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A UNIQUENESS RESULT OF KÄHLER RICCI FLOW
WITH AN APPLICATION

XU-QIAN FAN

(Communicated by Richard A. Wentworth)

Abstract. In this paper, we will study the problem of uniqueness of Kähler
Ricci flow on some complete noncompact Kähler manifolds and the conver-
gence of the flow on Cn with the initial metric constructed by Wu and Zheng.

1. Introduction

It is well known that the Ricci flow was initially introduced by Hamilton [7, 8]
and that the short time existence and uniqueness in the compact case were proved
therein. Letting (Mn, gαβ̄(x)) be a complete noncompact Kähler manifold, we will
consider the Kähler Ricci flow{

∂
∂tgαβ̄(x, t) = −Rαβ̄(x, t),
gαβ̄(x, 0) = gαβ̄(x),

(1.1)

where Rαβ̄(x, t) is the Ricci curvature with respect to gαβ̄(x, t). W.-X. Shi [13, 14]
proved the following short time existence for the above system. See Theorem 1.1
in [13] and Theorems 2.1 and 5.1 in [14].

Theorem 1.1. Let (Mn, gαβ̄(x)) be a complete noncompact Kähler manifold with
Riemannian curvature tensor bounded by K0. Then (1.1) has a solution gαβ̄(x, t) on
M × [0, T ] for some T (n, K0) which is a family of Kähler metrics on M satisfying

(1.2) C−1gαβ̄(x) ≤ gαβ̄(x, t) ≤ Cgαβ̄(x)

for all (x, t) ∈ M × [0, T ], where C is a constant depending only on n, K0 and T.

We want to apply a maximum principle to show that the above solution is unique
if the Ricci tensor has a potential with respect to the initial metric. More precisely,
we have the following:

Theorem 1.2. Let (Mn, gαβ̄(x)) be a complete noncompact Kähler manifold with
bounded Riemannian curvature tensor. Suppose there is a smooth function f(x) on
M such that

√
−1∂∂̄f = Ric, where Ric is the Ricci form of the metric gαβ̄(x).
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Suppose gαβ̄(x, t) and g̃αβ̄(x, t) are two solutions on M × [0, T ] to (1.1) with the
same initial metric gαβ̄(x) satisfying

(1.3) c−1gαβ̄(x) ≤ gαβ̄(x, t), g̃αβ̄(x, t) ≤ cgαβ̄(x)

for some constant c > 0 such that gαβ̄(x, t) and g̃αβ̄(x, t) are Kähler for all t ∈ [0, T ].
Then gαβ̄(x, t) = g̃αβ̄(x, t) on M × [0, T ].

Recently, Chen and Zhu [5] proved independently the uniqueness result for the
Ricci flow up to some time T assuming only the curvature is bounded at each time
t ∈ [0, T ] .

This paper is organized as follows. In Section 2, we will prove Theorem 1.2. In
Section 3, we will apply the result to study the convergence of Kähler Ricci flows
on Cn with the initial metrics constructed by Wu and Zheng [16].

2. The proof of Theorem 1.2

We need the following result about exhaustion functions, which is due to W.-X.
Shi; see Theorem 3.6 in [14].

Lemma 2.1. Suppose (Mn, gij(x)) is an n-dimensional complete noncompact Rie-
mannian manifold and its Riemannian curvature tensor {Rijkl} satisfies

(2.1) |Rijkl|2 ≤ k0

on M for some constant k0. Then there is a constant C1(n, k0) such that for any
fixed point x0 ∈ M, there is a smooth function ψ(x) ∈ C∞(M) satisfying⎧⎨⎩ C−1

1 [1 + r(x, x0)] ≤ ψ(x) ≤ C1[1 + r(x, x0)],
|∇ψ(x)| ≤ C1,
|∇i∇jψ(x)| ≤ C1

(2.2)

for all x ∈ M.

Now we will prove Theorem 1.2.

