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(Communicated by Carmen C. Chicone)

Abstract. In this work, we use the extrapolation methods to study the exis-
tence and uniqueness of almost automorphic solutions to the semilinear bound-
ary differential equation

(SBDE)

{
x′(t) = Amx(t) + h(t, x(t)), t ∈ R,

Lx(t) = g(t, x(t)), t ∈ R,

where A := Am| ker L generates a hyperbolic C0-semigroup on a Banach space
X and h, g are almost automorphic functions which take values in X and a
“boundary space” ∂X, respectively. These equations are an abstract formu-
lation of partial differential equations with semilinear terms at the boundary,
such as population equations, retarded differential equations and boundary
control systems. An application to retarded differential equations is given.

1. Introduction

We are concerned with the existence and the almost automorphy of solutions of
the semilinear boundary differential equation

(SBDE)

{
x′(t) = Amx(t) + h(t, x(t)), t ∈ R,

Lx(t) = g(t, x(t)), t ∈ R.

The first equation stands in a Banach space X called state space, and the second in
a “boundary space” ∂X; (Am, D(Am)) is a densely defined linear operator on X,
and L : D(Am) −→ ∂X is bounded linear, h : R×X −→ X and g : R×X −→ ∂X.
This kind of equation is motivated by retarded differential equations in continuous
functions spaces, by dynamic population equations in L1-space with semilinear
birth processes, and by boundary control problems.

We assume that the operator A := Am| kerL generates a hyperbolic C0-semi-
group on X and h(·, x), g(·, x) are almost automorphic functions on R for each
x in X and globally Lipschitzian. Under additional assumptions, called Greiner
assumptions (see Section 4), on the boundary operator L, we show that there is a
unique almost automorphic mild solution to (SBDE) which satisfies a variation of
constant formula.
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The idea to achieve this aim is to transform the boundary equation (SBDE) (see
Section 4) into an equivalent semilinear evolution equation as follows:

x′(t) = A−1x(t) + h(t, x(t)) + (λ − A−1)Lλg(t, x(t)), t ∈ R,

where A−1 is the continuous extension of A to the extrapolated Banach space
X−1 of X with respect to A. Under the Greiner assumptions on L, the operator
Lλ := (L| ker(λ−Am))−1, called the Dirichlet map of Am, is bounded from ∂X to
X, and the semilinear term f(t, x) := h(t, x)+(λ−A−1)Lλg(t, x) is an FA−1-valued
function, where FA−1 is the Favard class of A−1, which is a larger Banach space
than X. Although this equation is written in X−1, the task is to show the existence
of mild solutions in X. For the mentioned notions, see Section 2 for definitions and
[9] for more details. The extrapolation theory has been introduced by Da Prato and
Grisvard [6] and Nagel [9] and used for various purposes; see [1, 2, 3, 4, 15, 17, 21].

According to this transformation, we begin in Section 3 by studying the existence
of almost automorphic solutions of the semilinear evolution equation

(SEE) x′(t) = A−1x(t) + f(t, x(t)), t ∈ R,

where A−1 is the extrapolation of a generator A of a hyperbolic C0-semigroup
(T (t))t≥0 on a Banach space X. The semilinear term f is defined on R × X with
values in the extrapolated Favard class FA−1 . We show first that the inhomogeneous
evolution equation

(IEE) x′(t) = A−1x(t) + g(t), t ∈ R,

has a unique almost automorphic mild solution on X for each almost automorphic
function g : R −→ FA−1 , and this yields by the above equivalence the existence of
almost automorphic solutions of the inhomogeneous boundary differential equation

(IBDE)

{
x′(t) = Amx(t) + h1(t), t ∈ R,

Lx(t) = h2(t), t ∈ R.

The contraction fixed point theorem then yields the unique almost automorphic
mild solution on X for the semilinear evolution equation (SEE), and thus the one
of the boundary differential equation (SBDE).

In the particular case where g = 0 and h2 = 0, the boundary equations (SBDE)
and (IBDE) become

x′(t) = Ax(t) + h(t, x(t)), t ∈ R, x′(t) = Ax(t) + h1(t), t ∈ R,

evolution equations on X, which are much considered in the literature. The almost
automorphy of such equations was studied in [8, 10, 13, 18, 19, 20], where the
exponential stability of (T (t))t≥0 is required. Recently, the hyperbolic case was
treated by the authors in [5].

