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ALL n-COTILTING MODULES ARE PURE-INJECTIVE

JAN ŠŤOVÍČEK

(Communicated by Martin Lorenz)

Abstract. We prove that all n-cotilting R-modules are pure-injective for any
ring R and any n ≥ 0. To achieve this, we prove that ⊥1U is a covering class
whenever U is an R-module such that ⊥1U is closed under products and pure
submodules.

1. Introduction

Tilting theory has been developed as an important tool in the representation
theory of algebras. In that context, tilting modules are usually assumed to be finite
dimensional. However, some of the results have recently been extended to general
modules over arbitrary associative unital rings, with interesting applications to fini-
tistic dimension conjectures (see [2] and [15]). In contrast to the finite dimensional
case, cotilting modules form a larger class in general than duals of tilting modules,
[6].

So a natural question arises whether each cotilting module is at least pure-
injective, that is, a direct summand in a dual module (where duals are considered
in the sense of modules of characters for general rings, or vector space duals for
algebras over a field). An affirmative answer has important consequences: for
example, each cotilting class is then a covering class, [9].

The pure-injectivity of all 1-cotilting modules was first proved in the particular
setting of abelian groups, and modules over Dedekind domains, as a consequence
of their classification by Eklof, Göbel and Trlifaj in [10] and [9].

The crucial step towards a general solution was the proof of pure-injectivity of all
1-cotilting modules over any ring by Bazzoni, [4]. In [5], she was able to prove pure-
injectivity of all n-cotilting modules, n ≥ 0, modulo one of the following conjectures
where (B) is weaker than (A):

(A) If U is an R-module such that ⊥1U is closed under products and pure
submodules, then ⊥1U is closed under direct limits.

(B) If U is an R-module such that ⊥1U is closed under products and pure
submodules, then ⊥1U is a special precovering class.

Recently, Conjecture (A) has been proved for countable rings and for divisible
modules U over Prüfer domains by Bazzoni, Göbel and Strüngmann in [7]. A
stronger version of Conjecture (B) was proved for any ring, but under the additional
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set theoretic assumption of Gödel’s axiom of constructibility, by Šaroch and Trlifaj
in [14].

In the present paper, we prove Conjecture (A) in ZFC, thus proving that all
n-cotilting modules over any ring are pure-injective.

2. Preliminaries

Let R be a unital associative ring. All the modules will be left R-modules. For
a class of modules C and i ≥ 1, denote by ⊥iC the class of all modules X such that
Exti

R(X, C) = 0 for all C ∈ C. Dually, C⊥i = {X | Exti
R(C, X) = 0 for all C ∈ C}.

We will write ⊥iU instead of ⊥i{U} for a single module U . Note that then ⊥i+1U =
⊥iU ′ where U ′ is a cosyzygy of U .

A (non-strictly) increasing chain of sets (Sα | α < λ) indexed by ordinals less
than λ is called smooth if Sµ =

⋃
α<µ Sα for all limit ordinals µ < λ. A smooth

chain (Mα | α < λ) of submodules of a module M is called a filtration of M if
M0 = 0 and M =

⋃
α<λ Mα.

The following lemma is well known (see e.g. [8, Proposition XII.1.14]):

Lemma 1. Let M, U be modules such that M has a filtration (Mα | α < λ) with
Mα+1/Mα ∈ ⊥1U for all α < λ. Then M ∈ ⊥1U .

Let C be a class of modules. Then a homomorphism f : C → M is called a
special C-precover of M if f is epic and Ker f ∈ C⊥1 . The class C is called special
precovering if every module has a special C-precover. The term comes from the
fact that whenever f : C → M is a special precover and g : C ′ → M is any
homomorphism such that C ′ ∈ C, then g factorizes through f . Therefore, special
precovers are indeed special instances of precovers as defined for example in [16]. A
special C-precover f is called a C-cover if in addition g : C → C is an automorphism
whenever fg = f . A covering class is defined in an obvious way.

A module U is called n-cotilting, where n ≥ 0 is a natural number, if:

(1) inj. dimU ≤ n,
(2) Exti

R(Uκ, U) = 0 for all i ≥ 1 and all cardinals κ,
(3) there is an injective cogenerator W and an exact sequence 0 → Um →

· · · → U1 → U0 → W → 0 such that all Uj ’s are direct summands of some
products of copies of U for all 0 ≤ j ≤ m.

A class A is n-cotilting if A =
⋂

i≥1
⊥iU for some n-cotilting module U . In addition,

we have adopted the following notation: Let M be a module. Then PE(M) denotes
the pure-injective hull of M .

