18], [19], [21], [22]). It encompasses previous
results by Attouch–Moudafi–Riahi [1], Pennanen–Revalski–Théra [11], Pennanen–
Rockafellar–Théra [12] and settles a conjecture which remained open for some time.
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2. A new representation

Let us first recall some basic facts about bounded convergence (also called
bounded-Hausdorff convergence, or Attouch–Wets convergence or epi-distance con-
vergence); we refer to [15], [16] for more leisurely recent expositions and biblio-
graphical references. It is the conjunction of two notions requiring persistence and
stability in rather demanding (but realistic, compared to crude Hausdorff conver-
gence) ways. These notions are usually defined with the help of truncated Hausdorff
excesses and distances; we adopt here an equivalent formulation. Given subsets
A, An (n ∈ N) of the n.v.s. X, we write A ⊂ b– lim infn An if for any bounded
sequence (xn) of A we have (d(xn, An)) → 0. Similarly, we write b– lim sup An ⊂ A
if for any bounded sequence (xn) of X such that xn ∈ An for each n ∈ N, we
have (d(xn, A)) → 0. We say that the sequence (An) boundedly converges to
A, and we write (An) b→ A if A ⊂ b– lim infn An and b– lim sup An ⊂ A. Re-
call also that for f, fn : X → R := R ∪ {−∞, +∞}, the sequence (fn) bound-
edly converges to f , and we write (fn) b→ f if (epi fn) b→ epi f , where epi f :=
{(x, s) ∈ X × R | f(x) ≤ s} is the epigraph of f . We write f ≥ b– lim sup fn if
epi f ⊂ b– lim inf epi fn and f ≤ b– lim inf fn if epi f ⊃ b– lim sup fn. As usual,
the domain of f is dom f := {x ∈ X | f(x) < ∞}, and f is said to be proper
if its domain is nonempty and if f does not take the value −∞. The conjugate
f∗ of f is defined by f∗(x∗) := sup{〈x, x∗〉 − f(x) | x ∈ X}, and the sublevel
(resp. strict sublevel) set at height r ∈ R is [f ≤ r] := {x ∈ X | f(x) ≤ r} (resp.
[f < r] := {x ∈ X | f(x) < r}).

In the sequel X (and any other space) is a reflexive Banach space and Γ(X)
denotes the class of proper lower semicontinuous (lsc for short) convex functions
defined on X. If A is a subset of X, the indicator function ιA of A is the function
whose value is 0 on A and +∞ on X \ A.

A multifunction M : X ⇒ X∗ is said to be monotone if for any (w, w∗), (x, x∗)
in its graph gphM , one has 〈w − x, w∗ − x∗〉 ≥ 0. It is maximal monotone, and we
write M ∈ M(X) if there is no monotone operator whose graph strictly contains
gph M . Given a monotone operator M : X ⇒ X∗, following [8], [13] and [14], one
can associate to it the two convex functions fM and pM on X × X∗ given by

fM := (c∗M )ᵀ, pM := c∗∗M , where cM := c + ιM ,

with M identified with gphM and c := 〈·, ·〉, the coupling function on X × X∗. It
is straightforward to pass from the convergence of a sequence (Mn) of M(X) to the
convergence of the associated functions (cMn

). However, to get the convergence of
the sequence (fMn

) of the Fitzpatrick representatives, one would need a continuity
property of the Legendre–Fenchel transform applied to nonconvex functions. To
the best of our knowledge, only the following result provides such a property.

Lemma 2.1 ([17, Cor. 19]). Let (fn) be a family of proper functions from X to
R ∪ {∞} which is equi-hypercoercive in the sense that lim‖x‖→∞ fn(x)/ ‖x‖ = ∞
uniformly for n ∈ N. Suppose (fn) b→ f , where f is bounded below on bounded
subsets. Then (f∗

n) b→ f∗. Moreover, f∗ is bounded on bounded subsets and (f∗
n) →

f∗ uniformly on bounded sets.
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The stringent equi-hypercoercivity assumption is not satisfied by the sequence
(cMn

). Thus, we introduce another representative function. For a monotone oper-
ator M it is given by

qM := conv(cM + 1
2 ‖·‖

2) := (cM + 1
2 ‖·‖

2)∗∗,

where ‖(x, x∗)‖ := (‖x‖2 + ‖x∗‖2)1/2. In order to relate it to previously defined
representative functions, we will make use of the function δ : X ×X∗ → R given by

δ(x, x∗) := 〈x, x∗〉 + 1
2 ‖(x, x∗)‖2 = 〈x, x∗〉 + 1

2 ‖x‖
2 + 1

2 ‖x
∗‖2 .