In the last section of this paper, we apply the abstract results to the retarded
differential equation

(RDE) d

dt
x(t) = Bx(t) + f(t, xt), t ∈ R,

where B generates a C0-semigroup (S(t))t≥0 on a Banach space E and f is a
nonlinear function from R × C([−r, 0], E) into E. Under some assumptions on B,
we show that the function-solution t �−→ xt is almost automorphic in C([−r, 0], E),
and then x(·) is almost automorphic in X.
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Actually, the problem of finding an almost automorphic solution to inhomoge-
neous differential equations goes back to S. Bochner and W. A. Veech, and has
attracted many mathematicians (see [14], [18], [20] and [22] for exhaustive lists of
references). In [14], for instance, Russell A. Johnson has shown that the almost pe-
riodic ODE x′ + A(t)x = B(t) admits no almost periodic solution. He constructed
an interesting example of a two-dimensional almost periodic system whose projec-
tive flow has an almost automorphic minimal subset which is not almost periodic.
He also proved that some equation in the hull of the above equation admits an
almost automorphic solution which is not almost periodic.

2. Preliminaries

We begin in this section by fixing some notations and recalling a few basic results
on extrapolation spaces of generators. For more details, we refer the reader to [9]
and [17]. Let (A, D(A)) be the generator of a C0-semigroup (T (t))t≥0 on a Banach
space X.

Define on X a new norm by

‖x‖−1 =
∥∥(λ − A)−1x

∥∥ , x ∈ X, λ ∈ ρ(A).

The completion of
(
X, ‖·‖−1

)
is called the extrapolation space of X associated to

A and will be denoted by X−1. By the resolvent equation, the space X−1 does not
depend on λ.

Since T (t) commutes with the operator resolvent R(λ, A) := (λI − A)−1, the
extension of T (t) to X−1 exists and defines a C0-semigroup (T−1(t))t≥0 which is
generated by A−1 with D(A−1) = X.

We recall that the Favard class associated to a generator A (or T (·)) is the
Banach space

FA :=
{

x ∈ X : sup
t>0

1
t

∥∥e−ωtT (t)x − x
∥∥ < ∞

}
endowed with the norm

‖x‖FA
:= sup

t>0

1
t

∥∥e−ωtT (t)x − x
∥∥ .

Here ω > ω0(T (·)), the growth bound of T (·). We note that FA is independent of
the choice of ω, contains the domain of A, FA ↪→ X ↪→ FA−1 ↪→ X−1, and

(2.1) (λ − A−1) : FA −→ FA−1

is an isomorphism for every λ ∈ ρ(A). In the case when X is a reflexive Banach
space, the Favard class associated to T (·) is exactly the domain of its generator
(see, e.g., [9, Section. II.5.b] for more properties).

A C0-semigroup (T (t))t≥0 is said to be hyperbolic if it satisfies the following
properties:

(i) there exist two subspaces XS (the stable space) and XU (the unstable space)
of X such that X = XS ⊕ XU ;

(ii) T (t) is defined on XU , T (t)XU ⊂ XU , and T (t)XS ⊂ XS for all t ≥ 0;
(iii) there exist constants M, δ > 0 such that

‖T (t)PS‖ ≤ Me−δt, t ≥ 0, ‖T (t)PU‖ ≤ Meδt, t ≤ 0,(2.2)

where PS and PU are, respectively, the projections onto XS and XU .
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In the sequel we need the following main proposition.

Proposition 2.1 ([2]). Assume that the semigroup T (·) is hyperbolic. Then:
(i) PST (t) = T (t)PS and PUT (t) = T (t)PU , for all t ≥ 0.
(ii) (T (t))t≥0 is a stable C0-semigroup on XS = PSX with generator PSA, and

(T (t))t∈R
is a C0-group on XU = PUX with generator PUA.

(iii) PS and PU can be extended on X−1 to two unique bounded operators PS,−1

and PU,−1.

