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LOG-LOG CONVEXITY AND BACKWARD UNIQUENESS

IGOR KUKAVICA

(Communicated by David S. Tartakoff)

Abstract. We study backward uniqueness properties for equations of the
form

u′ + Au = f.

Under mild regularity assumptions on A and f , it is shown that u(0) = 0 im-
plies u(t) = 0 for t < 0. The argument is based on α-log and log-log convexity.
The results apply to mildly nonlinear parabolic equations and systems with
rough coefficients and the 2D Navier-Stokes system.

1. Introduction

Backward uniqueness for evolution partial differential equations is a classical
problem initiated by Lax [L], and minimal regularity requirements under which
backward uniqueness holds are not known for many important partial differential
equations and systems. A basic question for an evolution equation written in a
form

u′ + Au = f(u)
is under which conditions u(T ) = 0 implies u(t) = 0 for t < T . Backward unique-
ness is substantially more difficult than forward uniqueness due to ill-posedness (in
general) of the backward evolution problem. Since it is impossible to survey the
large literature on this topic, we provide a short description of relevant work. There
are basically two methods addressing this problem. The first is based on logarithmic
convexity [AN1, AN2, A, BT, G, O] and the second on time-weighted inequalities
[P, LP, S]. The approach, based on logarithmic convexity and second-order inequal-
ities, was developed in [AN1]. The approach was substantially simplified by Ogawa
[O], who reduced a proof of backward uniqueness to establishing upper bounds on
the Dirichlet quotient Q(t) = (Au, u)/‖u‖2. Further simplifications and applica-
tions were given in [BT, CFNT, G, CFKM]; in particular, the important identity
(5) was established in [CFNT, G]. In summary, the most general known situation
for the backward uniqueness property is

‖f‖2 ≤ K(Au, u) + K‖u‖2

with a certain integrability assumption on K if K depends on t [G]. In our previous
paper [K] we have shown the connection between backward uniqueness and unique

Received by the editors November 1, 2004 and, in revised form, August 30, 2005.
2000 Mathematics Subject Classification. Primary 35B42, 35B41, 35K55, 35K15, 35G20.

Key words and phrases. Backward uniqueness, logarithmic convexity, Navier-Stokes equations.
The author was supported in part by the NSF grant DMS-0306586.

c©2007 American Mathematical Society

2415



2416 IGOR KUKAVICA

continuation. The paper [CFKM] used Dirichlet quotients extensively to study
backward behavior and Eulerian dynamics for the 2D Navier-Stokes equations.

In this paper, we introduce a log-Dirichlet quotient

Q̃(t) =
(Au(t), u(t))

‖u(t)‖2
(
log M2

0
‖u(t)‖2

)α ,

where M0 is a suitably large constant. While the classical Dirichlet quotient
measures exponential decay of ‖u(t)‖, the log-Dirichlet quotient quantifies
exp(−C|t|1/(1−α)) type decay of ‖u(t)‖ if α ∈ (0, 1) and exp(−Ce|t|) type decay
of ‖u(t)‖ if α = 1. The advantage of this quotient is that the differential inequality
for Q̃ contains an extra positive term on the left-hand side which is even quadratic
in Q̃ (see (6) below). Exploring this fact, we are able to treat nonlinear equations
with much rougher coefficients than allowed before (see Section 3 below for appli-
cations). Moreover, we are able to obtain a sharper result even in the classical
range (that is, a slight sublinearity is allowed when coefficients are not too irregu-
lar). We emphasize that the generality of the presentations allows applications to
higher-order evolution equations as well as systems. Section 2 contains the state-
ment and the proof of the main results. Section 3 contains three applications—a
parabolic nonlinear equation, a parabolic system and a theorem on boundedness of
log-Dirichlet quotients for differences of solutions of the 2D periodic Navier-Stokes
equations on the global attractor.

2. The main result

Let H be a real or complex Hilbert space with the scalar product (·, ·) and the
norm ‖ · ‖. Let A be a symmetric operator with the domain D(A) ⊆ H. Assume
that (Au, u) ≥ 0 for u ∈ D(A). Let u ∈ C([T0, 0], D(A)) ∩ C1([T0, 0], H) be a
solution of

u′ + Au = f

with f ∈ C([T0, 0], H), where the requirement u ∈ C([T0, 0], D(A)) means Au ∈
C([T0, 0], H). Denote

L(‖u‖) = log
M2

0

‖u‖2

(that is, L(x) = log(M2
0 /x2)), where M0 is any constant such that

M0 ≥ 2 sup
t∈[T0,0]

‖u(t)‖.