In [20] and [21] good use is made of this function in view of the fact that δ(x, x∗) ≥ 0
with equality if, and only if, x∗ ∈ −J(x), where J is the usual duality mapping
given by

J(x) := {x∗ ∈ X∗ : ‖x∗‖ = ‖x‖ , 〈x, x∗〉 = ‖x‖2}.
With the new representation, δ will play a role similar to the one played by the
coupling function c with respect to the previous representations.

Lemma 2.2. Let M ∈ M(X) and qM := conv(cM + 1
2 ‖·‖

2). Then

(2.1) ιM + δ = cM + 1
2 ‖·‖

2 ≥ qM ≥ pM + 1
2 ‖·‖

2 ≥ fM + 1
2 ‖·‖

2 ≥ δ.

Moreover fM = (qM − 1
2 ‖·‖

2)∗ and pM = (qM − 1
2 ‖·‖

2)∗∗. Furthermore,

M = {(x, x∗) | qM (x, x∗) = δ(x, x∗)}.

Proof. The first inequality in (2.1) is obvious. The second one is due to the fact
that cM + 1

2 ‖·‖
2 ≥ pM + 1

2 ‖·‖
2 and pM + 1

2 ‖·‖
2 ∈ Γ(X × X∗). The other two

inequalities follow from the relations pM ≥ fM ≥ c ([14, Thm. 5]).
From the first inequality we deduce that (qM − 1

2 ‖·‖
2)∗ ≥ c∗M = fᵀ

M , while from
the second one we deduce that (qM − 1

2 ‖·‖
2)∗ ≤ p∗M = fᵀ

M . Equality ensues. Taking
conjugates, we get the second equality pM = (qM − 1

2 ‖·‖
2)∗∗.

When (x, x∗) is such that qM (x, x∗) = δ(x, x∗), one has qM (x, x∗)− 1
2 ‖(x, x∗)‖2 =

δ(x, x∗)− 1
2 ‖(x, x∗)‖2 = 〈x, x∗〉, hence pM (x, x∗) = 〈x, x∗〉 and so (x, x∗) ∈ M ([14,

Thm. 5]). Conversely, when (x, x∗) ∈ M , one has (ιM + δ) (x, x∗) = δ(x, x∗) and
the inequalities in (2.1) are equalities. �

Lemma 2.3. Let M ∈ M(X) and f ∈ Γ(X × X∗) be such that fM ≤ f ≤ pM .
Then for every (y, y∗) ∈ X × X∗ there exists (z, z∗) ∈ M such that z∗ − y∗ ∈
J(y − z). Moreover, any (z, z∗) ∈ M satisfying this relation satisfies the estimate
‖(z, z∗) − (y, y∗)‖ ≤ (

√
2 + 1) · d((y, y∗), M). Furthermore one has

‖y − z‖2 = ‖y∗ − z∗‖2 ≤ f(y, y∗) − 〈y, y∗〉 .

Proof. Let (y, y∗) ∈ X × X∗. The first assertion is given by [20, Thms. 10.3, 10.6]
which asserts that gphM + gph(−J) = X × X∗, so that there exists (z, z∗) ∈ M
such that (y − z, z∗ − y∗) ∈ gph J . Let t := ‖y − z‖ = ‖y∗ − z∗‖; by definition
of J one has 〈y − z, y∗ − z∗〉 = −t2. Let us pick some (u, u∗) ∈ M and use the
monotonicity of M to write

0 ≤ 〈u − z, u∗ − z∗〉 = 〈u − y + y − z, u∗ − y∗ + y∗ − z∗〉
= 〈u − y, u∗ − y∗〉 + 〈y − z, u∗ − y∗〉 + 〈u − y, y∗ − z∗〉 + 〈y − z, y∗ − z∗〉
≤ ‖u − y‖ · ‖u∗ − y∗‖ + ‖y − z‖ · ‖u∗ − y∗‖ + ‖u − y‖ · ‖y∗ − z∗‖ − t2.