We need also the following fundamental lemma; see [2].

Lemma 2.2. Let f : R −→ FA−1 be a bounded function. Then, the following
assertions hold:∫ t

−∞
T−1(t − s)PS,−1f(s)ds,

∫ ∞

t

T−1(t − s)PU,−1f(s)ds ∈ X for all t ∈ R,∥∥∥∥
∫ t

−∞
T−1(t − s)PS,−1f(s)ds

∥∥∥∥ ≤ Ce−δt

∫ t

−∞
eδs ‖f(s)‖FA−1

ds,∥∥∥∥
∫ +∞

t

T−1(t − s)PU,−1f(s)ds

∥∥∥∥ ≤ Ceδt

∫ +∞

t

e−δs ‖f(s)‖FA−1
ds for all t ∈ R.

We end this section by recalling the definition of almost automorphic functions
and some of their properties.

Definition 2.3 (S. Bochner). A continuous function f : R → X is called almost
automorphic if for every sequence (σn)n∈N there exists a subsequence (sn)n∈N ⊂
(σn)n∈N such that

lim
n,m→+∞

f(t + sn − sm) = f(t) for each t ∈ R.

This is equivalent to

g(t) := lim
n→+∞

f(t + sn) and f(t) = lim
n→+∞

g(t − sn)

are well defined for each t ∈ R.

The function g in the definition above is measurable, but not necessarily contin-
uous. Clearly, if the convergence in the definition above is uniform in t ∈ R, then
f ∈ AP (X), the space of all almost periodic functions with values in X. That is,
AP (X) ⊂ AA(X).

It is well known that the range Rf = f(R) of an almost automorphic function
f : R → X is relatively compact in X, thus it is bounded in norm. Also, the
collection AA(X) of all almost automorphic X-valued functions is a Banach space
under the supnorm ‖f‖AA(X) = supt∈R

‖f(t)‖.
Remark 2.4. An almost automorphic function may not be uniformly continuous.

Example 2.5 (Levitan). Let p(t) = 2 + cost + cos
√

2t and f : R → R such that
f = sin 1

p . Then f ∈ AA(X), but f is not uniformly continuous on R. It follows
that f /∈ AP (X).

Since almost periodic functions (in Bochner’s sense) are uniformly continuous,
the above remark is very important and indicates that many results and methods in
the theory of almost periodicity may not stand in almost automorphy framework.
For a complete background on almost automorphic functions one can see [18], [20],
and the important Memoirs [22] for almost automorphic dynamics.
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3. Main abstract results

Consider a generator A of a hyperbolic C0-semigroup (T (t))t≥0 on a Banach
space X, and the semilinear evolution equation

(SEE) x′(t) = A−1x(t) + f(t, x(t)), t ∈ R.

The function f : R×X −→ FA−1 is continuous and globally Lipschitzian, i.e., there
is k > 0 such that

(3.1) ‖f(t, x) − f(t, y)‖FA−1
≤ k ‖x − y‖ for all t ∈ R and x, y ∈ X.

By a mild solution of (SEE) we will understand a continuous function x : R −→
X, which satisfies the following variation of constants formula

(3.2) x(t) = T (t − s)x(s) +
∫ t

s

T−1(t − τ )f(τ, x(τ ))dτ for all t ≥ s, t, s ∈ R.

We study first the existence of almost automorphic mild solutions for the inhomo-
geneous evolution equation

(IEE) x′(t) = A−1x(t) + g(t), t ∈ R.

We have the following main result.

Theorem 3.1. Let g ∈ AA(FA−1). Then, the equation (IEE) admits a unique
mild solution x ∈ AA(X) given by

(3.3) x(t) =
∫ t

−∞
T−1(t − s)PS,−1g(s)ds −

∫ +∞

t

T−1(t − s)PU,−1g(s)ds, t ∈ R.

Proof. Let x(·) be the function defined for all t ∈ R by

x(t) =
∫ t

−∞
PS,−1T−1(t − s)g(s)ds −

∫ +∞

t

PU,−1T−1(t − s)g(s)ds.