Proof of Theorem 1.2. For any fixed point x ∈ M , let

(2.3) u(x, t) =
∫ t

0

(
log

det(gαβ̄(x, τ))
det(gαβ̄(x))

− f(x)
)

dτ

for all t ∈ [0, T ]. One has{
∂
∂tu(x, t) = log det(gαβ̄(x,t))

det(gαβ̄(x)) − f(x),
u(x, 0) = 0.

(2.4)

Noting that Rαβ̄(x) = fαβ̄(x) and Rαβ̄(x, t) = −(log det(gij̄(x, t)))αβ̄, one has

(ut)αβ̄(x, t) = −Rαβ̄(x, t) + Rαβ̄(x) − fαβ̄(x)

= −Rαβ̄(x, t).

As in [2], let
Sαβ̄(x, t) = gαβ̄(x, t) − gαβ̄(x) − uαβ̄(x, t).

From ∂
∂tgαβ̄(x, t) = −Rαβ̄(x, t), one has

∂

∂t
Sαβ̄(x, t) =

∂

∂t
gαβ̄(x, t) − ∂

∂t
uαβ̄(x, t) = 0.
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So

(2.5)
∂

∂t
Sαβ̄(x, t) = 0 with Sαβ̄(x, 0) = 0.

Hence Sαβ̄(x, t) = 0. That is, gαβ̄(x, t) = gαβ̄(x) + uαβ̄(x, t).
Similarly, letting

v(x, t) =
∫ t

0

(
log

det(g̃αβ̄(x, τ))
det(gαβ̄(x))

− f(x)
)

dτ,

one has {
∂
∂tv(x, t) = log det(g̃αβ̄(x,t))

det(gαβ̄(x)) − f(x),
v(x, 0) = 0

(2.6)

with g̃αβ̄(x, t) = gαβ̄(x) + vαβ̄(x, t). Setting w = u − v, one has

(2.7) w(x, t) =
∫ t

0

(
log

det(gαβ̄(x, τ))
det(g̃αβ̄(x, τ))

)
dτ ≤ 2nT log c

for all (x, t) ∈ M × [0, T ], where c is the same as in (1.3), and{
∂
∂tw(x, t) = log det(gαβ̄(x)+uαβ̄(x,t))

det(gαβ̄(x)+vαβ̄(x,t)) ,

w(x, 0) = 0.
(2.8)

As in [3] (see the proof of Lemma 6.2 in [3]), one has

log
det(gαβ̄(x) + uαβ̄(x, t))
det(gαβ̄(x) + vαβ̄(x, t))

= log det(gαβ̄(x) + uαβ̄(x, t)) − log det(gαβ̄(x) + vαβ̄(x, t))

=
∫ 1

0

∂

∂s
log det(gαβ̄(x) + suαβ̄(x, t) + (1 − s)vαβ̄(x, t))ds

=
∫ 1

0

�(t,s)wds,

where �(t,s) is the Laplacian operator with respect to the Kähler metric

hαβ̄(x, t, s) = gαβ̄(x, t) + suαβ̄(x, t) + (1 − s)vαβ̄(x, t)

on M × [0, T ] × [0, 1]. That is, �(t,s)w(x, t) = hαβ̄(x, t, s)wαβ̄(x, t). So

(2.9)
∂

∂t
w(x, t) −

∫ 1

0

�(t,s)wds = 0

for all (x, t, s) ∈ M × [0, T ] × [0, 1]. From (1.3), one has for any s ∈ [0, 1],

c−1gαβ̄(x) ≤ sgαβ̄(x, t) + (1 − s)g̃αβ̄(x, t) ≤ cgαβ̄(x)

for all (x, t) ∈ M × [0, T ] × [0, 1]. That is equivalent to

(2.10) c−1gαβ̄(x) ≤ hαβ̄(x, t, s) ≤ cgαβ̄(x)

for all (x, t, s) ∈ M × [0, T ] × [0, 1]. Since the Riemannian curvature tensor with
respect to gαβ̄(x) is bounded, by Lemma 2.1, there is a real function ψ(x) ∈ C∞(M)
such that ⎧⎨⎩

