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KÄHLER THREEFOLDS
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(Communicated by Jon G. Wolfson)

Abstract. We provide infinitely many examples of pairs of diffeomorphic,
non-simply-connected Kähler manifolds of complex dimension three with dif-
ferent Kodaira dimensions. Also, in any possible Kodaira dimension we find in-
finitely many pairs of non-deformation equivalent, diffeomorphic Kähler three-
folds.

Introduction

Let M be a compact complex manifold of complex dimension n. On any such
manifold the canonical line bundle KM = ∧n,0 encodes important information
about the complex structure. One can define a series of birational invariants of
M, Pk(M) := h0(M, K⊗k

M ), k ≥ 0, called the plurigenera. The number of indepen-
dent holomorphic n-forms on M, pg(M) = P1(M) is called the geometric genus.
The Kodaira dimension Kod(M) is a birational invariant given by

Kod(M) = lim sup
log h0(M, K⊗k

M )
log k

.

This can be shown to coincide with the maximal complex dimension of the image
of M under the pluri-canonical maps, so that Kod(M) ∈ {−∞, 0, 1, . . . , n}. A com-
pact complex n-manifold is said to be of general type if Kod(M) = n. For Riemann
surfaces, the classification with respect to the Kodaira dimension, Kod(M) = −∞, 0
or 1, is equivalent to the one given by the genus, g(M) = 0, 1, and ≥ 2, respectively.

An important question in differential geometry is to understand how the complex
structures on a given complex manifold are related to the diffeomorphism type of
the underlying smooth manifold or further, to the topological type of the underlying
topological manifold. Shedding some light on this question is S. Donaldson’s result
on the “failure of the h-cobordism conjecture in dimension four”. In this regard,
he found a pair of non-diffeomorphic, h-cobordant, simply connected 4-manifolds.
One of them was CP2#9CP2, the blow-up of CP2 at nine appropriate points, and
the other one was a certain properly elliptic surface. For us, an important feature
of these two complex surfaces is the fact that they have different Kodaira dimen-
sions. Later, R. Friedman and Z. Qin [10] went further and proved that actually,
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for complex surfaces of Kähler type, the Kodaira dimension is invariant under dif-
feomorphisms. However, in higher dimensions, C. LeBrun and F. Catanese gave
examples [4] of pairs of diffeomorphic projective manifolds of complex dimensions
2n with n ≥ 2, and Kodaira dimensions −∞ and 2n.

In this article we address the question of the invariance of the Kodaira dimension
under diffeomorphisms in complex dimension 3. We obtain the expected negative
result.

Theorem A. For any allowed pair of distinct Kodaira dimensions (d, d′), with the
exception of (−∞, 0) and (0, 3), there exist infinitely many pairs of diffeomorphic
Kähler threefolds (M, M ′), having the same Chern numbers, but with Kod(M) = d
and Kod(M ′) = d′, respectively.

Corollary 0.1. For Kähler threefolds, the Kodaira dimension is not a smooth
invariant.

Our examples also provide negative answers to questions regarding the deforma-
tion types of Kähler threefolds. Recall that two manifolds X1 and X2 are called
directly deformation equivalent if there exists a complex manifold X , and a proper
holomorphic submersion � : X → ∆ with ∆ = {|z| < 1} ⊂ C, such that X1 and
X2 occur as fibers of �. The deformation equivalence relation is the equivalence
relation generated by direct deformation equivalence.

One can easily see that two deformation equivalent manifolds are orientedly
diffeomorphic. For complex surfaces of Kähler type there were strong indications
that the converse should also be true. R. Friedman and J. Morgan proved [8]
that not only is the Kodaira dimension a smooth invariant, but the plurigenera is
also. However, Manetti [16] exhibited examples of diffeomorphic complex surfaces
of general type which were not deformation equivalent. An easy consequence of our
Theorem A and of the deformation invariance of plurigenera for 3-folds [14] is that
in complex dimension 3 the situation is similar.