By Lemma 2.2, x(·) is a bounded continuous function from R to X. Moreover, one
can see easily that x(·) satisfies the variation of constants formula

x(t) = T (t − s)x(s) +
∫ t

s

T−1(t − τ )g(τ )dτ for all t ≥ s, t, s ∈ R,

that is, x(·) is a bounded mild solution of (IEE). To show the uniqueness, let u
be a bounded continuous function R −→ X satisfying

u(t) = T (t − s)u(s) +
∫ t

s

T−1(t − τ )g(τ )dτ for all t ≥ s, t, s ∈ R.

Then, from Proposition 2.1, we get

PSu(t) = T (t − s)PSu(s) +
∫ t

s

T−1(t − τ )PS,−1g(τ )dτ for t ≥ s, t, s ∈ R,(3.4)

PUu(t) = T (t − s)PUu(s) +
∫ t

s

T−1(t − τ )PU,−1g(τ )dτ for t, s ∈ R.(3.5)
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Since u is bounded, then, by using the estimates (2.2), Lemma 2.2 and by letting
s → −∞ in (3.4) and s → +∞ in (3.5), we obtain

PSu(t) =
∫ t

−∞
T−1(t − s)PS,−1g(s)ds,

PUu(t) =
∫ t

+∞
T−1(t − s)PU,−1g(s)ds, t ∈ R.

Consequently, by the decomposition of the space X, we obtain that u(t) = x(t), and
the uniqueness is proved. To show that the mild solution x is almost automorphic,
let (s′n) be an arbitrary sequence of real numbers; then it has a subsequence (sn)
such that limn,m g(t+ sn − sm) = g(t) in FA−1 for each t ∈ R, since g ∈ AA(FA−1).
From Lemma 2.2, we have∥∥∥∥

∫ t+sn−sm

−∞
T−1(t + sn − sm − s)PS,−1g(s)ds −

∫ t

−∞
T−1(t − s)PS,−1g(s)ds

∥∥∥∥
≤ C

∫ 0

−∞
eδs ‖g(t + s + sn − sm) − g(t + s)‖FA−1

ds

and∥∥∥∥
∫ +∞

t+sn−sm

T−1(t + sn − sm − s)PU,−1g(s)ds −
∫ +∞

t

T−1(t − s)PU,−1g(s)ds

∥∥∥∥
≤ C

∫ +∞

0

e−δs ‖g(t + s + sn − sm) − g(t + s)‖FA−1
ds.

Therefore, limn,m→∞ ‖x(t + sn − sm) − x(t)‖ = 0 for each t ∈ R. �

Now, we come back to study the asymptotic behavior of (SEE). To this end,
let AA(R × Y, X), for some Banach spaces X and Y , denote the set of continuous
functions f : R × Y −→ X such that f(·, y) ∈ AA(X) for each y ∈ Y .

Consider now y ∈ AA(X) and f ∈ AA(R × X, FA−1). Then, by [20, Theo-
rem 2.2.4], the function g(·) := f(·, y(·)) ∈ AA(FA−1) and from Theorem 3.1, the
inhomogeneous evolution equation

x′(t) = Ax(t) + g(t), t ∈ R,

admits a unique mild solution x ∈ AA (X) given by

x(t) =
∫ t

−∞
T−1(t − s)PS,−1f(s, y(s))ds −

∫ +∞

t

T−1(t − s)PU,−1f(s, y(s))ds.

Let the operator F : AA (X) −→ AA (X) be defined by

(Fy)(t) :
∫ t

−∞
T−1(t − s)PS,−1f(s, y(s))ds

−
∫ +∞

t

T−1(t − s)PU,−1f(s, y(s))ds for all t ∈ R,
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and assume that kC <
δ

2
, where C is the constant defined in Lemma 2.2. Then,

we have for any x, y ∈ AA (X),

‖Fx(t) − Fy(t)‖ ≤ Ce−δt

∫ t

−∞
eδs ‖f(s, x(s))− f(s, y(s))‖FA−1

ds

+ Ceδt

∫ +∞

t

e−δs ‖f(s, x(s)) − f(s, y(s))‖FA−1
ds.

≤ 2kC

δ
‖x − y‖∞ for all t ∈ R.

This shows that F has a unique fixed point in AA (X), and consequently we have
the following theorem.