1940 JEAN-PAUL PENOT AND CONSTANTIN ZĂLINESCU

Thus, setting m :=
(
‖u − y‖2+‖u∗ − y∗‖2 )1/2 = ‖(y, y∗) − (u, u∗)‖, it follows that

t2 ≤ t(‖u∗ − y∗‖ + ‖u − y‖) + ‖u − y‖ · ‖u∗ − y∗‖ ≤
√

2mt + 1
2m2,

and so
t ≤ 1

2

(√
2m + 2m

)
= m

(
1 + 1

2

√
2
)
.

Hence ‖(z, z∗) − (y, y∗)‖ = t
√

2 ≤ (
√

2+1)m. Taking the infimum over (u, u∗) ∈ M ,
we obtain the announced estimate.

We also note that the choice of (z, z∗) and the definition of J yield

1
2 ‖y − z‖2 + 1

2 ‖y
∗ − z∗‖2 = −〈y − z, y∗ − z∗〉

= 〈y, z∗〉 + 〈z, y∗〉 − cM (z, z∗) − 〈y, y∗〉
≤ fM (y, y∗) − 〈y, y∗〉 ≤ f(y, y∗) − 〈y, y∗〉 .

The proof is complete. �

3. Convergence results

Let us first study the passage from convergence of representative functions to con-
vergence of the associated operators. We write (Mn) b−→M instead of (gphMn) b−→
gph M .

Proposition 3.1. Let M, Mn ∈ M(X) for n ∈ N. Consider f, fn ∈ Γ(X × X∗)
with fM ≤ f ≤ pM and fMn

≤ fn ≤ pMn
for every n ∈ N.

(a) If f ≥ b– lim sup fn, then M ⊂ b– lim inf Mn.
(b) If f ≤ b– lim inf fn, then b– lim sup Mn ⊂ M .
(c) If (fn) b−→ f , then (Mn) b−→ M .

Proof. (a) Let ((xn, x∗
n)) ⊂ M be bounded. Then wn := (xn, x∗

n, 〈xn, x∗
n〉) ∈ epi f

and (wn) is also bounded. From our hypothesis, there exists a sequence (w′
n) such

that w′
n := (yn, y∗

n, tn) ∈ epi fn for every n and ‖wn − w′
n‖ → 0. By Lemma 2.3

applied to Mn and (yn, y∗
n), there exists (zn, z∗n) ∈ Mn such that

1
2 ‖yn − zn‖2 + 1

2 ‖y
∗
n − z∗n‖

2 ≤ fn(yn, y∗
n) − 〈yn, y∗

n〉 ≤ tn − 〈yn, y∗
n〉 =: εn.

Because ‖xn − yn‖ → 0, ‖x∗
n − y∗

n‖ → 0, |tn − 〈xn, x∗
n〉| → 0 and the sequence

((xn, x∗
n)) is bounded, we obtain easily that εn → 0. Hence ‖yn − zn‖ → 0,

‖y∗
n − z∗n‖ → 0, whence d ((xn, x∗

n), Mn) → 0.
(b) is obtained similarly; (c) is an immediate consequence of (a) and (b). �

The preceding implications can be changed into equivalences if one substitutes
the new representatives qMn

for the original representatives fn.

Proposition 3.2. Let Mn ∈ M(X) for n ≥ 0. Then the following assertions hold:
(a) if (d ((0, 0), Mn)) is bounded, then M0⊃b– lim sup Mn ⇔ qM0 ≤b– lim inf qMn

;
(b) M0 ⊂ b– lim inf Mn ⇔ qM0 ≥ b– lim sup qMn

;
(c) (Mn) b−→ M0 ⇔ (qMn

) b−→ qM0 .

Proof. During the proof we denote by fn the function ιMn
+δ for n ≥ 0. Of course,

we have that qMn
= f∗∗

n .
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(a) Assume that (d ((0, 0), Mn))n≥0 is bounded; this means that there exists
a bounded sequence ((xn, x∗

n)) with (xn, x∗
n) ∈ Mn for every n ≥ 0. Taking an

arbitrary (x, x∗) ∈ Mn, and using the monotonicity of Mn, we have that

δ(x, x∗) = 1
2 ‖(x, x∗)‖2 + 〈x − xn, x∗ − x∗

n〉 + 〈xn, x∗〉 + 〈x, x∗
n〉 − 〈xn, x∗

n〉
≥ 1

2 ‖(x, x∗)‖2 − ‖xn‖ ‖x∗‖ − ‖x‖ ‖x∗
n‖ − ‖xn‖ ‖x∗

n‖
≥ 1

2 ‖(x, x∗)‖2 − α ‖(x, x∗)‖ − β =: ζ(x, x∗)

for some α, β ≥ 0 (independent of n ≥ 0). Hence

(3.1) fn := ιMn
+ δ ≥ ζ ∀n ≥ 0.