µ−1(1 + r(x)) ≤ ψ(x) ≤ µ(1 + r(x)),
|∇ψ| ≤ µ,
|∇i∇jψ| ≤ µ

(2.11)
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for some constant µ > 1, where ∇ψ and ∇i∇jψ are the gradient and Hessian of ψ
with respect to gαβ̄(x). Since ψαβ̄ is a Hermitian symmetric (1, 1) tensor, by the
last inequality of (2.11), one has that at any point x ∈ M

(2.12)
(

inf
0�=ν∈T 1,0

x M

ψαβ̄(x)(ν, ν̄)
gαβ̄(x)(ν, ν̄)

)2

+
(

sup
0�=ν∈T 1,0

x M

ψαβ̄(x)(ν, ν̄)
gαβ̄(x)(ν, ν̄)

)2

≤ C(n)µ2

for some constant C(n) depending only on n. By (2.10), one has for any 0 �= ν ∈
T 1,0

x M , ∣∣∣∣ ψαβ̄(x)(ν, ν̄)
hαβ̄(x, t, s)(ν, ν̄)

∣∣∣∣ =
∣∣∣∣ψαβ̄(x)(ν, ν̄)
gαβ̄(x)(ν, ν̄)

∣∣∣∣ · ∣∣∣∣ gαβ̄(x)(ν, ν̄)
hαβ̄(x, t, s)(ν, ν̄)

∣∣∣∣
≤ c

∣∣∣∣ψαβ̄(x)(ν, ν̄)
gαβ̄(x)(ν, ν̄)

∣∣∣∣,
where c is the same as in (2.10). So there is another constant C(c, n, µ) such that⎧⎨⎩

C−1(1 + r(t,s)(x)) ≤ ψ(x) ≤ C(1 + r(t,s)(x)),
|∇(t,s)ψ|(t,s) ≤ C,
|�(t,s)ψ| ≤ C,

(2.13)

where r(t,s)(x), |∇(t,s)ψ|(t,s) and �(t,s)ψ are taken with respect to hαβ̄(x, t, s) for
all (t, s) ∈ [0, T ] × [0, 1]. Let W (x, t) = eλtψ(x), where λ will be chosen later. We
have

Wt = λeλtψ(x) and �(t,s)W (x, t) = eλt�(t,s)ψ

and (2.13) implies that
�(t,s)W (x, t) ≤ Ceλt,

where C is the constant in (2.13). Setting λ = C2 + 1 for example, one has

(2.14) Wt −�(t,s)W (x, t) > 0

for all (x, t, s) ∈ M × [0, T ] × [0, 1]. For any ε > 0, setting

θε(x, t) = w(x, t) − εW (x, t),

one has θε(x, t) < 0 for x tending to infinity because w is bounded for all (x, t) ∈
M × [0, T ] by (2.7). Hence if θε(x, t) > 0 somewhere, then θε(x, t) has a maximal
value at some point (x1, t1) ∈ M × [0, T ]. By the maximum principle, at (x1, t1),

0 ≤
(

∂

∂t
−�(t,s)

)
θε(x, t).

So by (2.9) and (2.14), one has

0 ≤ ∂

∂t
θε(x, t) −

∫ 1

0

�(t,s)θε(x, t)ds

= −ε

(
Wt −

∫ 1

0

�(t,s)W (x, t)ds

)
< 0.