Theorem 3.2. Assume that kC <
δ

2
and f ∈ AA

(
R × X, FA−1

)
. Then (SEE)

admits a unique mild solution x in AA (X), which satisfies the variation of constants
formula

x(t) =
∫ t

−∞
T−1(t−s)PS,−1f(s, x(s))ds−

∫ +∞

t

T−1(t−s)PU,−1f(s, x(s))ds, t ∈ R.

4. Semilinear boundary differential equations

Consider the semilinear boundary differential equation

(SBDE)

{
x′(t) = Amx(t) + h(t, x(t)), t ∈ R,

Lx(t) = g(t, x(t)), t ∈ R.

Here (Am, D(Am)) is a densely defined linear operator on a Banach space X, L :
D(Am) −→ ∂X, the boundary Banach space and the functions h : R × X −→ X,
g : R × X −→ ∂X are continuous.

We shall make the following assumptions introduced by G. Greiner [11].
(A1) There exists a new norm | · | which makes the domain D(Am) complete and

then denoted by Xm. The space Xm is continuously embedded in X and
Am ∈ L(Xm, X).

(A2) The restriction A := Am |ker(L) generates a C0-semigroup T (·) on X.
(A3) L ∈ L(Xm, ∂X) is surjective.
(A4) There exist positive constants γ, λ0 such that

‖Lx‖ ≥ γ(λ − λ0), x ∈ ker(λ − Am), λ ∈ ρ(A), λ > λ0.(4.1)

(A5) The semigroup T (·) is hyperbolic on X.
One can see that under (A1)–(A2) and for some λ ∈ ρ(A) the maximal domain
Xm can be decomposed as

Xm = KerL ⊕ ker(λ − Am);(4.2)

see [11]. Thus, the restriction L : ker(λ − Am) → ∂X is then a bijection and its
inverse is the so-called Dirichlet operator Lλ ∈ L(∂X, X) and LλL is a projection
onto ker(λ − Am). From (4.2), one can show also that

x ∈ D(Am) ⇐⇒ x − LλLx ∈ D(A).(4.3)

It is shown also in [11] that

(4.4) R(µ, A)Lλ = R(λ, A)Lµ for all λ, µ ∈ ρ(A).
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We know also from [7] that the assumption (A4) is equivalent to the fact that the
operator

(4.5) Lλ : ∂X −→ FA is bounded for all λ > λ0.

Recall here that x : R −→ X is a mild solution of (SBDE) if for all t ≥ s, t, s ∈ R,
we have

(i)
∫ t

s

x(τ )dτ ∈ Xm,

(ii) x(t) − x(s) = Am

∫ t

s

x(τ )dτ +
∫ t

s

h(τ, x(τ ))dτ,

(iii) L

∫ t

s

x(τ )dτ =
∫ t

s

g(τ, x(τ ))dτ.

In the following lemma we show the equivalence between the boundary equation
(SBDE) and an evolution equation.

Lemma 4.1. Assume that (A1)–(A3) are satisfied. A function x is a mild solution
of the boundary equation (SBDE ) if and only if x is a mild solution of the semilinear
evolution equation on X,

(SEE) x′(t) = A−1x(t) + h(t, x(t))− A−1L0g(t, x(t)), t ∈ R.

Proof. Let x be a mild solution of (SBDE). Then, since Range(L0) ⊂ ker(Am) and
from (4.3), we have

x(t) − x(s) = Am

∫ t

s

x(τ )dτ + AmL0L

∫ t

s

x(τ )dτ +
∫ t

s

h(τ, x(τ ))dτ

= A

(∫ t

s

x(τ )dτ − L0L

∫ t

s

x(τ )dτ

)
+

∫ t

s

h(τ, x(τ ))dτ

= A−1

∫ t

s

x(τ )dτ +
∫ t

s

h(τ, x(τ ))dτ

− A−1L0

∫ t

s

g(τ, x(τ ))dτ, t ≥ s, t, s ∈ R.