Corollary 0.2. For Kähler threefolds the deformation type does not coincide with
the diffeomorphism type.

Actually, with a bit more work we can get:

Theorem B. In any possible Kodaira dimension, there exist infinitely many ex-
amples of pairs of diffeomorphic, non-deformation equivalent Kähler threefolds with
the same Chern numbers.

The examples we use are Cartesian products of simply connected, h-cobordant
complex surfaces with Riemann surfaces. The real six-manifolds obtained will there-
fore be h-cobordant. To prove that these six-manifolds are in fact diffeomorphic,
we use the s-cobordism theorem, by showing that the obstruction to the trivial-
ity of the corresponding h-cobordism, the Whitehead torsion, vanishes. Similar
examples were previously used by Y. Ruan [20] to find pairs of diffeomorphic sym-
plectic 6-manifolds which are not symplectic deformation equivalent. However, to
show that his examples are diffeomorphic, Ruan uses the classification (up to dif-
feomorphisms) of simply connected, real 6-manifolds [19]. This restricts Ruan’s
construction to the case of Cartesian products by 2-spheres, a result which would
also follow from Smale’s h-cobordism theorem.

Our examples are pairs of complex structures of Kähler type with the same
Chern numbers. This should be contrasted with C. LeBrun’s examples [15] of
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complex structures, mostly non-Kähler, with different Chern numbers on a given
differentiable real manifold.

In our opinion, the novelty of this article is the use of the apparently forgotten
s-Cobordism Theorem. This theorem is especially useful when combined with a
theorem on the vanishing of the Whitehead group. For this, there nowaday exists
strong results, due to F.T. Farrell and L. Jones [6].

In the next section, we will review the main tools we use to find our examples:
h-cobordisms, the Whitehead group and its vanishing. In section 3 we recall few
well-known generalities about complex surfaces. Sections 4 and 5 contain a number
of examples and the proofs of Theorems A and B. In the last section we conclude
with a few remarks, and we raise some natural questions.

1. The s-cobordism theorem

Definition 1.1. Let M and M ′ be two n-dimensional smooth, compact, oriented
manifolds. A cobordism between M and M ′ is a triplet (W ; M, M ′), where W is an
(n+1)-dimensional compact, oriented manifold with boundary, ∂W = ∂W−�∂W+

with ∂W− = M and ∂W+ = M ′ (by ∂W− we denote the orientation-reversed
version of ∂W−).

We say that the cobordism (W ; M, M ′) is an h-cobordism if the inclusions i− :
M → W and i+ : M ′ → W are homotopy equivalences between M, M ′ and W.

The following well-known results [23], [24] allow us to easily check when two
simply connected 4-manifolds are h-cobordant.

Theorem 1.2. Two simply connected, compact, oriented smooth manifolds of di-
mension 4 are h-cobordant if and only if their intersection forms are isomorphic.

Theorem 1.3. Any indefinite, unimodular, bilinear form is uniquely determined
by its rank, signature and parity.

In higher dimensions any h-cobordism (W ; M, M ′) is controlled by the White-
head torsion τ (W ; M), an element of the so-called Whitehead group, which will be
defined below.

Let Π be any group, and R = Z(Π) the ring generated by Π. We denote by
GLn(R) the group of all non-singular n × n matrices over R. For all n we have
a natural inclusion GLn(R) ⊂ GLn+1(R) identifying each A ∈ GLn(R) with the
matrix (

A 0
0 1

)
∈ GLn+1(R).

Let GL(R) = ∪∞
n=1GLn(R). We define the following group:

K1(R) = GL(R)/[GL(R), GL(R)].

The Whitehead group we are interested in is:

Wh(Π) = K1(R)/〈±g | g ∈ Π〉.
Theorem 1.4. Let M be a smooth, compact, oriented manifold. For any h-
cobordism W of M with ∂−W = M, and with dim W ≥ 6, there exists an element
τ (W ) ∈ Wh(π1(M)), called the Whitehead torsion, characterized by the following
properties:

s-cobordism theorem: τ (W ) ∈ Wh(π1(M)) = 0 if and only if the h-
cobordism is trivial, i.e. W is diffeomorphic to ∂−W × [0, 1].
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Existence: Given α ∈ Wh(π1(M)), there exists an h-cobordism W with
τ (W ) = α.

