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(Communicated by Martin Lorenz)

Abstract. If R is a triangular 2 × 2 matrix ring, the columns P and Q are
f.g. projective R-modules. We describe the universal localization of R which
makes invertible an R-module morphism σ : P → Q, generalizing a theorem
of A. Schofield. We also describe the universal localization of R-modules.

1. Introduction

Suppose R is an associative ring (with 1) and σ : P → Q is a morphism between
finitely generated projective R-modules. There is a universal way to localize R
in such a way that σ becomes an isomorphism. More precisely, there is a ring
morphism R → σ−1R which is universal for the property that

σ−1R ⊗R P
1⊗σ−−−→ σ−1R ⊗R Q

is an isomorphism (Cohn [7, 9, 8, 6], Bergman [4, 5], Schofield [17]). Although it
is often difficult to understand universal localizations when R is non-commutative1

there are examples where elegant descriptions of σ−1R have been possible (e.g. Cohn
and Dicks [10], Dicks and Sontag [11, Thm. 24], Farber and Vogel [12] Ara,
González-Barroso, Goodearl and Pardo [1, Example 2.5]). The purpose of this
paper is to describe and to generalize some particularly interesting examples due to
A. Schofield [17, Thm. 13.1] which have application in topology (e.g., Ranicki [16,
Part 2]).

We consider a triangular matrix ring R =
(

A M
0 B

)
where A and B are asso-

ciative rings (with 1) and M is an (A, B)-bimodule. Multiplication in R is given
by (

a m
0 b

) (
a′ m′

0 b′

)
=

(
aa′ am′ + mb′

0 bb′

)

for all a, a′ ∈ A, m, m′ ∈ M and b, b′ ∈ B. The columns P =
(

A
0

)
and Q =

(
M
B

)
are f.g. projective left R-modules with

P ⊕ Q ∼= R.
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For the general theory of triangular matrix rings see Haghany and Varadarajan [13,
14].

We shall describe in Theorem 2.4 the universal localization R → σ−1R which

makes invertible a morphism σ : P → Q. Such a morphism can be written σ =
(

j
0

)
where j : A → M is a morphism of left A-modules. Examples follow, in which
restrictions are placed on A, B, M and σ. In particular, Example 2.8 recovers
Theorem 13.1 of Schofield [17]. We proceed to describe the universal localization
σ−1N = σ−1R ⊗R N of an arbitrary left module N for the triangular matrix ring
R (see Theorem 2).

The structure of this paper is as follows: definitions, statements of results and
examples are given in Section 2 and the proofs are collected in Section 3.

I am grateful to Andrew Ranicki, Aidan Schofield and Amnon Neeman for helpful
conversations.

2. Statements and examples

Let us first make more explicit the universal property of localization:

Definition 2.1. A ring morphism R → R′ is called σ-inverting if

id⊗σ : R′ ⊗R

(
A
0

)
→ R′ ⊗R

(
M
B

)

is an isomorphism. The universal localization iσ : R → σ−1R is the initial object
in the category of σ-inverting ring morphisms R → R′. In other words, every σ-
inverting ring morphism R → R′ factors uniquely as a composite R → σ−1R → R′.

Definition 2.2. An (A, M, B)-ring (S, fA, fM , fB) is a ring S together with ring
morphisms fA : A → S and fB : B → S and an (A, B)-bimodule morphism
fM : M → S.

A
fA �� S B

fB��

M

fM

��

It is understood that the (A, B)-bimodule structure on S is induced by fA and fB ,
so that fA(a)fM (m) = fM (am) and fM (m)fB(b) = fM (mb) for all a ∈ A, b ∈ B
and m ∈ M .

A morphism (S, fA, fM , fB) → (S′, f ′
A, f ′

M , f ′
B) of (A, M, B)-rings is a ring mor-

phism θ : S → S′ such that i) θfA = f ′
A, ii) θfM = f ′

M and iii) θfB = f ′
B .

Definition 2.3. Suppose p ∈ M . Let (T (M, p), ρA, ρM , ρB) denote the initial
object in the subcategory of (A, M, B)-rings with the property ρM (p) = 1. For
brevity we often write T = T (M, p).

