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A LOWER BOUND FOR THE GROUND STATE ENERGY
OF A SCHRÖDINGER OPERATOR ON A LOOP

HELMUT LINDE

(Communicated by Mikhail Shubin)

Abstract. Consider a one-dimensional quantum mechanical particle
described by the Schrödinger equation on a closed curve of length 2π. Assume
that the potential is given by the square of the curve’s curvature. We show
that in this case the energy of the particle cannot be lower than 0.6085. We
also prove that it is not lower than 1 (the conjectured optimal lower bound) for
a certain class of closed curves that have an additional geometrical property.

1. Introduction

Let Γ be a smooth closed curve of length 2π in the plane with the curvature
κ(s) which is regarded as a function of the arc length. We consider the Schrödinger
operator

HΓ = −∆ + κ2(s) in L2([0, 2π))
with periodic boundary conditions. Let λΓ be the lowest eigenvalue of HΓ. It has
been conjectured that λΓ ≥ 1 for any Γ. The class F of the conjectured minimizers
of λΓ contains the circle and certain point-symmetric oval loops. For all curves
in F the equality λΓ = 1 holds, but so far it has not been shown that this is
actually the smallest possible value of λΓ. In their paper [1] Benguria and Loss
established a connection between this problem and the Lieb-Thirring conjecture in
one dimension. They also proved that λΓ ≥ 0.5, which seems to be the best lower
bound for λΓ so far.

Recently, Burchard and Thomas have shown [2] that the curves in F minimize λΓ

at least locally, i.e., there is no small variation around these curves that reduces λΓ.
In the present article we will add further credibility to the mentioned conjecture in
two ways. On the one hand, we show that λΓ ≥ 1 holds for a considerable class of
curves that meet a certain additional geometrical condition. Extending this method
to the class of all curves of interest yields, on the other hand, an improved lower
bound on λΓ.

2. Statement of the result

For a given smooth curve Γ with an arc length parameter s, we introduce the
angle φ(s) between the tangent on Γ in s and some fixed axis, which implies φ′(s) =
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κ(s). For the sake of simplicity we will only consider strictly convex curves, i.e.,
φ′ > 0. To keep the notation compact we write

φ : Ω → Ω with Ω := R/2πZ,

considering numbers that differ by an integer multiple of 2π as identical. Our main
result is:

Theorem 2.1. Let Γ be a smooth, strictly convex, closed curve of length 2π in the
plane and λΓ defined as above. Then

λΓ >

(
1 +

1
1 + 8/π

)−2

> 0.6085.

In the proof of Theorem 2.1 we will make use of the following geometrical concept:
We call s ∈ Ω a ‘critical point’ of Γ if φ(s + π) = φ(s) + π. Obviously, s + π is then
also a critical point. If s is a critical point, we call φ(s) a ‘critical angle’. While
open curves may have no critical points at all, the following lemma holds for the
closed curves we are considering.

Lemma 2.2. Every smooth closed curve Γ has at least six critical points.

It is clear from the definition of a critical point and the lemma that every Γ has
at least three critical points and three critical angles in [s, s+π) ⊂ Ω for any s ∈ Ω.
For a class of curves that have their critical angles distributed somewhat evenly, we
can show that λΓ ≥ 1 holds:

Theorem 2.3. Let Γ be as in Theorem 2.1 and assume additionally that every
interval [φ, φ + π

2 ) ⊂ Ω contains at least one critical angle of Γ. Then λΓ ≥ 1.

It is an immediate consequence of Theorem 2.3 and Lemma 2.2 that for any hy-
pothetical curve Γ with λΓ < 1 there is a φ such that [φ, φ+ π

2 ) and [φ + π, φ+ 3π
2 )

each contain at least three critical angles and [φ+ π
2 , s+π)∪ [φ+ 3π

2 , φ+2π) none.
A few comments on the geometrical interpretation of the above are in order: Al-
though we have defined the critical points for a certain parameterization of the
curve, the location of the critical points is an intrinsic property of the curve. More
precisely, two points P1 and P2 on a closed curve of length 2π are critical, if the arc
length between P1 and P2 is π and the tangents in these two points are parallel.

From Theorem 2.3 it follows that only curves with a rather uneven distribution
of their critical points are candidates for λΓ < 1. Roughly speaking, such curves
tend to be rather symmetric, as will become clear in the proof of Theorem 2.1. In
fact, the function f , that we will define and estimate in the proof, can in some sense
be seen as a measure for how far away Γ is from being point-symmetric. This, on
the other hand, will enable us to estimate how far λΓ could be below one.

We are not aware of any direct correlation between the distribution of the critical
points and the ground state energy λΓ, except the connection that is established by
Theorem 2.3, of course. There seems to be no reason why the condition of Theorem
2.3 should ‘prefer’ curves with a high energy, especially if one takes into account
that the conjectured minimizers meet this condition. We believe that this makes
the conjecture λΓ ≥ 1 even more credible.