Uniqueness: τ (W ) = τ (W ′) if and only if there exists a diffeomorphism
h : W → W ′ such that h|M = idM .

For the definition of the Whitehead torsion and the above theorem we refer
the interested reader to Milnor’s article [18]. When M is simply connected, the
s-cobordism theorem is nothing but the usual h-cobordism theorem [17], due to
Smale.

This theorem will be a stepping stone in finding pairs of diffeomorphic manifolds
in dimensions greater than 5, provided there is knowledge about the vanishing of
the Whitehead groups. The most powerful vanishing theorem that we are aware of
is the following.

Theorem 1.5 (Farrell, Jones). Let M be a compact Riemannian manifold of non-
positive sectional curvature. Then Wh(π1(M)) = 0.

The uniformization theorem of compact Riemann surfaces then yields the fol-
lowing result which, as was kindly pointed out to us by L. Jones, was also known
to F. Waldhausen [22] long before [6].

Corollary 1.6. Let Σ be a compact Riemann surface. Then Wh(π1(Σ)) = 0.

A useful corollary, which will be frequently used, is the following.

Corollary 1.7. Let M and M ′ be two simply connected, h-cobordant 4-manifolds,
and let Σ be a Riemann surface. Then M × Σ and M ′ × Σ are diffeomorphic.

Proof. Let W be an h-cobordism between M and M ′ such that ∂−W = M and
∂+W = M ′ and let W̃ = W ×Σ. Then ∂−W̃ = M ×Σ, ∂+W̃ = M ′ ×Σ, and W̃ is
an h-cobordism between M × Σ and M ′ × Σ. Now, since M is simply connected,
π1(M × Σ) = π1(Σ) and so Wh(π1(M × Σ)) = Wh(π1(Σ)). By the uniformization
theorem any Riemann surface of positive genus admits a metric of non-positive
curvature. Thus, by Theorem 1.5, Wh(π1(Σ)) = 0, which, by the first property of
Theorem 1.4, implies that M ×Σ and M ′×Σ are diffeomorphic. When the genus of
the Riemann surface is zero, the result similarly follows from Smale’s h-cobordism
theorem. �

2. Generalities

To prove Theorems A and B we will use our Corollary 1.7, and take for M
and M ′ appropriate h-cobordant, simply connected, complex projective surfaces,
endowed with their natural orientation, and for Σ, appropriate Riemann surfaces.
To find examples of h-cobordant complex surfaces, we use:

Proposition 2.1. Let M and M ′ be two simply connected complex surfaces with
the same geometric genus pg, c2

1(M)−c2
1(M

′) = m ≥ 0 and let k > 0 be any integer.
Let X be the blowing-up of M at k +m distinct points and let X ′ be the blowing-up
of M ′ at k distinct points. Then X and X ′ are h-cobordant, Kod(X) = Kod(M)
and Kod(X ′) = Kod(M ′).

Proof. By Noether’s formula we see that b2(M ′) = b2(M)+m. Since, by blowing-up
we increase the second Betti number by one each time, it follows that b2(X ′) =
b2(X). Using the birational invariance of the plurigenera, we have that b+(X ′) =
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2pg + 1 = b+(X). As X and X ′ are both non-spin, and their intersection forms
have the same rank and signature, their intersection forms are isomorphic. Thus,
by Theorem 1.2, X and X ′ are h-cobordant. The statement about the Kodaira
dimension follows from its birational invariance, too. �

Corollary 2.2. Let S and S′ be two simply connected, h-cobordant complex sur-
faces. If Sk and S′

k are the blowing-ups of the two surfaces, each at k ≥ 0 distinct
points, then Sk and S′

k are h-cobordant, too. Moreover, Kod(Sk) = Kod(S), and
Kod(S′

k) = Kod(S′).