The ring T can be explicitly described in terms of generators and relations as
follows. We have one generator xm for each element m ∈ M and relations:

(+) xm + xm′ = xm+m′ ,
(a) xapxm = xam,
(b) xmxpb = xmb,
(id) xp = 1,
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for all m, m′ ∈ M , a ∈ A and b ∈ B. The morphisms ρA, ρM , ρB are

ρA : A → T ; a �→ xap,

ρB : B → T ; b �→ xpb,

ρM : M → T ; m �→ xm.

Suppose σ :
(

A
0

)
→

(
M
B

)
is a morphism of left R-modules. We may write

σ

(
1
0

)
=

(
p
0

)
for some p ∈ M . Let T = T (M, p).

Theorem 2.4. The universal localization R → σ−1R is (isomorphic to)

R =
(

A M
0 B

) ( ρA ρM

0 ρB

)
−−−−−−→

(
T T
T T

)
.

Example 2.5. (1) Suppose A = B = M and multiplication in A defines the
(A, A)-bimodule structure on M . If p = 1, then T = A and ρA = ρM =
ρB = idA.

(2) Suppose A = B and M = A ⊕ A with the obvious bimodule structure. If
p = (1, 0), then T is the polynomial ring A[x] in a central indeterminate
x. The map ρA = ρB is the inclusion of A in A[x] while ρM (1, 0) = 1 and
ρM (0, 1) = x.

The universal localizations corresponding to Example 2.5 are

(1)
(

A A
0 A

)
→

(
A A
A A

)
;

(2)
(

A A ⊕ A
0 A

)
→

(
A[x] A[x]
A[x] A[x]

)
.

Remark 2.6. One can regard the triangular matrix rings in these examples as path
algebras over A for the quivers

1. • �� • 2. • ��
�� •

The universal localizations R → σ−1R are obtained by introducing an inverse to
the arrow in (1) and by introducing an inverse to one of the arrows in (2). See for
example Benson [2, p. 99] for an introduction to quivers.

The following examples subsume these.

Example 2.7. (1) (Amalgamated free product; Schofield [17, Thm. 4.10])
Suppose iA : C → A and iB : C → B are ring morphisms and M = A⊗C B.
If p = 1 ⊗ 1, then T is the amalgamated free product A�

C
B and appears in

the pushout square

C
iA ��

iB
��

A
ρA

��

B ρB

�� T

The map ρM is given by ρM (a ⊗ b) = ρA(a)ρB(b) for all a ∈ A and b ∈ B.
We recover part (1) of Example 2.5 by setting A = B = C and iA = iB = id.
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(2) (HNN extension) Suppose A = B and i1, i2 : C → A are ring morphisms.
Let A ⊗C A denote the tensor product with C acting via i1 on the first
copy of A and by i2 on the second copy. Let M = A ⊕ (A ⊗C A) and
p = (1, 0 ⊗ 0). Now T = A ∗C Z[x] is generated by the elements in A
together with an indeterminate x and has the relations in A together with
i1(c)x = xi2(c) for each c ∈ C. We have ρA(a) = ρB(a) = a for all
a ∈ A while ρM (1, 0 ⊗ 0) = 1 and ρM (0, a1 ⊗ a2) = a1xa2. If C = A and
i1 = i2 = idA, we recover part (2) of Example 2.5.

The following example is Theorem 13.1 of Schofield [17] and generalizes Exam-
ple 2.7.

Example 2.8. (1) Suppose p generates M as a bimodule, i.e., M = ApB.
Now T is generated by the elements of A and the elements of B subject
to the relation

∑n
i=1 aibi = 0 if

∑n
i=1 aipbi = 0 (with ai ∈ A and bi ∈ B).

This ring T is denoted A �
(M,p)

B in [17, Ch. 13]. The maps ρA and ρB are

obvious and ρM sends
∑

i aipbi to
∑

i aibi.
(2) Suppose M=ApB ⊕ N for some (A, B)-bimodule N . Now T is the tensor

ring over A �
(M,p)

B of

(A �
(M,p)

B) ⊗A N ⊗B (A �
(M,p)

B).

We may vary the choice of p as the following example illustrates:

Example 2.9. Suppose A = B = M = Z and p = 2. In this case T = Z
[
1
2

]
and

ρA = ρB is the inclusion of Z in Z
[
1
2

]
while ρM (n) = n/2 for all n ∈ Z.