The last equation is equivalent to the fact that x satisfies the variation of constants
formula (3.3), and then is a mild solution of (SEE). Now let x be a mild solution
of (SEE), that is, x satisfies

x(t) = T (t − s)x(s) +
∫ t

s

T (t − τ )h(τ, x(τ ))dτ

−
∫ t

s

T−1(t − τ )A−1L0g(τ, x(τ ))dτ for all t ≥ s, t, s ∈ R.

Since x is an X-valued function, then
∫ t

s
T−1(t − τ )A−1L0g(τ, x(τ ))dτ ∈ X, and

then
∫ t

s
T (t − τ )L0g(τ, x(τ ))dτ ∈ D(A), and

x(t) = T (t − s)x(s) +
∫ t

s

T (t − τ )h(τ, x(τ ))dτ − A

∫ t

s

T (t − τ )L0g(τ, x(τ ))dτ.
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Hence,∫ t

s

x(τ )dτ

=
∫ t

s

T (τ − s)x(s)dτ +
∫ t

s

∫ τ

s

T (τ − σ)h(σ, x(σ))dσdτ

−
∫ t

s

∫ τ

s

T−1(τ − σ)A−1L0g(σ, x(σ))dσdτ

= A−1[T (t−s)x(s)−x(s)] + A−1

∫ t

s

T (t−σ)h(σ, x(σ))dσ + A−1

∫ t

s

h(σ, x(σ))dσ

−
∫ t

s

T (t − σ)L0g(σ, x(σ))dσ − L0

∫ t

s

g(σ, x(σ))dσ.

This yields easily that x satisfies (i)–(iii) above. This achieves the proof. �

We can now announce the main result of this section.

Theorem 4.2. Assume that (A1)–(A5) are satisfied, and that the functions g ∈
AA(R × X, ∂X), h ∈ AA(R × X, X) are globally Lipschitzian with small constants.
Then the semilinear boundary differential equation (SBDE ) has a unique almost
automorphic mild solution x satisfying, for all t ∈ R,

x(t) =
∫ t

−∞
T (t − s)PSh(s, x(s))ds−

∫ +∞

t

T (t − s)PUh(s, x(s))ds

− A

[∫ t

−∞
T (t − s)PSL0g(s, x(s))ds −

∫ +∞

t

T (t − s)PUL0g(s, x(s))ds

]
.(4.6)

Proof. From equations (2.1), (4.4) and (4.5), A−1L0 is a bounded operator from
∂X to FA−1 . Hence, since g ∈ AA(R × X, ∂X) and h ∈ AA(R × X, X) and from
the injection X ↪→ FA−1 , the function f(t, x) := h(t, x) − A−1L0g(t, x) belongs to
AA(R×X, FA−1). This function is also globally Lipschitzian with a small constant.
Hence, by Theorem 3.2 there is a unique mild solution x ∈ AA(X) of the equation
(SEE), satisfying

x(t) =
∫ t

−∞
PS,−1T−1(t − s)f(s, x(s))ds−

∫ +∞

t

PU,−1T−1(t − s)f(s, x(s))ds,

from which we deduce the variation of constants formula (4.6). The above lemma
yields that x is the unique almost automorphic mild solution of (SBDE). �

5. Retarded differential equations

Consider the semilinear retarded differential equation

(RDE) d

dt
x(t) = Bx(t) + g(t, xt), t ∈ R,

where B generates an immediately compact or norm continuous C0-semigroup
(S(t))t≥0 on a Banach space E, g is a function from R × C([−r, 0], E) into E.
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This equation can be written as a boundary differential equation, by setting

X = C([−r, 0], E), ∂X = E, Am =
d

dσ
,

D(Am) =
{
f ∈ C1([−r, 0], E) : f(0) ∈ D(B)

}
,

Xm = (D(Am), | · |), |f | = ‖f‖∞ + ‖f ′‖∞ + ‖Bf(0)‖, f ∈ D(Am).