Let (Mα | α < λ) be a family of modules indexed by ordinal numbers less than
λ. Then

∏b
α<λ Mα denotes the (pure) submodule of the direct product formed by

the elements with a bounded support in λ. When Mα
∼= M for all α < λ, the

corresponding “bounded power” is denoted by M<λ.
Let M be a module, I a set, and let κ be a cardinal number. Then the submodule

of M I consisting of the elements with supports of cardinality < κ is denoted M [I;κ].

3. Special embeddings into pure-injective modules

The aim of this section is to embed a module into a pure-injective module in
such a way that we know more about the structure of the cokernel.
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Lemma 2. Let R be a ring and M a module. Then there is an increasing (non-
smooth) chain of modules Mλ indexed by ordinal numbers, and homomorphisms
Sλ :

∏
α<λ Mα → Mλ, such that

(a) M0 = M , Mλ+1 = Mλ for each ordinal λ,
(b) Mλ/

⋃
α<λ Mα

∼=
∏

α<λ Mα/
∏b

α<λ Mα for each limit ordinal λ,
(c) the embeddings Mµ ⊆ Mλ are pure for each µ < λ,
(d) the restrictions Sλ � Mα : Mα → Mλ to any direct summand of the product∏

α<λ Mα are just the inclusions Mα ⊆ Mλ (that is, each Sλ extends the
summation map

⊕
α<λ Mα → Mλ),

(e) Sλ �
∏

α<µ Mα = Sµ for each µ < λ.

Proof. We will construct the modules Mλ by induction. By (a), M0 = M and
S0 = 0. If λ = µ + 1, then Mλ = Mµ and Sλ : (

∏
α<µ Mα) ⊕ Mµ → Mλ is just the

coproduct homomorphism of Sµ and id : Mµ → Mλ.
Now, let λ be a limit ordinal. By induction hypothesis, S̃ =

⋃
α<λ Sα is a well-

defined homomorphism
∏b

α<λ Mα →
⋃

µ<λ Mµ. Let us define Mλ and Sλ by the
following push-out:

0 −−−→
∏b

α<λ Mα
⊆−−−→

∏
α<λ Mα −−−→

∏
α<λ Mα/

∏b
α<λ Mα −−−→ 0

⏐⏐�S̃

⏐⏐�Sλ

∥∥∥

0 −−−→
⋃

µ<λ Mµ
⊆−−−→ Mλ −−−→

∏
α<λ Mα/

∏b
α<λ Mα −−−→ 0

Then (b), (d), (e) are obvious. Moreover,
⋃

µ<λ Mµ is a pure submodule of Mλ,
since the upper left horizontal map is a pure inclusion, thus (c) follows. �

Lemma 3. Let R be a ring and M a module. Let λ be an ordinal, let

(1)
∑

j∈J

aijxj = yi, yi ∈ M, i < λ,

be a system of equations in any (finite or infinite) number of unknowns xj, j ∈ J ,
and let Mλ be the module corresponding to M and λ from the previous lemma. If
(1) is finitely satisfied in M , then it is satisfied in Mλ.

Proof. Suppose that (1) is finitely satisfied. We will construct by induction partial
solutions xµ

j ∈ Mµ, j ∈ J , of the first µ equations such that

(2) xµ
j = Sµ

(
(xα+1

j − xα
j )α<µ

)
.

We will set x0
j = 0 for each j ∈ J by definition. If µ is non-zero finite, there is

a solution of the first µ equations by the assumption and (2) is trivially satisfied.
Since for any µ infinite: card(µ) = card(µ + 1), we can find a solution of the
first µ + 1 equations just by renumbering the equations and using the induction
hypothesis. Then

xµ+1
j = (xµ+1

j − xµ
j ) + xµ

j = (xµ+1
j − xµ

j ) + Sµ

(
(xα+1

j − xα
j )α<µ

)

= Sµ+1

(
(xα+1

j − xα
j )α<µ+1

)
.
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Now let µ be a limit ordinal. We will consider (2) as a definition of xµ
j . Then for

arbitrary i < µ:
∑

j∈J

aijx
µ
j = Sµ

(∑

j∈J

aij (xα+1
j − xα

j )α<µ

)
= Si+1

( ∑

j∈J

aij (xα+1
j − xα

j )α<i+1

)

=
∑

j∈J

aijSi+1

(
(xα+1

j − xα
j )α<i+1

)
=

∑

j∈J

aijx
i+1
j = yi.

Thus, xµ
j is a solution of the first µ equations, and subsequently xλ

j , j ∈ J , is a
solution of the whole system. �

Corollary 4. Let R be a ring, M a module and κ = max{ℵ0, card(R)}. Let
(Nα | α ≤ κ+) be a smooth chain of modules defined via: N0 = 0, N1 = M , Nα+1

is the κ-th member of the chain from Lemma 2 when starting with the module Nα.
Then Nκ+ is pure-injective.