Example 2.9 can be verified by direct calculation using Theorem 2.4 or deduced
from part (1) of Example 2.5 by setting a0 = b0 = 2 in the following more general
proposition. Before stating it, let us remark that the universal property of T =
T (M, p) implies that T (M, p) is functorial in (M, p). An (A, B)-bimodule morphism
φ : M → M ′ with φ(p) = p′ induces a ring morphism T (M, p) → T (M ′, p′).

Proposition 2.10. Suppose A and B are rings, M is an (A, B)-bimodule and
p ∈ M . If a0 ∈ A and b0 ∈ B satisfy a0m = mb0 for all m ∈ M , then:

(1) The element ρM (a0p) = xa0p = xpb0 is central in T (M, p).
(2) The ring morphism φ : T (M, p) → T (M, a0p) = T (M, pb0) induced by

the bimodule morphism φ : M → M ; m �→ a0m = mb0 is the universal
localization of T (M, p) making invertible the element xa0p.

Since xa0p is central, each element in T (M, a0p) can be written as a fraction
α/β with numerator α ∈ T (M, p) and denominator β = xr

a0p for some nonnegative
integer r.

Having described universal localization of the ring R in Theorem 2.4 we may
also describe the universal localization σ−1R ⊗R N of a left R-module N .

For the convenience of the reader let us first recall the structure of modules over
a triangular matrix ring.

Lemma 2.11. Every left R-module N can be written canonically as a triple

(NA, NB , f : M ⊗B NB → NA)

where NA is a left A-module, NB is a left B-module and f is a morphism of left
A-modules.
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A proof of this lemma is included in Section 3 below. Localization of modules
can be expressed as follows.

Theorem 2.12. 2 For any left R-module N = (NA, NB, f) the localization left

σ−1R-module σ−1N = σ−1R ⊗R N is isomorphic to
(

L
L

)
with σ−1R = M2(T ),

T = T (M, p), L the left T -module defined by

L = (T T ) ⊗R N

= coker
( (

1 ⊗ f
g ⊗ 1

)
: T ⊗A M ⊗B NB → (T ⊗A NA) ⊕ (T ⊗B NB)

)
with g the (T, B)-bimodule morphism

g : T ⊗A M → T ; t ⊗ m �→ −txm,

and M2(T ) acting on the left of
(

L
L

)
by matrix multiplication.

3. Proofs

The remainder of this paper is devoted to the proofs of Theorem 2.4, Proposi-
tion 2.10 and Theorem 2.

3.1. Localization as pushout. Before proving Theorem 2.4 we show that there
is a pushout diagram (

Z Z

0 Z

)
��

α

��

(
Z Z

Z Z

)

��

R �� σ−1R

where α

(
1 0
0 0

)
=

(
1 0
0 0

)
, α

(
0 0
0 1

)
=

(
0 0
0 1

)
and α

(
0 1
0 0

)
=

(
0 p
0 0

)
.

Bergman observed [4, p. 71] that more generally, up to Morita equivalence every
localization R → σ−1R appears in such a pushout diagram.

It suffices to check that the lower horizontal arrow in any pushout(
Z Z

0 Z

)
��

α

��

(
Z Z

Z Z

)
θ

��

R
i

�� S

is i) σ-inverting and ii) universal among σ-inverting ring morphisms. The universal
property of a pushout will be shown to be the universal property of a universal
localization, so that such a commutative diagram is a pushout if and only if S is a
universal localization σ−1R.

2This corrects Theorem 2.12 in the preprint version arXiv:math.RA/0407407.
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i) The map id⊗σ : S⊗R

(
A
0

)
→ S⊗R

(
M
B

)
has inverse given by the composite

S ⊗R

(
M
B

)
⊂ S ⊗R R ∼= S

γ−−−−→ S ∼= S ⊗R R � S ⊗R

(
A
0

)

where γ multiplies on the right by θ

(
0 0
1 0

)
.

ii) If i′ : R → S′ is a σ-inverting ring morphism, then there is an inverse ψ :

S′ ⊗R

(
M
B

)
→ S′ ⊗R

(
A
0

)
to id⊗σ. It is argued shortly below that there is a

(unique) diagram

(1)

(
Z Z

0 Z

)
��

α

��

(
Z Z

Z Z

)
θ

�� θ′

��

R
i ��

i′ ��

S

		

S′

where θ′ sends
(

0 0
1 0

)
to ψ

(
1 ⊗

(
0
1

))
∈ S′ ⊗R

(
A
0

)
⊂ S′. Since S is a pushout,

there is a unique morphism S → S′ to complete the diagram and so i′ factors
uniquely through i.