From the closedness of B, (Xm, | · |) is a Banach space, and it is continuously
embedded in X, and hence (A1) is satisfied. The boundary operator L is defined
on Xm by Lf = f ′(0) − Bf(0), f ∈ Xm. It is clear that L : Xm −→ E is bounded
and surjective, and Lλx = eλR(λ, B)x for x ∈ E and λ ∈ ρ(B), where eλ(θ) = eλθ

for θ ∈ [−r, 0]. The assumptions (A3) and (A4) are then satisfied. The operator
A = Am| kerL is given by

A =
d

dσ
, D(A) =

{
f ∈ C1([−r, 0], E) : f(0) ∈ D(B), f ′(0) = Bf(0)

}
and it generates a C0-semigroup (T (t))t≥0 on X; see for instance, [9, Theorem 6.1]
and [23]. This yields the assumption (A2). From [9, Thm. 6.6, Thm. 6.9], this
semigroup is eventually (for t > r ) compact (resp. norm continuous) if (S(t))t≥0

is immediately compact (resp. norm continuous).
We have also, from [9, Proposition 6.7], that σ(A) = σ(B). If we assume now

that σ(B) ∩ iR = ∅, then the semigroup (T (t))t≥0 is hyperbolic.

Theorem 5.1. Assume σ(B)∩iR = ∅. If g ∈ AA(R×C([−r, 0], E), E) and globally
Lipschitzian with a small constant, then (RDE ) admits a unique mild solution x
such that R � t �−→ xt is almost automorphic in C([−r, 0], E) and satisfies

xt = −A

[∫ t

−∞
T (t − s)PSe0B

−1g(s, xs)ds

−
∫ +∞

t

T (t − s)PUe0B
−1g(s, xs)ds

]
, t ∈ R.

Example. Consider the following retarded partial differential equation:

(5.1)

⎧⎨
⎩

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + αu(t, x) + g(t, u(t − 1, x)), t ∈ R, x ∈ [0, π] ,

u(t, 0) = u(t, π) = 0, t ∈ R,

where g : R×R −→ R such that for all t ∈ R, f(t, u(t−1, ·)) ∈ L2(0, π) and α ∈ R.
Let E := L2(0, π), the equation (5.1) can be written in E as the following

retarded differential equation:

(5.2)
d

dt
v(t) = Bv(t) + g(t, vt), t ∈ R,

with v, g : R → E such that v(t) = u(t, ·) and g(t, ϕ) = g(t, ϕ(−1, ·)), vt ∈
C([−1, 0] , E), and B is the operator defined in E by

By = y′′ + αy, y ∈ D(B) =
{
y ∈ W 2,2([0, π]); y(0) = y(π) = 0

}
.

It is well known that the operator B generates an immediately compact semigroup
in E, and that λ ∈ σ(B) if and only if there exists n ∈ N such that

(En) λ = α − n2.
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If we suppose, for instance, 3 < α < 4, then all solutions of the equations (En) are
in C\iR. Therefore, (E1) admits a positive real solution. We deduce that the type
of B is not negative and σ(B) ∩ iR = ∅. Then all assumptions of Theorem 5.1 are
satisfied and thus one has the same conclusion for the retarded differential equation
(5.1).
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[10] J. A. Goldstein, G. M. N’Guérékata, Almost automorphic solutions of semilinear evolution
equations, Proc. Amer. Math. Soc. 133 (2005), 2401-2408. MR2138883 (2006a:34175)

[11] G. Greiner, Perturbing the boundary conditions of a generator, Houston J. Math. 13 (1987),
213-229. MR0904952 (88i:47023)

[12] E. Hernández, M. Pelicer and J. dos Santos, Asymptotically almost periodic and almost
periodic solutions for a class of evolution equations, Elect. J. Diff. Equat. (2004), 1-15.
MR2047417 (2004m:34164)

[13] Y. Hino, S. Murakami, Almost automorphic solutions for abstract functional differential
equations, J. Math. Math. Analysis and Appl. 286 (2003), 741-752. MR2008862 (2004i:34160)

[14] R. A. Johnson, A linear almost periodic equation with an almost automorphic solution, Proc.
Amer. Math. Soc., Vol. 82, No. 2 (1981), 199-205. MR0609651 (82i:34044a)

[15] L. Maniar and A. Rhandi, Inhomogeneous retarded Differential equation in infinite dimen-
sional Banach space via extrapolation spaces, Rend. Circ. Mat. Palermo 47 (1998), 331-346.
MR1633503 (99f:34116)
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