The following proposition will take care of the computation of the Kodaira di-
mension of our examples. Its proof is standard, and we will omit it.

Proposition 2.3. Let V and W be two complex manifolds. Then Pm(V × W ) =
Pm(V ) · Pm(W ). In particular, Kod(V × W ) = Kod(V ) + Kod(W ).

For the computation of the Chern numbers of the examples involved, we need:

Proposition 2.4. Let M be a smooth complex surface with c2
1(M) = a, c2(M) = b,

and let Σ be a smooth complex curve of genus g, and X = M × Σ their Cartesian
product. The Chern numbers (c3

1, c1c2, c3) of X are ((6 − 6g)a, (2 − 2g)(a + b),
(2 − 2g)b).

Proof. Let p : X → M, and q : X → Σ be the projections onto the two factors.
Then the total Chern class is c(X) = p∗c(M) · q∗c(Σ), which allows us to identify
the Chern classes. Integrating over X, the result immediately follows. �

3. Diffeomorphism types - Proof of Theorem A

In this section we prove Theorem A. To do this, for each of the pairs of Kodaira
dimensions stated, we provide infinitely many examples, by taking Cartesian prod-
ucts of appropriate h-cobordant Kähler surfaces with Riemann surfaces of positive
genus.

Example 1. Pairs of Kodaira dimensions (−∞, 1) and (−∞, 2).
Let M be the blowing-up of CP2 at 9 distinct points given by the intersection

of two generic cubics. M is a non-spin, simply connected complex surface with
Kod(M) = −∞ which is also an elliptic fibration, π : M → CP1. By taking the
cubics general enough, we may assume that M has no multiple fibers, and the
only singular fibers are irreducible curves with one ordinary double point. Let
M ′ be obtained from M by performing logarithmic transformations on two of its
smooth fibers, with multiplicities p and q, where p and q are two relatively prime
positive integers. M ′ is also an elliptic surface, π′ : M ′ → CP1, whose fibers can be
identified to those in M except for the pair of multiple fibers F1, and F2. Let F be the
homology class of the generic fiber in M ′. In homology we have [F ] = p[F1] = q[F2].
By the canonical bundle formula, we see that KM = −F and

(3.1) KM ′ = −F + (p − 1)F1 + (q − 1)F2 =
pq − p − q

pq
F.

Then pg(M) = pg(M ′) = 0, c2
1(M) = c2

1(M
′) = 0, and Kod(M ′) = 1. Moreover,

from [9, Theorem 2.3, page 158] M ′ is simply connected and non-spin.
For any k ≥ 0, let Mk and M ′

k be the blowing-ups at k distinct points of M
and M ′, respectively, and let Σ be a Riemann surface. If g(Σ) = 1, according to
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Corollary 1.7 and Proposition 2.3, (Mk×Σ1, M
′
k×Σ1), k ≥ 0 will provide infinitely

many pairs of diffeomorphic Kähler threefolds, of Kodaira dimensions −∞ and 1,
respectively. If g(Σ) ≥ 2, we get infinitely many pairs of diffeomorphic Kähler
threefolds with Kodaira dimensions −∞, and 2, respectively. The statement about
the Chern numbers follows from Proposition 2.4.

Example 2. Pairs of Kodaira dimensions (0, 1) and (0, 2).
In CP1 × CP2, let M be the the generic section of line bundle p∗1OCP1(2) ⊗

p∗2OCP2(3), where pi, i = 1, 2, are the projections onto the two factors. Then M is a
K3 surface, i.e. a smooth, simply connected complex surface, with trivial canonical
bundle. Moreover, using the projection onto the first factor, it fibers over CP1 with
elliptic fibers.