To show uniqueness of (1), note that in S′ multiplication on the right by θ′
(

0 1
0 0

)
must coincide with the morphism(

0 0
id⊗σ 0

)
: S′ ⊗

(
A
0

)
⊕ S′ ⊗

(
M
B

)
−→ S′ ⊗

(
A
0

)
⊕ S′ ⊗

(
M
B

)
,

so multiplication on the right by θ′
(

0 0
1 0

)
coincides with

(
0 ψ
0 0

)
. Now 1 ∈ S′

may be written(
1 ⊗

(
1
0

)
, 1 ⊗

(
0
1

))
∈ S′ ⊗R

(
A
0

)
⊕ S′ ⊗R

(
M
B

)

so θ′
(

0 0
1 0

)
= ψ

(
1 ⊗

(
0
1

))
. The reader may verify that this formula demon-

strates the existence of a commutative diagram (1).

3.2. Identifying σ−1R.

Proof of Theorem 2.4. It suffices to show that the diagram of ring morphisms(
Z Z

0 Z

)
��

α

��

(
Z Z

Z Z

)

��(
A M
0 B

)
ρ

��

(
T T
T T

)
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is a pushout, where T = T (M, p), ρ =
(

ρA ρM

0 ρB

)
and α is defined as in Section 3.1.

Given a diagram of ring morphisms

(2)

(
Z Z

0 Z

)
��

α

��

(
Z Z

Z Z

)

��
θ





(
A M
0 B

)

ρ′

��

ρ
��

(
T T
T T

)
γ

��

S

we must show that there is a unique morphism γ to complete the diagram. The

map θ induces a decomposition of S as a matrix ring M2(S′) =
(

S′ S′

S′ S′

)
with S′

the centralizer of θ(M2(Z)) ⊂ S. In particular, θ(eij) = eij for i, j ∈ {1, 2}. Any
morphism γ which makes the diagram commute must be of the form γ = M2(γ′)
for some ring morphism γ′ : T → S′ (e.g. Cohn [9, p. 1] or Lam [15, (17.7)]).
Commutativity of the diagram implies that ρ′ also respects the 2×2 matrix structure
and we may write

ρ′ =
(

ρ′A ρ′M
0 ρ′B

)
:
(

A M
0 B

)
−→

(
S′ S′

S′ S′

)

with ρ′M (p) = 1 as one sees by considering the images of
(

0 1
0 0

)
in

(
Z Z

0 Z

)
under

the maps in diagram (2) above. Since ρ′ is a ring morphism, one finds(
ρ′A(aa′) ρ′M (am′ + mb′)

0 ρ′B(bb′)

)
=

(
ρ′A(a)ρ′A(a′) ρ′A(a)ρ′M (m′) + ρ′M (m)ρ′B(b′)

0 ρ′B(b)ρ′B(b′)

)
for all a, a′ ∈ A, b, b′ ∈ B and m, m′ ∈ M . Hence the maps ρ′A : A → S′ and
ρ′B : B → S′ are ring morphisms and ρ′M is a morphism of (A, B)-bimodules. Thus
S′ is an (A, M, B)-ring with respect to the maps ρ′A, ρ′M , ρ′B such that ρ′M (p) = 1.
By the universal property of T there exists a unique morphism γ′ : T → S′ such
that M2(γ′) : M2(T ) → M2(S′) = S completes diagram (2) above. �

Proof of Proposition 2.10. 1. In T (M, p) we have xa0pxm = xa0m = xmb0 =
xmxpb0 = xmxa0p for all m ∈ M .

2. The map φ : M → M ; m �→ a0m induces

φ : T (M, p) → T (M, a0p),(3)
xm �→ xa0m.

In particular, φ(xa0p) = xa2
0p ∈ T (M, a0p) and we have

xa2
0pxp = xa0(a0p)xp = xa0p = 1 = xpb0 = xpxpb20

= xpxa2
0p,

so φ(xa0p) is invertible.
We must check that (3) is universal. If f : T (M, p) → S is a ring morphism and

f(xa0p) is invertible, we claim that there exists a unique f̃ : T (M, a0p) → S such
that f̃φ = f .
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Uniqueness: Suppose f̃φ = f . For each m ∈ M we have

f̃(xa0m) = f̃φ(xm) = f(xm).