This is a contradiction. Hence w(x, t) ≤ εW (x, t). Letting ε → 0, we have w(x, t) ≤
0, i.e., u ≤ v. By symmetry, we have u(x, t) = v(x, t). Therefore gαβ̄(x, t) =
g̃αβ̄(x, t). �
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The existence of the potential to the Ricci tensor is related to solving the corre-
sponding Poincaré-Lelong equation

√
−1∂∂̄u = Ric. This question was extensively

studied (see [9, 11, 10, 15, 6]). In particular, from Theorem 6.1 in [11] (see also The-
orem 5.1 in [10]) and Theorem 3.3 in [6], one has that if (Mn, gαβ̄(x)) is a complete
noncompact Kähler manifold of complex dimension n with nonnegative holomorphic
bisectional curvature and bounded scalar curvature R, then the Poincaré-Lelong
equation has a solution, provided either

(i)
∫ ∞
0

−
∫

Bo(t)
Rdt < ∞, or

(ii) the Ricci curvature Ricci(x) ≥ a ln ln(10+r(x))
(1+r2(x)) ln(10+r(x)) for some a > 268(n + 2)2

and all group homomorphisms from π1(M) to R are trivial; moreover the universal
covering space M̃ of M with the covering metric has no compact factors.

3. Convergence of some Kähler Ricci flows

As a consequence of Theorem 1.2, we will show that the rotational symmetry is
preserved under the Kähler-Ricci flow under a certain assumption. More precisely,
we have

Proposition 3.1. Let gαβ̄(x) be a complete Kähler metric on Cn which is rota-
tionally symmetric, i.e., U(n)−invariant, satisfying that the Riemannian curva-
ture tensor with respect to gαβ̄(x) is bounded. Suppose a family of Kähler metrics
gαβ̄(x, t) on Cn for t ∈ [0, T ] is a solution to (1.1) with the initial value gαβ̄(x) such
that (1.2) holds for some constant C and for all (x, t) ∈ Cn × [0, T ]. Then gαβ̄(x, t)
is also rotationally symmetric for all t ∈ [0, T ].

Proof. Let (z1, · · · , zn) be the standard coordinate on C
n. Then

gαβ̄(z, t) = 〈 ∂

∂zα
(z),

∂

∂z̄β
(z)〉t.

For any φ ∈ U(n), setting (y1, · · · , yn) = φ−1(z1, · · · , zn) and g̃ = φ∗g, which is
the pulled-back of g, one has

R̃αβ̄(y, t) = φ∗Ricci
(

∂

∂yα
(y),

∂

∂ȳβ
(y)

)
,

where R̃αβ̄(y, t) is the Ricci curvature with respect to g̃αβ̄(y, t). Since ∂
∂tgαβ̄ =

−Rαβ̄ , one has ∂
∂t g̃αβ̄ = −R̃αβ̄ . Since the initial metric g is rotationally symmetric,

i.e., g = φ∗g, one has that there is a function ϕ(z, z̄) such that gαβ̄ = ϕαβ̄, where
z ∈ Cn, and ϕ(z, z̄) = w(|z|2) for some smooth function w. See, for example, page
4 in [1]. So − log det(gαβ̄)

det(δαβ̄) is a potential of Ricci tensor, where δαβ̄ is the standard
metric on C

n. Since gαβ̄(x, t) is uniformly equivalent to gαβ̄(x) and gαβ̄(x) is
U(n)−invariant, one has that (1.2) is also true for g̃. By Theorem 1.2, we have
g(t) = φ∗g(t). That is, the solution g(x, t) is rotationally symmetric. �

From now until the end of the paper, we will study the Kähler Ricci flow with
the initial metric on Cn constructed by Wu and Zheng [16] and gij̄(z; c) will always
denote the metric that will be defined in (3.1).

For convenience, let us recall some part of the results in [16]. See Example 2 in
[16]. Let z = (z1, · · · , zn) be the standard coordinate on C

n, and

f =
R1−c − 1
(1 − c)r

,
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where R = 1 + r, r(z) = |z|2 and 0 < c < 1. Then for any fixed 0 < c < 1, the
Kähler metric

(3.1) gij̄(z; c) = f(r)δij + f ′(r)z̄izj

on Cn is complete with positive bisectional curvature. Moreover it has maximal
volume growth and quadratic curvature decay. The scalar curvature function R(z)
is given by

(3.2) R(z) = A + 2(n − 1)B +
1
2
n(n − 1)C,

where
A =

c

R2−c
, B =

1
f2Rr

(1 − f), C =
2

f2r
(f − R−c).