Kodaira [12] produced infinitely many examples of properly elliptic surfaces of
Kähler type, homotopically equivalent to a K3 surface, by performing two loga-
rithmic transformations on two smooth fibers with relatively prime multiplicities
on such an elliptic K3. Let M ′ to be any such surface, and let Mk and M ′

k be
the blowing-ups at k distinct points of M and M ′, respectively. As before, let Σ
be a Riemann surface. If g(Σ) = 1, the Cartesian products Mk × Σ and M ′

k × Σ
will provide infinitely many pairs of diffeomorphic Kähler 3-folds of Kodaira dimen-
sions 0 and 1, respectively. If g(Σ) ≥ 2, we obtain pairs in Kodaira dimensions 1
and 2, respectively. Again, the statement about the Chern numbers follows from
Proposition 2.4.

Example 3. Pairs of Kodaira dimensions (−∞, 2) and (−∞, 3).
Arguing as before, we present a pair of simply connected, h-cobordant projective

surfaces, one on Kodaira dimension 2, and the other one of Kodaira dimension −∞.
Let M be the Barlow surface [1]. This is a non-spin, simply connected projective

surface of general type, with pg = 0 and c2
1(M) = 1. It is therefore h-cobordant to

M ′, the projective plane CP2 blown-up at 8 points. By taking the Cartesian product
of their blowing-ups by a Riemann surface of genus 1, we obtain diffeomorphic,
projective threefolds of Kodaira dimensions 3 and −∞, respectively. For a Riemann
surface of bigger genus, we obtain diffeomorphic, projective threefolds of Kodaira
dimensions 2 and −∞, respectively. The invariance of their Chern numbers follows
as usual.

Example 4. Pairs of Kodaira dimensions (0, 2) and (1, 3).
Following [3], we will describe an example of a simply connected, minimal surface

of general type with c2
1 = pg = 1.

In CP2 we consider two generic smooth cubics F1 and F2, which meet transver-
sally at 9 distinct points, x1, . . . , x9, and let σ : X̃ → CP2 be the blowing-up of CP2

at x1, . . . , x9, with exceptional divisors Ẽi, i = 1, ..., 9. Let F̃1 and F̃2 be the strict
transforms of F1 and F2, respectively. Then F̃1 and F̃2 are two disjoint, smooth
divisors, and we can easily see that OX̃(F̃1 + F̃2) = L̃⊗2, where

L̃ = σ∗OCP2(3) ⊗OX̃(Ẽ1 + · · · + Ẽ9).

Let π : X̄ → X̃ to be the double covering of X̃ branched along the smooth divisor
F̃1+F̃2. We denote by p : X̄ → CP2 the composition σ◦π, and by F̄1, F̄2 the reduced
divisors π−1(F̃1), and π−1(F̃2), respectively. Since each Ẽi intersects the branch
locus at 2 distinct points, we can see that for each i = 1, . . . , 9, Ēi = π−1(Ẽi) is a
smooth (−2)-curve such that π|Ēi

: Ēi → Ẽi is the double covering of Ẽi branched
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at the two intersection points of Ẽ1 with F̃1 + F̃2. As the Ẽi’s are mutually disjoint,
the Ēi’s will also be mutually disjoint. Similarly, if � is a line in CP2 not passing
through any of the intersection points of F1 with F2, then L = p∗(�) = p∗OCP2(1)
is a smooth curve of genus 2, not intersecting any of the Ēi’s. Since

p∗OCP2(3) = OX̄(2F̄1 + Ē1 + · · · + Ē9),

we can write as before OX̄(L + Ē1 + · · · + Ē9) = L̄⊗2, where

L̄ = p∗OCP2(2) ⊗OX̄(−F̄1).

Now let φ : S̄ → X̄ be the double covering of X̄ ramified along the smooth
divisor L + Ē1 + · · · + Ē9. The surface S̄ is non-minimal with exactly 9 disjoint
exceptional curves of the first kind. Namely, the reduced divisors φ−1(Ēi), i =
1, . . . , 9. The surface S we were looking for is obtained from S̄ by blowing down
these 9 exceptional curves.