Note that L(‖u(t)‖) ≥ 1 for all t ∈ [T0, 0]. Our assumptions do not imply existence
of A1/2; however, it will be convenient to use the notation

‖A1/2v‖ = (Av, v)1/2, v ∈ D(A).

On f , which in applications depends on u, we assume

(1) ‖f‖ ≤ K1

L(‖u‖)β/2
‖A1/2u‖1−β‖Au‖β + K2L(‖u‖)α/2‖u‖

and

(2) Re(f, u) ≥ −K3L(‖u‖)α(2−β0)/2‖u‖2−β0‖A1/2u‖β0 − K4L(‖u‖)α‖u‖2
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for some α, β ∈ [0, 1], β0 ∈ [0, 2], and K1, K2, K3, K4 ≥ 0. Additionally, we assume

(3) K2
1 ≤ α

8
if β = 1. Note that the classical case corresponds to β = 0, β0 = 1, α = 0.

Theorem 2.1. Let u : [T0, 0] → H be as above. Then u(0) = 0 implies u(t) = 0
for all t ∈ [T0, 0].

Proof. For t ∈ [T0, 0], denote L̃(t) = L(‖u(t)‖). By continuity, it is sufficient to
assume ‖u(t)‖ �= 0 for t ∈ [T0, 0) and prove that ‖u(0)‖ �= 0. For this, we introduce
the log-Dirichlet quotient

Q̃(t) =
Q(t)

L(‖u‖)α
=

‖A1/2u‖2

‖u‖2L(‖u‖)α
=

‖A1/2u(t)‖2

‖u(t)‖2L̃(t)α
,

where Q(t) = ‖A1/2u‖2/‖u‖2 is the classical Dirichlet quotient [O, BT]. Note
that while Q(t) controls the exponential decay of ‖u(t)‖, we shall show that the
log-Dirichlet quotient controls exp(−C|t|1/(1−α)) type decay if α ∈ (0, 1), and
exp(−Ce|t|) type decay if α = 1.

Note that our assumptions imply

(4)
1
2

d

dt
(u, u) = Re(ut, u) = −(Au, u) + Re(f, u)

and
1
2

d

dt
(Au, u) = Re(ut, Au) = −(Au, Au) + Re(f, Au).

From here, we obtain the identity ([CFNT, G])

(5)
1
2
Q′(t) +

∥∥(
A − Q(t)I

)
w

∥∥2 = Re
(

f

‖u‖ ,
(
A − Q(t)I

)
w

)
, t ∈ [T0, 0),

where w = u/‖u‖, which can be verified by a direct calculation. Using the identity

Q̃′(t) =
Q′(t)

L̃(t)α
− α

Q(t)L̃′(t)

L̃(t)α+1

with

L̃′(t) = −
d
dt‖u‖2

‖u‖2
= 2Q(t) − 2

Re(f, u)
‖u‖2

we get

1
2
Q̃′(t)+

αQ̃(t)2

L̃(t)1−α
+

∥∥(
A − Q(t)I

)
w

∥∥2

L̃(t)α
=

Re(f, (A − Q(t)I)w)

‖u‖L̃(t)α
+

αQ̃(t) Re(f, u)

‖u‖2L̃(t)
,

t ∈ [T0, 0).

Using (f, (A − Q(t)I)w) ≤ ‖f‖‖(A − Q(t)I)w‖ on the first term on the right-hand
side and
αQ̃(t) Re(f, u)

‖u‖2L̃(t)
≤ αQ̃(t)‖f‖

‖u‖L̃(t)
≤ αQ̃(t)2

2L̃(t)1−α
+

α‖f‖2

2L̃(t)1+α‖u‖2
≤ αQ̃(t)2

2L̃(t)1−α
+

‖f‖2

2L̃(t)α‖u‖2

on the second, we obtain

Q̃′(t) +
αQ̃(t)2

L̃(t)1−α
+

∥∥(
A − Q(t)I

)
w

∥∥2

L̃(t)α
≤ 2‖f‖2

‖u‖2L̃(t)α
.(6)
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Therefore, by squaring (1) and applying ‖Au‖ ≤ ‖(A − Q(t)I)u‖ + Q(t)‖u‖,
2‖f‖2

‖u‖2L̃(t)α
≤ 4K2

1

L̃(t)α+β

‖A1/2u‖2−2β‖Au‖2β

‖u‖2
+ 4K2

2

≤ 8K2
1

L̃(t)α+β
Q(t)1−β

∥∥(
A − Q(t)I

)
w

∥∥2β +
8K2

1Q(t)1+β

L̃(t)α+β
+ 4K2

2 .