The distance function to the origin is given by

(3.3) s(z) =
∫ r

0

1
2
√

τ (1 + τ )c
dτ.

Let B0(s) be the geodesic ball centered at the origin with radius s with respect to
the metric gij̄(z; c), i.e., with radius

√
r with respect to the standard metric. Then

the volume of it with respect to gij̄(z; c) is given by Vo(s) = ωn(rf)n, where ωn is
the volume of unit ball in Cn with respect to the standard metric. In [17], Zheng
pointed out Rs2(z) ≤ cQ for 0 < c < 1/2, where Q is a constant depending only
on n, Vo(s)/(ωns2n) ≥ (1 − c)n for 0 < c < 1, with a sketch of the proof for these
facts. For convenience, we will modify slightly the statement and explain his idea
in greater detail.

Lemma 3.2. With the above notation, Vo(s) ≥ ωns2n(1 − c)n for 0 < c < 1, and
RR1−c ≤ (2n2 − n)c for 0 < c ≤ 1/2.

Proof. We will check the volume growth first. Setting u(r) = rf
s2 , one has

u′ = s−3(1 − c)−1R−cu1,

where
u1 = s(1 − c) − r−1/2R1− c

2 + r−1/2Rc/2.

We want to show u1 ≤ 0. First u1(0) = lim
r→0

Rc/2−R1−c/2

r1/2 = 0,

u′
1 = r−

3
2 u2,

where u2 = 1
2R− c

2 +
(
− 1

2 + c
2

)
R

c
2 − c

2R
c
2−1. Noting that u2(0) = 0 and

u′
2 = cR− c

2−2

[
− 1

4
R +

(
− 1

4
+

c

4
)
R1+ 3c

2 −
( c

4
− 1

2
)
Rc

]
= cR− c

2−2u3,

while u3(0) = 0 and u′
3(0) < 0 with u′′

3 < 0, one can get u1 ≤ 0 and u is non-
increasing. By (3.3), one has s ≤ 1

2

∫ r

0
τ

−1−c
2 dτ = 1

1−cr
1−c
2 as 0 < c < 1. So

u ≥ lim
r→∞

rf
s2 ≥ 1− c. Now we will check the curvature decay. Clearly A×R1−c ≤ c.

Since R−c ≤ f, one has

B × R1−c = f−2R−2cRcr−1(1 − f)
≤ Rcr−1(1 − f).(3.4)
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We want to show that Rcr−1(1 − f) is nonincreasing in r ∈ (0,∞) as 0 < c ≤ 1/2.

Letting B1 = Rcr−1(1 − f) = (1−c)rRc−R+Rc

(1−c)r2 , one has

B′
1 =

−(1 − c)Rcr + c(1 − c)r2Rc−1 − r + cRc−1r + 2R − 2Rc

(1 − c)r3
=

B2

(1 − c)r3

with B2(0) = 0;

B′
2 = (−1 + c + c2 − c3)Rc + (−c − 2c2 + 2c3)Rc−1 + (c2 − c3)Rc−2 + 1

with B′
2(0) = 0;

B′′
2 = Rc−3

[
(−c + c2 + c3 − c4)R2 + (c + c2 − 4c3 + 2c4)R + (−2c2 + 3c3 − c4)

]
= Rc−3B3

with B3(0) = 0;

B′
3 = 2(−c + c2 + c3 − c4)R + (c + c2 − 4c3 + 2c4)

with B′
3(0) = −c(1 − 3c + 2c2) ≤ 0 for 0 ≤ c ≤ 1/2; and

B′′
3 = −2c(1 − c − c2 + c3) ≤ 0.