Assume that M0 ⊃ b– lim sup Mn. Then M0 × R+ ⊃ b– lim sup(Mn × R+), and
so ιM0 ≤ b– lim inf ιMn

. Because δ is Lipschitz on bounded sets, using [3, Thm.
7.1.5] (more precisely with a similar proof) we have that f0 ≤ b– lim inf fn. From
(3.1) we have that the family of functions {fn | n ≥ 0} is equi-hypercoercive and
equi-bounded from below. Moreover, (xn, x∗

n, δ(xn, x∗
n)) ∈ epi fn for every n, and

so (d(0, epi fn))n≥0 is bounded. Using [17, Lemma 17, Prop. 18] we obtain that
f∗
0 ≥ b– lim sup f∗

n. Now using [17, Thm. 14(a)] we obtain that f∗∗
0 ≤ b– lim inf f∗∗

n ,
that is qM0 ≤ b– lim inf qMn

.
Conversely, assume that qM0 ≤ b– lim inf qMn

, and take a bounded sequence
((xn, x∗

n))n≥1 with (xn, x∗
n) ∈ Mn for every n ≥ 1. Setting vn := (xn, x∗

n, δ(xn, x∗
n))

∈ epi fn ⊂ epi qMn
, (vn)n≥1 is also bounded. Therefore, there exists a sequence

(wn) ⊂ epi qM0 such that ‖vn − wn‖ → 0. Let wn := (yn, y∗
n, tn); by Lemma 2.2,

δ(yn, y∗
n) ≤ qMn

(yn, y∗
n) ≤ tn. By Lemma 2.3, for every n, there exists (zn, z∗n) ∈ Mn

such that

1
2 ‖yn − zn‖2 + 1

2 ‖y
∗
n − z∗n‖

2 ≤ pMn
(yn, y∗

n) − 〈yn, y∗
n〉

≤ qMn
(yn, y∗

n) − δ(yn, y∗
n) ≤ tn − δ(yn, y∗

n)

≤ |tn − δ(xn, x∗
n)| + |δ(xn, x∗

n) − δ(yn, y∗
n)| .

Because ((xn, x∗
n)) is bounded and ‖xn − yn‖ → 0, ‖x∗

n − y∗
n‖ → 0, it follows that

|δ(xn, x∗
n) − δ(yn, y∗

n)| → 0, and so ‖yn − zn‖ → 0, ‖y∗
n − z∗n‖ → 0. We get that

d ((xn, x∗
n), M0) → 0. Hence M0 ⊃ b– lim sup Mn.

(b) Observe that (d ((0, 0), Mn))n≥0 is bounded when M0 ⊂ b– lim inf Mn. The
rest of the proof is similar to that of (i) (noting that from (3.1) we obtain that
f∗

n ≤ ζ∗ for every n ≥ 0, and so the condition of [17, Thm. 14(b)] is satisfied).
(c) is an immediate consequence of (a) and (b). �

4. Partial operators and their convergence

Given another Banach space Y , let F : X ×Y ⇒ X∗ × Y ∗ be monotone. In this
section we consider the operator G : X ⇒ X∗ defined by

(4.1) gph G := {(x, x∗) ∈ X × X∗ | ∃y∗ ∈ Y ∗ : (x, 0, x∗, y∗) ∈ gph F}.

It follows easily that G is monotone (see [19, Lemma 3.3]), but not necessarily
maximal monotone. We intend to give conditions ensuring that G is maximal
monotone when F is maximal monotone and to study convergence questions related
to this construction. We first provide a preliminary result of independent interest.
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Theorem 4.1. Let F : X × Y ⇒ X∗ × Y ∗ be a monotone multifunction. Assume
that 0 ∈ int (conv(PrY (dom F ))). Then

∀p > 0, ∃q > 0, ∀(x, 0, x∗, y∗) ∈ gph F : ‖x‖ ≤ p, ‖x∗‖ ≤ p ⇒ ‖y∗‖ ≤ q.