The remainder of the article is devoted to proving Lemma 2.2 and the two
theorems.
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3. Proof of the results

To prepare the proofs of Lemma 2.2 and the two theorems we introduce some
more notation: We consider a curve Γ as in Theorem 2.1 and assume without loss
of generality that φ′ > 0. Because Γ is closed, φ meets the conditions∫

Ω

cos φ(s) ds =
∫

Ω

sin φ(s) ds = 0,∫
Ω

φ′(s) ds = 2π.

We note that φ(s) has an inverse function φ−1 : Ω → Ω, and the closure conditions
are equivalent to ∫

Ω

(φ−1)′(t) sin t dt =
∫

Ω

(φ−1)′(t) cos t dt = 0,∫
Ω

(φ−1)′(t) dt = 2π.

The function (φ−1)′ can therefore be written as a Fourier series

(φ−1)′(t) = 1 +
∞∑

n=2

nan cos nt − nbn sin nt,

such that

φ−1(t) = C + t +
∞∑

n=2

an sin nt + bn cos nt.

By the invariance of the problem under a shift of the arc length parameter s, we
can assume that C = 0. Then we can write φ−1 in the form

(3.1) φ−1(t) = t + g(t) + f(t),

where

g(t) :=
∞∑

n=2,4,6,...

an sin nt + bn cos nt,

f(t) :=
∞∑

n=3,5,7,...

an sin nt + bn cos nt.

Note that

(3.2) f(t + π) = −f(t), g(t + π) = g(t) for all t ∈ Ω.

Proof of Lemma 2.2. From (3.1) and (3.2) it is easy to see that the critical angles
of Γ are just the zeroes of f . By continuity of f and (3.2), any nontrivial f clearly
has at least two zeroes t0 and t0 + π in Ω with a change of sign. But if these were
the only zeroes, we would have∫

Ω

f(t) sin(t − t0) dt �= 0,

which is impossible by the definition of f . So f must change its sign in at least one
more point. By the symmetry property (3.2) it is clear that if, say, f(t0 + ε) > 0,
then f(t0 + π − ε) > 0 for small ε > 0. That means that each of the intervals
(t0, t0 +π) and (t0 +π, t0 +2π) contains an even number of zeroes with a change of
sign. In total, this leads to a minimum of six zeroes of f with a change of sign. �
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We now state and prove a lemma that is key to the proofs of Theorem 2.1 and
Theorem 2.3.

Lemma 3.1. Let Γ be as in Theorem 2.1 and let {ti}i=1,...,n ⊂ Ω be a set of
numbers such that [t, t + π

2 ]∩{ti} �= ∅ for all t ∈ Ω. Assume that |f(ti)| ≤ α for all
i. Then

λΓ ≥ (1 + 2α/π)−2
.

Proof. Comparing (3.2) with (3.1) we see that

(3.3) φ−1(t + π) = φ−1(t) + π − 2f(t) for all t ∈ Ω.

Now assume R(s) > 0 to be the ground state of HΓ and define the functions

x(s) := R(s) cosφ(s), y(s) := R(s) sinφ(s).

Interpreted as Euclidean coordinates, x and y define a closed curve in the plane.
In these coordinates the lowest eigenvalue λΓ of HΓ is

(3.4) λΓ =

∫
Ω

(
R′(s)2 + φ′(s)2R(s)2

)
ds∫

Ω
R(s)2 ds

=

∫
Ω

(
x′(s)2 + y′(s)2

)
ds∫

Ω
(x(s)2 + y(s)2) ds

.

We now define the orthogonal projections of the curve (x(s), y(s)) onto straight
lines through the origin:

(3.5) hβ(s) :=
(

sin β
− cosβ

)
·
(

x(s)
y(s)

)
= x(s) sinβ − y(s) cosβ.

We note that
hβ(φ−1(β)) = 0

and, by (3.3),

hβ(φ−1(β) + π − 2f(β)) = hβ(φ−1(β + π)) = 0.

This means that the quantity

(3.6) I(β) :=

∫
Ω

h′
β(s)2 ds∫

Ω
hβ(s)2 ds

,

which is the Rayleigh-Ritz quotient for the Laplacian on Ω with Dirichlet conditions
at φ−1(β) and φ−1(β) + π − 2f(β), can be estimated from below by

(3.7) I(β) ≥
(

1 +
2|f(β)|

π

)−2

.

Now we consider two cases: First, assume that there is no β0 for which I(β0) =
(1 + 2α/π)−2. It is clear that I(β) = 1 if β is a zero of f and we know that such
a zero exists. By continuity of I(β) in β we conclude that in this case I(β) >

(1 + 2α/π)−2 for all β ∈ Ω. Choosing first β = π/2 and then β = 0 yields∫
Ω

x′2 ds∫
Ω

x2 ds
≥ (1 + 2α/π)−2 and

∫
Ω

y′2 ds∫
Ω

y2 ds
≥ (1 + 2α/π)−2

,

such that λΓ ≥ (1 + 2α/π)−2 by (3.4).
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In the second case there is a β0 with I(β0) = (1 + 2α/π)−2, and by rotational
symmetry of the problem we can assume that β0 = 0, i.e.,

(3.8) I(0) =

∫
Ω

y′2 ds∫
Ω

y2 ds
= (1 + 2α/π)−2 .