So 2(n − 1)BR1−c ≤ (n − 1)c, because B1(0) = lim
r→0

(1−c)r−R1−c+1
(1−c)r2 = c

2 . Clearly

1
2
n(n − 1)CR1−c = n(n − 1)f−2R−2cr−1(f − R−c)R1+c

≤ n(n − 1)r−1R1+c(f − R−c).

Letting C1 = r−1R1+c(f − R−c), one has

C ′
1 =

(1 − c)R1+c − (1 + c)R + (1 + c)Rc − (1 − c)
(1 − c)r3

=
C2

(1 − c)r3

with C2(0) = 0, and

C ′
2 = (1 − c2)Rc − (1 + c) + c(1 + c)Rc−1

with C ′
2(0) = 0, while

C ′′
2 = c(1 − c2)Rc−1 − c(1 − c2)Rc−2 ≥ 0.

So C1 is nondecreasing in r. Since C1(∞) = c
1−c , we have

(3.5)
1
2
n(n − 1)CR1−c ≤ n(n − 1)

c

1 − c
.

By (3.2), (3.4) and (3.5), one can get the second part of the lemma. �

We will claim that the averages of the scalar curvature on the geodesic balls on
any fixed center are uniformly quadratic decay in the radii of the geodesic balls as
n ≥ 2. Since (1 − c)s2 ≤ rf = R1−c−1

1−c , one has

(1 − c)2

R1−c
≤ 1

1 + s2

for 0 < c < 1, and then

R ≤ c1

1 + s2
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for 0 < c ≤ 1/2, where c1 = (2n2−n)c
(1−c)2 . Since Vo(s) ≥ ωns2n(1 − c)n, by volume

comparison, one has, for n ≥ 2,

1
Vo(s)

∫
Bo(s)

R =
1

Vo(s)

∫ s

0

( ∫
∂Bo(t)

R
)

dt

≤ 1
Vo(s)

∫ s

0

∫
∂Bo(t)

c1

1 + t2
dt

≤ c1

1 + s2
+

2c1

s2n(1 − c)n

∫ s

0

t2n+1

(1 + t2)2
dt

≤ c2

1 + s2
,(3.6)

where c2 =
(
1 + 1

(n−1)(1−c)n

)
c1. Now we will show that, for n ≥ 2,

(3.7)
1

Vx(s)

∫
Bx(s)

R ≤ c̃

1 + s2

for 0 < c ≤ 1/2, x ∈ Cn, where c̃ = c23
2n

(1−c)n . For s ≥ r(x)/2, by Lemma 3.2 and
(3.6), one has

1
Vx(s)

∫
Bx(s)

R ≤ Vo(s + r)
Vx(s)

· 1
Vo(s + r)

∫
Bo(s+r)

R

≤ ωn(s + r)2n

ωns2n(1 − c)n
· 1
Vo(s + r)

∫
Bo(s+r)

R

≤ c̃

1 + s2
.

For s < r(x)/2, it is easy to see that (3.7) holds.
In [12], Ni and Tam proved the following result (see Theorem 1.3 in [12]).

Theorem 3.3. Let (Mn, gαβ̄(x)) be a complete noncompact manifold with nonneg-
ative holomorphic bisectional curvature such that its scalar curvature R0 is bounded
and satisfies

(3.8)
∫ ∞

0

−
∫

Bx(s)

R0ds ≤ C1

for some constant C1 and for all x. Then (1.1) has a long-time solution gαβ̄(x, t),
which has nonnegative holomorphic bisectional curvature for any t > 0. Moreover,
there is a function u(x, t) such that⎧⎨⎩

√
−1∂∂̄u(x, t) = Ric(gαβ̄(x, t)),

|∇u| ≤ C(n)C1,
R(x, t) + |∇u|2(x, t) ≤ supM R0 + (C(n)C1)2

for all (x, t).