F. Catanese proves [3] that S is a simply connected, minimal surface of general
type with c2

1(S) = pg(S) = 1.
Let S′

k be the blowing-up of a K3 surface at k distinct points. Also let Sk denote
the blowing-up of S at k + 1 distinct points, and let Σ be a Riemann surface. If
g(Σ) = 1, (Sk × Σ, S′

k × Σ) will provide infinitely many pairs of diffeomorphic
Kähler threefolds of Kodaira dimensions 2 and 0, respectively. If g(Σ) ≥ 2 we get
infinitely many pairs of diffeomorphic Kähler threefolds of Kodaira dimensions 3
and 1, respectively. The statement about the Chern classes follows as before.

Example 5. Pairs of Kodaira dimensions (1, 2) and (2, 3).
In CP1 ×CP2, let Mn be the the generic section of the line bundle p∗1OCP1(n)⊗

p∗2OCP2(3) for n ≥ 3, where pi, i = 1, 2, are the projections onto the two factors.
Then Mn is a smooth, simply connected projective surface, and using the projection
onto the first factor we see that Mn is a properly elliptic surface. By the adjunction
formula, the canonical line bundle is

KMn
= p∗1OCP1(n − 2).

From this and the projection formula we can find the purigenera:

Pm(Mn) = h0(Mn, K⊗m
Mn

) = h0(Mn, p∗1OCP1(m(n − 2)))

= h0(CP1, p1∗p
∗
1OCP1(m(n − 2)))

= h0(CP1,OCP1(m(n − 2)))

= m(n − 2) + 1.

So, Kod(Mn) = 1, and pg(Mn) = n − 1. We can also see that c2
1(Mn) = 0.

Let M ′ be any smooth sextic in CP3. M ′ is a simply connected surface of general
type with pg(M ′) = 10, and c2

1(M
′) = 24. Let M ′

k be the blowing-up of M ′ at 24+k
distinct points, let Mk be the blowing-up of M11 at k + 1 points, and let Σ be a
Riemann surface. If g(Σ) = 1, (Mk ×Σ, M ′

k ×Σ) will provide infinitely many pairs
of diffeomorphic Kähler threefolds of Kodaira dimensions 1 and 2, respectively,
while if g(Σ) ≥ 2 we get infinitely many pairs of diffeomorphic Kähler threefolds of
Kodaira dimensions 2 and 3, respectively. The statement about the Chern classes
again follows.
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4. Deformation type - Proof of Theorem B

Similar idea is used to prove Theorem B. The proof follows from the examples
below.
Example 1. Kodaira dimension −∞.

Here we again use the Barlow surface M, and M ′ the blowing-up of CP2 at 8
points as two h-cobordant complex surfaces. Let Sk and S′

k denote the blowing-ups
of M and M ′, respectively at k distinct points. Then, by the classical h-cobordism
theorem, Xk = Sk × CP1 and X ′

k = S′
k × CP1 are two diffeomorphic 3-folds with

the same Kodaira dimension −∞. The fact that Xk and X ′
k are not deformation

equivalent follows as in [20] from Kodaira’s stability theorem [13]. We also see
immediately that they have the same Chern numbers.

Example 2. Kodaira dimension 2 and 3.
We start with a Horikawa surface, namely a simply connected surface of general

type M with c2
1(M) = 16 and pg(M) = 10. An example of such a surface can be

obtained as a ramified double cover of Y = CP1 ×CP1 branched at a generic curve
of bi-degree (6, 12). Let p : M → Y denote its degree 2 morphism onto Y. The
canonical bundle of M is KM = OY (1, 4); see [2, page 182]. Here by OY (a, b) we
denote the line bundle p∗1OCP1(a)⊗p∗2OCP1(b), where pi, 1 = 1, 2, are the projections
of Y onto the two factors. Note that the formula for the canonical bundle shows
that M is not spin.

Lemma 4.1. The plurigenera of M are given by

Pn(M) =
{

10, n = 1,
8n2 − 8n + 11, n ≥ 2,

Proof. (cf. [2]) We have p∗OM = OY ⊕OY (−3,−6). We have:

Pn(M) = h0(M, p∗OY (n, 4n)) = h0(Y, p∗p
∗OY (n, 4n))

= h0(Y,OY (n, 4n) ⊗ p∗OM )

= h0(Y,OY (n, 4n)) + h0(Y,OY (n − 3, 4n − 6)).