Now put (3.5) and (3.6) into (3.7) and set β = ti to get∫
Ω

(−x′ sin ti + y′ cos ti)
2 ds ≥ (1 + 2α/π)−2

∫
Ω

(−x sin ti + y cos ti)
2 ds.

Using (3.8) this becomes

(3.9)
∫

Ω

x′2 ds ≥ (1 + 2α/π)−2

(∫
Ω

x2 ds +
2

tan ti

∫
Ω

(x′y′ − xy) ds

)
.

Because of the conditions on the distribution of the ti in Ω we can choose i such
that the second summand in the bracket on the right side of (3.9) is positive. Thus,

(3.10)
∫

Ω

x′2 ds ≥ (1 + 2α/π)−2
∫

Ω

x2 ds.

Lemma 3.1 now follows from the combination of (3.8) with (3.10). �

Proof of Theorem 2.3. Let {ti}i=1,...,n ⊂ Ω be the set of critical angles of Γ. Then
by the assumption of Theorem 2.3 this set also meets the conditions of Lemma 3.1.
Being critical angles, the ti’s satisfy f(ti) = 0. Thus α in Lemma 3.1 can be chosen
to be zero, and Theorem 2.3 follows. �

Proof of Theorem 2.1. To prove Theorem 2.1 we will derive estimates on the func-
tion f(t) as defined in (3.1) and then apply Lemma 3.1. It is obvious that we only
have to consider curves that are not covered by Theorem 2.3. This means that
our Γ has an interval larger than π

2 without critical angles. Recall that the critical
angles of Γ are just the zeroes of f . We will thus assume, without losing generality,
that t0 (with 0 < t0 < π

2 ) and π are zeroes of f with a change of sign and that
f(t) > 0 for t ∈ (t0, π). We define Ω0 := [t0, π]. Let Ω+ and Ω− be the sets of all
points t ∈ [0, t0) where f(t) is positive or negative, respectively. Let us now collect
some information on f :

First, we show that

(3.11)
∫

Ω

|f ′(t)| dt ≤ 2π.

To do so, we note that (φ−1)′ > 0 because we assumed φ′ > 0 earlier. By (3.1) this
means

f ′(t) + g′(t) > −1 for all t ∈ Ω.

But, applying (3.2) to this inequality, we also get

−f ′(t) + g′(t) > −1 for all t ∈ Ω.

Putting together the last two inequalities, we get

|f ′(t)| < 1 − g′(t) for all t ∈ Ω.

Integrating over Ω and keeping in mind the periodicity of g yields (3.11).
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Second, we note that for any ∆, t0 ∈ Ω

0 =
∫

Ω

f(t) sin(t + ∆) dt

=
∫ t0+π

t0

f(t) sin(t + ∆) dt +
∫ t0+2π

t0+π

f(t) sin(t + ∆) dt

= 2
∫ t0+π

t0

f(t) sin(t + ∆) dt.(3.12)

Third, let us assume that there is an interval [t1, t1 + π
2 ] ⊂ Ω0 with f(t) > α on

[t1, t1 + π
2 ] for some α ∈ R. Then

(3.13)
∫

Ω+

f(t) dt ≥ α and −
∫

Ω−

f(t) dt ≥ α.

This can be seen with the help of (3.12) via

0 =
∫ π

0

f(t) sin(t − t0) dt

=
∫

Ω+

f(t) sin(t − t0) dt +
∫

Ω−

f(t) sin(t − t0) dt +
∫

Ω0

f(t) sin(t − t0) dt

≥ −
∫

Ω+

f(t) dt + α

∫ t1+π/2

t1

sin(t − t0) dt

≥ −
∫

Ω+

f(t) dt + α

∫ π/2

0

sin(t) dt

= −
∫

Ω+

f(t) dt + α.

The corresponding inequality for Ω− is proven analogously, exploiting once again
(3.2).

Because f vanishes at the edges of Ω0 and because max
t∈Ω0

f(t) > α, it is clear that∫
Ω0

|f ′(t)| dt > 2α.

From (3.13) we conclude that the inequalities

max
t∈Ω+

f(t) ≥ α

|Ω+|
and max

t∈Ω−
|f(t)| ≥ α

|Ω−|
hold. Therefore∫

Ω

|f ′(t)| dt = 2

(∫
Ω0

|f ′(t)| dt +
∫

Ω+

|f ′(t)| dt +
∫

Ω−

|f ′(t)| dt

)

≥ 2
(

2α + 2
α

|Ω+|
+ 2

α

|Ω−|

)

> 4α

(
1 +

8
π

)
.(3.14)

In the last step we have used |Ω+|+ |Ω−| < π
2 . Comparing (3.14) with (3.11) shows

that
α <

π

2(1 + 8/π)
.
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We conclude that for any curve Γ we can can find a sequence {ti} that meets the
conditions of Lemma 3.1 for some α < π

2(1+8/π) , proving Theorem 2.1. �
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