Proof. Let fF be the Fitzpatrick function associated to F . Because F is mono-
tone, we have that fF ≤ cF ([8], [14, Prop. 4]), and so gphF = dom cF ⊂
dom fF . It follows that PrY (dom F ) = PrY (gphF ) ⊂ PrY (dom fF ), and so,
conv (PrY (dom F )) ⊂ PrY (dom fF ). Using the Robinson–Ursescu Theorem, we
find some r, ρ, m > 0 such that, denoting by UZ the closed unit ball of a normed
vector space Z, we have

∀y ∈ rUY , ∃(u, u∗, v∗) ∈ ρUX×X∗×Y ∗ : fF (u, y, u∗, v∗) ≤ m.

Let p > 0 and (x, 0, x∗, y∗) ∈ gph F with ‖x‖ ≤ p, ‖x∗‖ ≤ p. Fix y ∈ rUY and take
(u, u∗, v∗) ∈ ρUX×X∗×Y ∗ such that fF (u, y, u∗, v∗) ≤ m. Then

m ≥ 〈(x, 0), (u∗, v∗)〉 + 〈(u, y), (x∗, y∗)〉 − 〈(x, 0), (x∗, y∗)〉
= 〈x, u∗〉 + 〈u, x∗〉 + 〈y, y∗〉 − 〈x, x∗〉
≥ 〈y, y∗〉 − p · ρ − ρ · p − p · p,

and so 〈y, y∗〉 ≤ m+ p(p+2ρ). It follows that ‖y∗‖ ≤ q := r−1[m+ p(p+2ρ)]. The
conclusion follows. �

Note that the preceding result is valid for X, Y arbitrary Banach spaces (or even
for barreled n.v.s.) because f is convex and lsc w.r.t. the strong topologies on
X, Y, X∗, Y ∗.

As a corollary we derive the well-known result on the local boundedness of mono-
tone operators on the interior of their domains; just take X := {0} in the previous
result.

The proof above shows that given some f ∈ Γ(X ×Y ) such that fF ≤ f one has
the implication (4.2) ⇒ (4.3) where

(4.2) rUY ⊂ PrY ([f ≤ m] ∩ ρ (UX × Y × UX∗ × UY ∗))

and, setting q(p) := r−1[m + p(p + 2ρ)] for p ∈ P := (0, +∞),

(4.3) (x, 0, x∗, y∗) ∈ gph F : ‖x‖ ≤ p, ‖x∗‖ ≤ p ⇒ ‖y∗‖ ≤ q(p).

The above implication yields the following result.

Corollary 4.2. Let F : X ×Y ⇒ X∗ × Y ∗ be a maximal monotone multifunction.
Assume that r, ρ, m > 0 are such that

(4.4) rUY ⊂ PrY ([qF ≤ m] ∩ ρ (UX × Y × UX∗ × UY ∗)) .

Then (4.3) holds and G given by (4.1) is maximal monotone.

Proof. By Lemma 2.2 we have that fF ≤ pF ≤ qF , and so [qF ≤ m] ⊂ [pF ≤ m] ⊂
[fF ≤ m]. Hence (4.4) ⇒ (4.2), with f = fF or f = pF and so (4.3) holds. The
maximality of G follows from [19, Prop. 3.4]. �
Theorem 4.3. Let F, Fn : X×Y ⇒ X∗×Y ∗ be maximal monotone multifunctions
and let G, Gn : X ⇒ X∗ be the monotone multifunctions associated with them as
defined in (4.1). Assume that Y = R+ (PrY (dom F )) and (Fn) b−→ F . Then G

and Gn for large n are maximal monotone and (Gn) b−→ G.
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Proof. From Proposition 3.2 we have that (qFn
) b−→ qF . From (2.1) we obtain that

gph F ⊂ dom qF ⊂ dom fF , and so

(4.5) PrY (dom F ) = PrY (gph F ) ⊂ PrY (dom qF ) ⊂ PrY (dom fF ).