Now f(xa0p)f̃(xm) = f̃φ(xa0p)f̃(xm) = f̃(xa0(a0p)xm) = f̃(xa0m) = f(xm), so

(4) f̃(xm) = (f(xa0p))−1f(xm).

Existence: It is straightforward to check that equation (4) provides a definition
of f̃ which respects the relations (+), (a), (b) and (id) in T (M, a0p). Relation (b),
for example, is proved by the equations

f̃(xm)f̃(xa0pb) = f(xa0p)−1f(xm)f(xpb) = f(xa0p)−1f(xmb) = f̃(xmb)

and the other relations are left to the reader. �

3.3. Module localization. We turn finally to the universal localization σ−1R⊗R

N of an R-module N .

Proof of Lemma 2.11. If N is a left R-module, set NA =
(

1 0
0 0

)
N and set NB =

N/NA. If m ∈ M and nB ∈ NB choose a lift x ∈ N and define the map f :

M ⊗NB → NA by f(m⊗nB) =
(

0 m
0 0

)
x. Conversely, given a triple (NA, NB, f)

one recovers a left R-module
(

NA

NB

)
with

(
a m
0 b

) (
nA

nB

)
=

(
anA + f(m ⊗ nB)

bnB

)

for all a ∈ A, b ∈ B, m ∈ M , nA ∈ NA, nB ∈ NB. �

Proof of Theorem 2. As in the statement, let T = T (M, p) and define the left T -
module

L = coker
( (

1 ⊗ f
g ⊗ 1

)
: T ⊗A M ⊗B NB → (T ⊗A NA) ⊕ (T ⊗B NB)

)
.

We shall establish an isomorphism of left T -modules

(5)
(
T T

)
⊗R

(
NA

NB

)
∼= L

and leave to the reader the straightforward deduction that there is an isomorphism
of σ−1R-modules

σ−1R ⊗R N =
(

T T
T T

)
⊗R

(
NA

NB

)
∼=

(
L
L

)
.

The left T -module morphism

α : L →
(
T T

)
⊗R

(
NA

NB

)
;

(t ⊗ nA, t′ ⊗ nB) �→
(
t 0

)
⊗R

(
nA

0

)
+

(
0 t′

)
⊗R

(
0

nB

)
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is well defined, since

α(t ⊗A f(m, nB), g(t, m) ⊗B nB)

= α(t ⊗A f(m, nB),−txm ⊗B nB)

=
(
t 0

)
⊗R

(
f(m, nB)

0

)
−

(
0 txm

)
⊗R

(
0

nB

)

=
(
t 0

)
⊗R

(
0 m
0 0

) (
0

nB

)
−

(
t 0

) (
0 m
0 0

)
⊗R

(
0

nB

)

= 0 ∈
(
T T

)
⊗R

(
NA

NB

)
.

The left T -module morphism

β :
(
T T

)
⊗R

(
NA

NB

)
→ L;

(
t t′

)
⊗R

(
nA

nB

)
�→ (t ⊗ nA, t′ ⊗ nB)

is well defined, since

β
( (

t t′
)
⊗R

(
a m
0 b

) (
nA

nB

)
−

(
t t′

)(
a m
0 b

)
⊗R

(
nA

nB

))
= (t ⊗ (anA + f(m, nb)), t′ ⊗ bnB) − (ta ⊗ nA, (txm + t′b) ⊗ nB)

= (t ⊗ f(m, nB),−txm ⊗ nB)

= (1 ⊗ f, g ⊗ 1)(t ⊗ m ⊗ nB) = 0 ∈ L .

It is immediate that βα = id. To prove (5) we must check that αβ = id or in other
words, that

(
t t′

)
⊗R

(
nA

nB

)
=

(
t 0

)
⊗R

(
nA

0

)
+

(
0 t′

)
⊗R

(
0

nB

)
.

This equation follows from the next two calculations:

(
t 0

)
⊗R

(
0

nB

)
=

(
t 0

) (
0 0
0 1

)
⊗R

(
0

nB

)
= 0 ;

(
0 t′

)
⊗R

(
nA

0

)
=

(
0 t′

) (
1 0
0 0

)
⊗R

(
nA

0

)
= 0 .

�
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