If β ∈ (0, 1), we use ab ≤ ap/p + bq/q with p = 1/β and q = 1/(1 − β). We obtain

2‖f‖2

‖u‖2L̃(t)α
≤ (1 − β)(8K2

1 )1/(1−β)Q̃(t)

L̃(t)β/(1−β)
+

β
∥∥(

A − Q(t)I
)
w

∥∥2

L̃(t)α

+
8K2

1Q(t)1+β

L̃(t)α+β
+ 4K2

2 .

The third term equals

8K2
1 Q̃(t)1+β

L̃(t)β(1−α)
=

(
αQ̃(t)2

L̃(t)1−α

)β
8K2

1 Q̃(t)1−β

αβ

≤ αβQ̃(t)2

L̃(t)1−α
+ (1 − β)

(
8K2

1

αβ

)1/(1−β)

Q̃(t).

Since L̃(t) ≥ 1, we get Q̃′(t) ≤ K5Q̃(t) + K6, where K5 = (1 − β)(8K2
1)1/(1−β)(1 +

α−β/(1−β)) and K6 = 4K2
2 , which implies

(7) sup
t∈[T0,0)

Q̃(t) < ∞.

If β = 0, all the above inequalities hold trivially. If β = 1, then we have

Q̃′(t) +
αQ̃(t)2

L̃(t)1−α
+

∥∥(
A − Q(t)I

)
w

∥∥2

L̃(t)α

≤ 8K2
1

L̃(t)1+α

∥∥(
A − Q(t)I

)
w

∥∥2 +
8K2

1 Q̃(t)2

L̃(t)1−α
+ 4K2

2 .

Since (3) holds if β = 1, we get Q̃′ ≤ K5Q̃ + K6 with K5 = 0 and K6 = 4K2
2 , and

(7) follows also in this case.
It remains to be checked that (7) implies that ‖u(0)‖ is nonzero. From (4), we

get
1
2

d
dt‖u‖2

L̃(t)α‖u‖2
+ Q̃(t) =

Re(f, u)

L̃(t)α‖u‖2
, t ∈ [T0, 0).

Using (2), we get
1
2

d
dt‖u‖2

L̃(t)α‖u‖2
+ Q̃(t) ≥ −K3Q(t)β0/2

L̃(t)αβ0/2
− K4 = −K3Q̃(t)β0/2 − K4.

Therefore,
1
2

d
dt‖u‖2

L̃(t)α‖u‖2
+ K7Q̃(t) ≥ −K8,(8)

where K7 = 1 + β0K3/2 and K8 = K4 + (2 − β0)K3/2.
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If α < 1, then we integrate (8) to obtain

L̃(t2)1−α ≤ L̃(t1)1−α + 2(1 − α)K7

∫ t2

t1

Q̃(τ ) dτ + 2(1 − α)K8(t2 − t1)

if T0 ≤ t1 ≤ t2 < 0, from which

log ‖u(t2)‖2

≥ 2 log M0 −
(

L̃(t1)1−α + 2(1 − α)K7

∫ t2

t1

Q̃(τ ) dτ + 2(1 − α)K8(t2 − t1)
)1/(1−α)

and using (7) we conclude that ‖u(0)‖ cannot vanish. If α = 1, then 1
2

d
dt (− log L̃(t))

≥ −K7Q̃(t) − K8, and we get

log ‖u(t2)‖2 ≥ log M2
0 − L̃(t1) exp

(
2K7

∫ t2

t1

Q̃(τ ) dτ + 2K8(t2 − t1)
)

(9)

for T0 ≤ t1 ≤ t2 < 0. �
Remark 2.2. It is easy to adjust the statement so that K1, K2, K3, and K4 depend
on t under suitable integrability conditions. We only need to require that K5, K6,
K7, and K8 are integrable on [0, T0].

Remark 2.3. Nonnegativity of A was not used in the preceding. Therefore, The-
orem 2.1 still holds by letting β = 1, β0 = 2, α = 1 in the assumptions and
substituting ‖A1/2u‖2 with (Au, u). Other cases can also be handled similarly.

Remark 2.4. The proof of Theorem 2.1 also gives a lower bound on the long term
decay of bounded solutions ‖u‖ on (0,∞). In particular, if α = 1, the proof implies
the boundedness of Q̃ for all t ≥ 0, and the decay estimate (9) follows.

3. Applications

In this section, we present examples of partial differential equations where The-
orem 2.1 applies.