It follows that Y = R+ (PrY (dom F )) = R+ (PrY (dom qF )). Taking into account
[18, Rem. 3.1(b)] and [18, Prop. 3.4(c)], we have that there exist some r, ρ, m > 0
such that (4.4) holds. Applying [18, Lemma 3.5] with Y ′

0 = {0}, we obtain that
there exist n0 ≥ 1 and r′, ρ′, m′ > 0 such that

r′UY ⊂ PrY ([qFn
≤ m′] ∩ ρ′ (UX × Y × UX∗ × UY ∗)) ∀n ≥ n0.

Without loss of generality, we may assume (and we do) that r = r′, m = m′, ρ = ρ′,
that is (4.4) holds with F replaced by Fn, for every n ∈ N0 := {n ∈ N | n ≥ n0}.
By [19, Prop. 12] or Corollary 4.2 we obtain that G and Gn for n ≥ n0 are maximal
monotone.

Let ((xn, x∗
n)) be a bounded sequence in the graph of G. By construction and the

preceding corollary, there exists a bounded sequence (y∗
n) such that (xn, 0, x∗

n, y∗
n) ∈

F for each n. Then there exists a sequence ((un, vn, u∗
n, v∗n)) with (un, vn, u∗

n, v∗n)
in the graph of Fn for every n such that

‖(un, vn, u∗
n, v∗n) − (xn, 0, x∗

n, y∗
n)‖ → 0.

Applying Lemma 2.3 to Gn (n ∈ N0) and (un, u∗
n), we find some (wn, w∗

n) ∈ Gn

such that

(4.6) rn := ‖wn − un‖2 = ‖w∗
n − u∗

n‖
2 = −〈un − wn, u∗

n − w∗
n〉.

The construction of Gn yields some z∗n ∈ Y ∗ such that (wn, 0, w∗
n, z∗n) ∈ Fn. Since

Fn is monotone, we have

〈(un, vn) − (wn, 0), (u∗
n, v∗n) − (w∗

n, z∗n)〉 ≥ 0.

Thus

(4.7) rn = −〈un − wn, u∗
n − w∗

n〉 ≤ 〈vn, v∗n − z∗n〉 ≤ ‖vn‖ · ‖v∗n − z∗n‖ .

Set pn := max{‖wn‖ , ‖w∗
n‖} and let β > 0 be such that ‖un‖ , ‖u∗

n‖ , ‖v∗n‖ ≤ β for
every n. By Corollary 4.2 we have that ‖z∗n‖ ≤ r−1[m + pn(pn + 2ρ)] for n ∈ N0.
Assume that (pn) is not bounded. Then (pn)n∈P → ∞ for an infinite subset P of
N0; we may assume that pn ≥ β for n ∈ P . From (4.6) and (4.7) we get

(pn − β)2 ≤ ‖vn‖ ·
(
r−1[m + pn(pn + 2ρ)] + β

)
∀n ∈ P.

Dividing both sides of this inequality by p2
n and taking the limit for n → ∞, we get

the contradiction 1 ≤ 0 because (vn) → 0. Hence (pn) is bounded, and so (z∗n) is
bounded, too. From (4.7) we obtain that (rn) → 0. Since ((un − xn, u∗

n − x∗
n)) →

(0, 0), we get (d ((xn, x∗
n), Gn)) → 0.

Now let ((xn, x∗
n)) be a bounded sequence such that (xn, x∗

n) ∈ Gn for every n.
By the construction of Gn, there exists a sequence (y∗

n) such that (xn, 0, x∗
n, y∗

n) ∈ Fn

for each n. By Corollary 4.2 applied for F replaced by Fn with n ≥ n0 (relation
(4.4) is satisfied by Fn for n ∈ N0), we obtain that (y∗

n) is bounded. Then there
exists a sequence ((un, vn, u∗

n, v∗n)) ⊂ gph F such that

εn := ‖(un, vn, u∗
n, v∗n) − (xn, 0, x∗

n, y∗
n)‖ → 0.

Applying Lemma 2.3 to (un, u∗
n), we find some (wn, w∗

n) ∈ G such that

rn := ‖wn − un‖2 = ‖w∗
n − u∗

n‖
2 = −〈un − wn, u∗

n − w∗
n〉.
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The construction of G yields some z∗n ∈ Y ∗ such that (wn, 0, w∗
n, z∗n) ∈ F . Since F

is monotone, we have

〈(un, vn) − (wn, 0), (u∗
n, v∗n) − (w∗

n, z∗n)〉 ≥ 0,

and so

rn = −〈un − wn, u∗
n − w∗

n〉 ≤ 〈vn, v∗n − z∗n〉 ≤ ‖vn‖ · ‖v∗n − z∗n‖ .