So for any fixed T > 0, gαβ̄(x, t) is uniformly equivalent to gαβ̄(x) for all (x, t) ∈
Mn × [0, T ]. Hence by Proposition 3.1, (3.7) and Theorem 3.3, one has

Proposition 3.4. For any 0 < c ≤ 1/2, the Kähler Ricci flow with the initial metric
gij̄(z; c) has a long-time solution gij̄(z, t; c) which is rotationally symmetric for t ≥
0, and the scalar curvature has uniformly upper bound for all time t, moreover, the
potential of the Ricci tensor with respect to gij̄(z, t; c) is of at most linear growth.



A UNIQUENESS RESULT OF KÄHLER RICCI FLOW 297

The following theorem is due to Chau and Tam (see Theorem 1.1 or Theorem
4.3 in [4]).

Theorem 3.5. There exists a constant ς depending only on n such that, if Mn

is a complete noncompact Kähler manifold with bounded nonnegative holomorphic
bisectional curvature satisfying

(i)
1

Vx(r)

∫
Bx(r)

R ≤ ς

1 + r2

for all x ∈ M and for all r > 0; and
(ii) there exist a point p ∈ M and a sequence tk → ∞ such that 1

|vp|2tk

g(p, tk) are

uniformly equivalent to g(p, 0) at p, where vp is a fixed vector in T 1,0
p (M)

with |vp|0 = 1,
then the metrics 1

|vp|2tk

g(x, tk) subconverge uniformly in the C∞ topology in compact
sets to a complete Kähler flat metric on M. In particular, the universal covering
space of M is biholomorphic to Cn.

From Theorem 3.5, we have

Proposition 3.6. For 0 < c ≤ 1/2, n ≥ 2 and c̃ ≤ ς, where c̃, ς are the same as in
(3.7) and Theorem 3.5 respectively, there is a sequence {µk} such that µkg(z, tk; c)
converges uniformly in the C∞ topology in compact sets to the standard metric on
Cn up to a constant factor.

Proof. By Proposition 3.4 and Theorem 3.5, for 0 < c ≤ 1/2, n ≥ 2 and c̃ ≤ ς,
one has that there is a sequence {µk} such that µkg(z, tk; c) converges uniformly
in the C∞ topology in compact sets to a complete Kähler flat metric on Cn. Let
g(z; c) = lim

k→∞
µkg(z, tk; c). Since µkg(z, tk; c) is rotationally symmetric, it follows

that g(z; c) will also be. So as in [1], for any chosen c, there is a smooth function
w(r; c) on [0,∞) such that

gij̄(z; c) = wij̄(|z|2; c).
Letting s = log |z|2 and u(s) = w(es), one has

(3.9) gij̄(z; c) = e−su′(s)δij̄ + e−2sz̄izj(u′′(s) − u′(s))

and

(3.10) det(gij̄(z; c)) = e−ns(u′(s))n−1u′′(s).

Setting �(s) = − log det(gij̄(z; c)), one has

(3.11) Rij̄ = ∂i∂j̄�(s) = e−s�′(s)δij̄ + e−2sz̄izj(�′′(s) − �′(s)).

So at point z = (z1, 0, · · · , 0), one has

Rij̄ =

⎧⎨⎩
e−s�′′(s), i = i = 1,
e−s�′(s), i = j ≥ 2,
0, i �= j.

Since g(z; c) is flat, one has e−s�′(s) = e−s�′′(s) = 0. So from (3.10),

�(s) = − log det(gij̄(z; c)) = constant n.

This is equivalent to e−ns(u′(s))n−1u′′(s) = constant and then ((u′)n)′ = nλens for
some constant λ > 0. So (u′(s))n = λ(ens − λ1), where λ1 is a constant. By (3.9),
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considering i = j = 2, one has g22̄(z; c) = e−su′(s). Since g22̄(z; c) is well defined
at the origin, one has lim

s→−∞
u′(s) = 0. So −λλ1 = lim

s→−∞
(u′(s))n = 0, and then

λ1 = 0. Hence (u′)n = λens, i.e., u′ = λ1/nes. Therefore gij̄(z; c) = λ1/nδij̄ . This
completes the proof of the proposition. �
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