Now, if n < 3 we get Pn(M) = (n + 1)(4n + 1). In particular, pg(M) = 10 and
P2(M) = 27. If n ≥ 3, Pn(M) = (n+1)(4n+1)+(n−2)(4n−5) = 8n2−8n+11. �

Let M ′ ⊂ CP3 be a smooth sextic. The adjunction formula will again provide
the the canonical bundle KM ′ = OM ′(2), and so c2

1(M ′) = 24.

Lemma 4.2. The plurigenera of M ′ are given by

Pn(M ′) =
{ (

2n+3
3

)
, n = 1, 2,

12n2 − 12n + 11, n ≥ 3.

Proof. From the exact sequence 0 → OCP3(2n − 6) → OCP3(2n) → K⊗n
M ′ → 0, we

get

0 → H0(CP3,OCP3(2n − 6)) → H0(CP3,OCP3(2n))

→ H0(M ′, K⊗n
M ′ ) → H1(CP3,OCP3(2n)) = 0.

So, for n ≥ 3,

Pn(M ′) =
(

2n + 3
3

)
−

(
2n − 3

3

)
= 12n2 − 12n + 11,
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while for n < 3, Pn(M ′) =
(
2n+3

3

)
. In particular, pg(M ′) = 10 and P2(M ′) =

35. �

Let Mk be the blowing-up of M at k distinct points, let M ′
k be the blowing-up

of M ′ at 8 + k distinct points, and let Σ be a Riemann surface. If g(Σ) = 1, then
(Mk ×Σ, M ′

k ×Σ), k ≥ 0, will provide the required examples of Kodaira dimension
2, and if g(Σ) ≥ 2, it will provide the required examples of Kodaira dimension 3.

To prove that they are not deformation equivalent we will use the deformation
invariance of the plurigenera theorem [14, page 535]. Because of the their multi-
plicative property (cf. Proposition 2.3), it will suffice to look at the plurigenera of
M and M ′. But, P2(M) = 27 and P2(M ′) = P2(S) = 35, and so M ×Σ and M ′×Σ
are not deformation equivalent.

The statement about the Chern numbers of this example follows immediately.

Example 3. Kodaira dimension 1.
Here we use again the elliptic surfaces π : Mp,q → CP1 obtained from the

rational elliptic surface by applying logarithmic transformations on two smooth
fibers, with relatively prime multiplicities p and q. From (3.1) we get K⊗pq

Mp,q
=

p∗OCP1((pq−p−q)). Hence Ppq(Mp,q) = pq−p−q+1, while if n ≤ pq, Pn(Mp,q) = 0,
the class of F being a primitive element in H2(Mp,q, Z); cf. [12]. It is easy to see
now that, for example, if (p, q) �= (2, 3), P6(Mp,q) �= P6(M2,3). If Σ is any smooth
elliptic curve, the 3-folds Xp,q = Mp,q×Σ will provide infinitely many diffeomorphic
Kähler threefolds of Kodaira dimension 1. Proposition 2.4 again shows that all these
threefolds have the same Chern numbers. The above computation of plurigenera
shows that, in general, the Xp,q’s have different plurigenera. Hence, these Kähler
threefolds are not deformation equivalent.

Example 4. Kodaira dimension 0.
Here we are supposed to start with a simply connected minimal surface of zero

Kodaira dimension. But, up to diffeomorphisms there exists only one [2], the K3
surface. So our method fails to produce examples in this case. However, M. Gross
constructed [11] a pair of diffeomorphic complex threefolds with trivial canonical
bundle, which are not deformation equivalent. For the sake of completeness we will
briefly recall his examples.