Proceeding as above, since (vn) → 0 we obtain that (rn) → 0. Since ((un − xn,

u∗
n − x∗

n)) → (0, 0), we get (d ((xn, x∗
n), G)) → 0. Therefore (Gn) b−→ G. �

5. Applications to the construction of new operators

As in [19], having a multifunction F : X ×Y ⇒ X∗×Y ∗ and A ∈ L(X, Y ), that
is, a continuous linear operator A from X into Y , we consider the multifunction
FA : X × Y ⇒ X∗ × Y ∗ whose graph is

gph FA := {(x, y, x∗, y∗) | (x∗ − A∗y∗, y∗) ∈ F (x, Ax + y)}.
Thus FA := S∗ ◦F ◦S−1, where S : X×Y → X×Y is the linear isomorphism given
by S(x, y) = (x, y−Ax). This observation easily implies that FA is monotone when
F is so. Observe that gphFA = T (gph F ), where T := S−1×S∗ : X×Y ×X∗×Y ∗ →
X×Y ×X∗×Y ∗ is given by T (x, y, x∗, y∗) := (x, y−Ax, x∗+A∗y∗, y∗). The operator
T is an isomorphism of normed vector spaces. Now considering a sequence of multi-
functions Fn : X × Y ⇒ X∗ × Y and a sequence (An) of L(X, Y ), we easily obtain

[
(Fn) b−→ F, ‖An − A‖ → 0

]
⇒

(
(Fn)An

) b−→ FA.

The next result is then an immediate consequence of the preceding theorem, where

gph H := {(x, x∗) ∈ X × X∗ | ∃y∗ ∈ Y ∗ : (x∗ − A∗y∗, y∗) ∈ F (x, Ax)},
and Hn is similarly defined. We use the fact that H is obtained from FA as G is
obtained from F . We also use the property that when T, Tn are continuous linear
operators with (‖Tn − T‖) → 0 and (Fn) b−→ F , then

(
Tn(gph Fn)

) b−→ T (gph F ).

Corollary 5.1. Let F, Fn ∈ M(X × Y ) be such that (Fn) b−→ F and let A, An ∈
L(X, Y ) be such that ‖An − A‖ → 0. Assume that Y = R+{Ax − y | (x, y) ∈
dom F}. Then H and Hn for large n are maximal monotone and (Hn) b−→ H.

A particular case is when M, Mn ∈ M(X), N, Nn ∈ M(Y ) and F := M × N ,
that is, F (x, y) := M(x) × N(y) and Fn := Mn × Nn.

Corollary 5.2. Let M, Mn ∈ M(X), N, Nn ∈ M(Y ) be such that (Mn) b−→ M ,
(Nn) b−→ N and let A, An ∈ L(X, Y ) be such that ‖An − A‖ → 0. Assume that
Y = R+(A(domM) − dom N). Then M + A∗NA and Mn + A∗

nNnAn for large n

are maximal monotone and (Mn + A∗
nNnAn) b−→ M + A∗NA.

The special cases when M = Mn = 0, and when X = Y and A = An = IX , the
identify mapping on X, are important.

Corollary 5.3. Let N, Nn ∈ M(Y ), be such that (Nn) b−→ N , and let A, An ∈
L(X, Y ) be such that ‖An − A‖ → 0. Assume that Y = R+(A(X)− dom N). Then
A∗NA and A∗

nNnAn for large n are maximal monotone and (A∗
nNnAn) b−→ A∗NA.
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Corollary 5.4. Let M, Mn, N, Nn ∈ M(X) be such that (Mn) b−→ M and (Nn) b−→
N . Assume that Y = R+ (dom M − dom N). Then M + N and Mn + Nn for large
n are maximal monotone and (Mn + Nn) b−→ M + N .

Note that the result in the preceding corollary has been proved by Attouch–
Moudafi–Riahi [1] for X a Hilbert space under the stronger condition domM ∩
int(domN) �= ∅ and a certain condition (Q). Pennanen–Revalski–Théra [11] showed
that the condition (Q) is implied by the condition dom M ∩ int(domN) �= ∅.
Note that when X is finite dimensional, Corollary 5.4 covers the recent result by
Pennanen–Rockafellar–Théra [12].
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