3.1. A second-order evolution equation. First, consider a solution of
∂u

∂t
− ∆u + Wj(x, t)|u|θ∂ju + V (x, t)|u|θu = 0,

where u ∈ C1([0, T ], H2(Rn))∩C([0, T ], L2(Rn))∩L∞(Rn× [0, T ]) and where θ > 0
is arbitrary. By Theorem 2.1, if u(0) �= 0 and V ∈ L∞([0, T ], Lp(Rn)) and Wj ∈
L∞([0, T ], Lq(Rn)) for j = 1, . . . , n where p > n/2 and q > n, with an additional
condition p, q ≥ 2, then

u(t) �= 0, t ∈ (0, T ].
A similar statement can be obtained for higher-order parabolic equations. Let n ≥ 4
(the cases n = 1, 2, 3 are similar). It is sufficient to check the assumptions under the
restriction p ∈ (n/2, n) since other cases can be covered by a standard logarithmic
convexity argument. As n ≥ 4 and p ∈ (n/2, n), we may choose ε ∈ (0, θ) such that

1
n

<
1
p

+
ε

2
<

2
n

and estimate for every t ∈ [0, T ],

‖V |u|1+θ‖L2 ≤ Mθ−ε‖V ‖Lp‖u‖ε
L2‖u‖Lp̃ ,
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where M = ‖u‖L∞(Rn×[0,T ]) and 1/p + ε/2 + 1/p̃ = 1/2 and then interpolate

‖u‖Lp̃ ≤ C‖∇u‖1−γ
L2 ‖∆u‖γ

L2 ,

where γ = n/p + εn/2− 1, which gives (1). Other conditions and cases are checked
in a similar manner. We note that the equation Wj = 0, θ = 0 was treated
in [K] by reducing the backward uniqueness to a unique continuation theorem in
[E, EV] (however, the assumption n ≥ 5 should be added to the assumptions or a
requirement p ≥ 2 added for v ∈ C([T0, 0], Lp(Rn)) in [K, Corollary 2.3]).

3.2. A second-order parabolic system. Consider a solution of
∂ui

∂t
−∂k(aijkl(x, t)∂luj)+Wijk(x, t)|u|θ∂juk+Vik(x, t)|u|θuk = 0, i = 1, . . . , m,

where u = (u1, u2, . . . , um) ∈ C1([0, T ], H2(Rn)m)∩C([0, T ], L2(Rn)m)∩L∞(Rn ×
[0, T ]) and where θ > 0 is arbitrary. We assume that the coefficient tensor aijkl(x, t)
is bounded, C1, symmetric, and uniformly strictly elliptic. By Theorem 2.1, if
u(0) �= 0 and V ∈ L∞([0, T ], Lp(Rn)) and Wj ∈ L∞([0, T ], Lq(Rn)) for j = 1, . . . , n,
where p > n/2 and q > n with an additional assumption p, q ≥ 2, then

u(t) �= 0, t ∈ (0, T ].

Strictly speaking, Theorem 2.1 gives the statement if aijkl depends only on x. It is
easy to extend the statement to the general case as well.

3.3. 2D Navier-Stokes equation. Consider the Navier-Stokes system

∂tu − ∆u + u · ∇u + ∇p = f,

∇ · u = 0

with periodic boundary conditions on Ω = [0, 2π]2. Let H be the closure of{
v ∈ L2

per(Ω)2 : v is an Ω−periodic trigonometric polynomial,

∇ · v = 0 in Ω,

∫
Ω

v = 0
}

in the (real) Hilbert space L2
per(Ω)2. Then, under the condition f ∈ H (f is time-

independent), the equation possesses a global attractor

A =
{
u0 ∈ H : S(t)u0 exists for all t ∈ R, sup

t∈R

‖S(t)u0‖L2
per(Ω) < ∞

}
,

where S(t)u0 denotes a solution starting at u0 on its maximal interval of existence
(cf. [CF]). It is an open problem whether

sup
u1,u2∈A,u1 �=u2

‖∇(u1 − u2)‖2
L2

per(Ω)

‖u1 − u2‖2
L2

per(Ω)

< ∞.

By the proof of Theorem 2.1, we get the following statement.

Theorem 3.1. With the above assumptions, we have

sup
u1,u2∈A,u1 �=u2

‖∇(u1 − u2)‖2
L2

per(Ω)

‖u1 − u2‖2
L2

per(Ω) log(M2
0 /‖u1 − u2‖2

L2
per

)
< ∞,

where M0 = 4 supu0∈A ‖u0‖L2
per(Ω).
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The upper bound can be explicitly estimated in terms of ‖f‖L2
per

A similar state-
ment holds for the 2D Navier-Stokes equations in a smooth bounded domain.

References
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