Let E1 = O⊕4
CP1

and E2 = OCP1(−1) ⊕OCP1(1) ⊕O⊕2
CP1

be the two rank 4 vector
bundles over CP1, and consider X1 = P(E1) and X2 = P(E2) their projectivizations.
Note that E2 deforms to E1. Let Mi ∈ | − KXi

|, i = 1, 2, be general anticanonical
divisors. The adjunction formula immediately shows that KMi

= 0, i = 1, 2, and so
M1 and M2 have zero Kodaira dimension. While for M1 it is easy to see that it can
be chosen to be smooth, simply connected and with no torsion in cohomology, Gross
shows [11], [21] that the same holds for M2. Moreover, the two 3-folds have the same
topological invariants (the second cohomology group, the Euler characteristic, the
cubic form, and the first Pontrjaghin class), and so (cf. [19]), are diffeomorphic.
To show that M1 and M2 are not deformation equivalent, note that M2 contains a
smooth rational curve with normal bundle O(−1)⊕O(−1), which is stable under the
deformation of the complex structure, while M1 does not. Obviously, M1 and M2

have the same Chern numbers. By blowing them up simultaneously at k distinct
points, we obtain infinitely many pairs of diffeomorphic, projective threefolds of
zero Kodaira dimension, and with the same Chern numbers.
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5. Concluding remarks

1. Let M and M ′ be any of the pairs of complex surfaces discussed in the
previous two sections. A simple inspection shows that they are not spin, and so,
their intersection forms will have the form m〈1〉⊕n〈−1〉. By a result of Wall [23], if
m, n ≥ 2, the intersection form is transitive on the primitive characteristic elements
of a fixed square. Since, c1 is characteristic, if it is primitive too, we can assume
that the homotopy equivalence f : M → M ′ given by an automorphism of such an
intersection form will carry the first Chern class of M ′ into the first Chern class of
M. But this implies that the h-cobordism constructed between X = M × Σ and
X ′ = M ′ × Σ also preserves the first Chern classes.

Following Ruan [20], we can arrange our examples such that c1 is a primitive
class. In the cases when b+ > 1, which is equivalent to pg > 0, it follows that
there exists a diffeomorphism F : X → X ′ such that F ∗c1(X ′) = c1(X), where
F ∗ : H2(X ′, Z) → H2(X, Z) is the isomorphism induced by F. In these cases
our theorems provide either examples of pairs of diffeomorphic Kähler threefolds,
with the same Chern classes, but with different Kodaira dimensions, or examples
of pairs of non-deformation equivalent, diffeomorphic Kähler threefolds, with the
same Chern classes and of the same Kodaira dimension.

However, in some cases we are forced to consider surfaces with b+ = 1. In these
cases it is not clear whether one can arrange the h-cobordisms constructed between
X = M × Σ, and X ′ = M ′ × Σ also preserves the first Chern classes.

2. With our method it is impossible to provide examples of diffeomorphic 3-folds
of Kodaira dimensions (0, 3) and (−∞, 0). In the first case, our method fails for
obvious reasons. In the second case, the reason is that for a projective surface of
Kodaira dimension −∞, the geometric genus pg is 0, while for a simply connected
projective surface of Kodaira dimension 0, pg �= 0. Thus, any two surfaces of these
dimensions will have different b+, which is preserved under blow-ups. So, no pair
of projective surfaces of these Kodaira dimensions can be h-cobordant. However,
this raises the following question.

Question 5.1. Are there examples of pairs of diffeomorphic, projective 3-folds
(M, M ′) of Kodaira dimensions (0, 3) or (−∞, 0)?

Most of the examples exhibited here have the fundamental group of a Riemann
surface. Natural questions to ask would be the following.

Question 5.2. Are there examples of diffeomorphic, simply connected, complex,
projective 3-folds of different Kodaira dimension?

Question 5.3. Are there examples of projective, simply connected, diffeomorphic,
but not deformation equivalent 3-manifolds with the same Kodaira dimension?

As we showed, the answer is yes when the Kodaira dimensions are −∞ or 0, but
we are not aware of such examples in the other cases.
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