Proof. It is sufficient to prove that every system of linear equations
∑

j∈J

aijxj = yi, yi ∈ Nκ+ , i < κ,

in unknowns xj , j ∈ J , which is finitely satisfied in Nκ+ is satisfied in Nκ+ [8,
V.1.2]. But all the yi’s are actually included in Nµ for some µ < κ+, thus the
system is satisfied in Nµ+1 by the preceding lemma. �

4. Cotilting modules

First, we need the following two set-theoretic lemmas that hold in ZFC. The
first one was proven in [11] for the special case κ = ℵ0. The second one is a
straightforward generalization of [4, 2.3].

Lemma 5. Let κ be an infinite regular cardinal. Then for every cardinal µ there
is a cardinal λ ≥ µ such that λκ = 2λ and λα = λ for each α < κ.

Proof. Let κ, µ be as above, and let λ be the union of the smooth chain (µi | i < κ)
defined by µ0 = µ and µi+1 = 2µi . Then clearly λ is of cofinality κ and ν < λ
implies 2ν < λ. The power set P(λ) embeds in an obvious way in

∏
i<κ P(µi),

hence 2λ ≤ λκ. If α < κ, then the range of any map α → λ is actually contained
in some µi, thus λα = card(

⋃
i<κ µα

i ) ≤ λ. �

Lemma 6. Let λ, κ be cardinals such that λκ = 2λ and λα = λ for each α < κ.
Then there is a family S of subsets of λ of cardinality κ such that

(a) card(S) = 2λ,
(b) card(X ∩ Y ) < κ for each pair of distinct elements X, Y ∈ S.

Proof. Let D denote the disjoint union of the sets λα for all α < κ. Then card(D) =
λ. Define a map F : λκ → P(D) by F (f) = {(f � α) | α < κ}. Then clearly
card(F (f)) = κ and card(F (f) ∩ F (g)) < κ for each distinct f, g ∈ λκ. The family
S arises just by applying bijections between λ and D, and between λκ and 2λ. �
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The following lemma is a generalization of [4, 2.5] (which deals with the case of
κ = ℵ0):

Lemma 7. Let R be a ring and U a module such that ⊥1U is closed under pure
submodules and products. Then for any regular cardinal κ, M ∈ ⊥1U implies
Mκ/M<κ ∈ ⊥1U .

Proof. Let λ be a cardinal such that λκ = 2λ and λα = λ for each α < κ. Consider a
family S of subsets of λ as in Lemma 6. For each X ∈ S, let ηX : MX → Mλ/M [λ;κ]

be the composition of the canonical embedding MX → Mλ with the canonical
projection. Denote the module Mκ/M<κ by N . Then clearly Im ηX

∼= N and
Ker ηX = M [X;κ]. Moreover, it is easy to see that the sum

∑
X∈S Im ηX is actually

a direct sum.
Next, denote by V the preimage of

∑
X∈S Im ηX in Mλ. We claim that V is a

pure submodule of Mλ. In fact, x ∈ V if and only if the support of x is a subset
of some union of the form G ∪ X1 ∪ · · · ∪ Xn, where X1, . . . , Xn are finitely many
elements of S and card(G) < κ. Thus, any system of finitely many linear equations∑

j≤m aijxj = yi with all the yi’s in V that can be solved in Mλ has a solution with
supports of xi’s inside the union of the supports of yi’s, therefore it has a solution
in V .

Now suppose that M ∈ ⊥1U . Then V ∈ ⊥1U as well, and we have a short exact
sequence of the form

0 → M [λ;κ] → V → N (S) → 0
and the corresponding induced exact sequence

HomR(M [λ;κ], U) → Ext1R(N (S), U) → 0.

We can always choose λ so that in addition λ ≥ card(HomR(Mµ, U)) for each µ < κ
using Lemma 5. Let L denote the set of all the subsets of λ of cardinality < κ.
Then any homomorphism f : M [λ;κ] → U is uniquely determined by its restrictions
to MZ , Z running through all elements of L. Therefore,

card(HomR(M [λ;κ], U)) ≤
∏

Z∈L
card(HomR(MZ , U)) ≤ λcard(L).

Moreover, card(L) ≤ card(
⋃

µ<κ λµ) = λ. Hence card(HomR(M [λ;κ], U)) ≤ 2λ. On

the other hand, if Ext1R(N, U) �= 0, then card(Ext1R(N (S), U)) ≥ 2card(S) = 22λ

, a
contradiction with the existence of an epimorphism. Thus N ∈ ⊥1U . �

The following lemma generalizes [5, 3.7, part 2]. The proof is essentially the
same as in [5].

Lemma 8. Let C be a class of modules closed under pure submodules and prod-
ucts. Assume in addition that there is a limit ordinal λ such that M ∈ C implies
Mλ/M<λ ∈ C. Then

∏
α<λ Mα/

∏b
α<λ Mα ∈ C for any family (Mα | α < λ) of

modules of C.

Proof. Let us denote W =
∏b

α<λ Mα and let εα : Mα → W be the canonical
embeddings. Since W is a pure submodule of

∏
α<λ Mα, we get W ∈ C and

Wλ/W<λ ∈ C. Denote by f :
∏

α<λ Mα → Wλ/W<λ the composition of the
product of the maps εα with the canonical projection. Then the kernel of f is
exactly

∏b
α<λ Mα and the induced embedding

∏
α<λ Mα/

∏b
α<λ Mα → Wλ/W<λ

is pure. Thus
∏

α<λ Mα/
∏b

α<λ Mα ∈ C. �
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Now, we are able to extend Lemma 7 to all limit ordinals:

Lemma 9. Let R be a ring and U a module such that ⊥1U is closed under pure
submodules and products. Then for any limit ordinal λ, if (Mα | α < λ) is a family
of modules of ⊥1U , then

∏
α<λ Mα/

∏b
α<λ Mα ∈ ⊥1U .

Proof. In the view of the preceding lemma, it is sufficient to prove, by induction on
λ, that M ∈ ⊥1U implies Mλ/M<λ ∈ ⊥1U . If λ is a regular cardinal, and this is in
particular the case when λ = ℵ0, then we use Lemma 7. If λ is not a regular cardinal,
then there is a limit ordinal µ < λ and an increasing continuous map f : µ → λ with
an unbounded range and such that f(0) = 0. Let us denote Mα = Mf(α+1)\f(α)

for each α < µ. Then obviously Mλ/M<λ ∼=
∏

α<µ Mα/
∏b

α<µ Mα, and the latter
module is contained in ⊥1U by the induction hypothesis. �
Proposition 10. Let R be a ring and U a module such that ⊥1U is closed under
pure submodules and products. Then M ∈ ⊥1U implies PE(M)/M ∈ ⊥1U .

Proof. By Lemmas 1 and 9, Mλ/M ∈ ⊥1U whenever M ∈ ⊥1U for all Mλ in
Lemma 2. Thus, using this and Corollary 4, M purely embeds into the pure
injective module Nκ+ and Nκ+/M ∈ ⊥1U . Therefore, PE(M)/M is isomorphic to
a direct summand of Nκ+/M , [12, Theorem 4.20]. Hence PE(M)/M ∈ ⊥1U . �

Finally, we are ready to prove both the conjectures (A) and (B). The proof of
Theorem 11 given here is inspired by the proof of Conjecture (A) in [7].

Theorem 11. Let R be a ring and U a module such that ⊥1U is closed under pure
submodules and products. Then ⊥1U is closed under pure epimorphic images.

Proof. It suffices to prove that, whenever i : Y → X is a pure monomorphism
such that X ∈ ⊥1U , and f : Y → U is any homomorphism, then there is a
homomorphism g : X → U such that f = gi. But in this case Y ∈ ⊥1U and
PE(Y )/Y ∈ ⊥1U too (Proposition 10). Thus, there are homomorphisms h : X →
PE(Y ) and k : PE(Y ) → U such that j = hi and f = kj, where j is the embedding
of Y into PE(Y ). The composition kh yields the desired map g. �
Corollary 12. Let R be a ring and U a module such that ⊥1U is closed under pure
submodules and products. Then ⊥1U is a covering class.

Proof. This follows by [5, Proposition 5.4] and [9, Theorem 5]. �
The following is the main result of our paper:

Theorem 13. Let R be an arbitrary ring, n ≥ 0, and U an n-cotilting module.
Then U is pure-injective.

Proof. This is immediate from Corollary 12 and [5, Theorem 5.5]. �
From [1, Theorem 4.1] and [3, Proposition 3.5], we get

Corollary 14. Let U be an n-cotilting module over an arbitrary ring such that
n ≥ 1, and let U ′ be a cosyzygy of U . Then

⋂
i≥1

⊥iU ′ is an (n− 1)-cotilting class.

Remark. It is possible to state Lemma 7 more generally with just a small change
in the proof: If U is a class of modules such that ⊥1U is closed under products
and pure submodules, then M ∈ ⊥1U implies Mκ/M<κ ∈ ⊥1U for any regular
cardinal κ. The subsequent statements in this paper generalize in a similar way so
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we can consider a class of modules U instead of a single module U everywhere to
Corollary 12. This fact was recently used by Šaroch and Trlifaj in [14] to improve the
characterization of cotilting cotorsion pairs from [1], dropping out the assumption
of the completeness of a cotorsion pair.
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