LOG-LOG CONVEXITY AND BACKWARD UNIQUENESS

IGOR KUKAVICA

(Communicated by David S. Tartakoff)

Abstract

We study backward uniqueness properties for equations of the form $$
u^{\prime}+A u=f
$$

Under mild regularity assumptions on A and f, it is shown that $u(0)=0$ implies $u(t)=0$ for $t<0$. The argument is based on $\alpha-\log$ and $\log -\log$ convexity. The results apply to mildly nonlinear parabolic equations and systems with rough coefficients and the 2D Navier-Stokes system.

1. Introduction

Backward uniqueness for evolution partial differential equations is a classical problem initiated by Lax $[\mathrm{L}$, and minimal regularity requirements under which backward uniqueness holds are not known for many important partial differential equations and systems. A basic question for an evolution equation written in a form

$$
u^{\prime}+A u=f(u)
$$

is under which conditions $u(T)=0$ implies $u(t)=0$ for $t<T$. Backward uniqueness is substantially more difficult than forward uniqueness due to ill-posedness (in general) of the backward evolution problem. Since it is impossible to survey the large literature on this topic, we provide a short description of relevant work. There are basically two methods addressing this problem. The first is based on logarithmic convexity AN1, AN2, A, BT, G, O] and the second on time-weighted inequalities $[\mathrm{P}, \mathrm{LP}, \mathrm{S}]$. The approach, based on logarithmic convexity and second-order inequalities, was developed in AN1. The approach was substantially simplified by Ogawa [O], who reduced a proof of backward uniqueness to establishing upper bounds on the Dirichlet quotient $Q(t)=(A u, u) /\|u\|^{2}$. Further simplifications and applications were given in [BT, CFNT, G, CFKM] ; in particular, the important identity (5) was established in CFNT, G]. In summary, the most general known situation for the backward uniqueness property is

$$
\|f\|^{2} \leq K(A u, u)+K\|u\|^{2}
$$

with a certain integrability assumption on K if K depends on t [G]. In our previous paper [K] we have shown the connection between backward uniqueness and unique

[^0]continuation. The paper CFKM used Dirichlet quotients extensively to study backward behavior and Eulerian dynamics for the 2D Navier-Stokes equations.

In this paper, we introduce a log-Dirichlet quotient

$$
\widetilde{Q}(t)=\frac{(A u(t), u(t))}{\|u(t)\|^{2}\left(\log \frac{M_{0}^{2}}{\|u(t)\|^{2}}\right)^{\alpha}}
$$

where M_{0} is a suitably large constant. While the classical Dirichlet quotient measures exponential decay of $\|u(t)\|$, the log-Dirichlet quotient quantifies $\exp \left(-C|t|^{1 /(1-\alpha)}\right)$ type decay of $\|u(t)\|$ if $\alpha \in(0,1)$ and $\exp \left(-C e^{|t|}\right)$ type decay of $\|u(t)\|$ if $\alpha=1$. The advantage of this quotient is that the differential inequality for \widetilde{Q} contains an extra positive term on the left-hand side which is even quadratic in \widetilde{Q} (see (6) below). Exploring this fact, we are able to treat nonlinear equations with much rougher coefficients than allowed before (see Section 3 below for applications). Moreover, we are able to obtain a sharper result even in the classical range (that is, a slight sublinearity is allowed when coefficients are not too irregular). We emphasize that the generality of the presentations allows applications to higher-order evolution equations as well as systems. Section 2 contains the statement and the proof of the main results. Section 3 contains three applications-a parabolic nonlinear equation, a parabolic system and a theorem on boundedness of log-Dirichlet quotients for differences of solutions of the 2D periodic Navier-Stokes equations on the global attractor.

2. The main result

Let H be a real or complex Hilbert space with the scalar product (\cdot, \cdot) and the norm $\|\cdot\|$. Let A be a symmetric operator with the domain $D(A) \subseteq H$. Assume that $(A u, u) \geq 0$ for $u \in D(A)$. Let $u \in C\left(\left[T_{0}, 0\right], D(A)\right) \cap C^{1}\left(\left[T_{0}, 0\right], H\right)$ be a solution of

$$
u^{\prime}+A u=f
$$

with $f \in C\left(\left[T_{0}, 0\right], H\right)$, where the requirement $u \in C\left(\left[T_{0}, 0\right], D(A)\right)$ means $A u \in$ $C\left(\left[T_{0}, 0\right], H\right)$. Denote

$$
L(\|u\|)=\log \frac{M_{0}^{2}}{\|u\|^{2}}
$$

(that is, $L(x)=\log \left(M_{0}^{2} / x^{2}\right)$), where M_{0} is any constant such that

$$
M_{0} \geq 2 \sup _{t \in\left[T_{0}, 0\right]}\|u(t)\|
$$

Note that $L(\|u(t)\|) \geq 1$ for all $t \in\left[T_{0}, 0\right]$. Our assumptions do not imply existence of $A^{1 / 2}$; however, it will be convenient to use the notation

$$
\left\|A^{1 / 2} v\right\|=(A v, v)^{1 / 2}, \quad v \in D(A)
$$

On f, which in applications depends on u, we assume

$$
\begin{equation*}
\|f\| \leq \frac{K_{1}}{L(\|u\|)^{\beta / 2}}\left\|A^{1 / 2} u\right\|^{1-\beta}\|A u\|^{\beta}+K_{2} L(\|u\|)^{\alpha / 2}\|u\| \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{R e}(f, u) \geq-K_{3} L(\|u\|)^{\alpha\left(2-\beta_{0}\right) / 2}\|u\|^{2-\beta_{0}}\left\|A^{1 / 2} u\right\|^{\beta_{0}}-K_{4} L(\|u\|)^{\alpha}\|u\|^{2} \tag{2}
\end{equation*}
$$

for some $\alpha, \beta \in[0,1], \beta_{0} \in[0,2]$, and $K_{1}, K_{2}, K_{3}, K_{4} \geq 0$. Additionally, we assume

$$
\begin{equation*}
K_{1}^{2} \leq \frac{\alpha}{8} \tag{3}
\end{equation*}
$$

if $\beta=1$. Note that the classical case corresponds to $\beta=0, \beta_{0}=1, \alpha=0$.
Theorem 2.1. Let $u:\left[T_{0}, 0\right] \rightarrow H$ be as above. Then $u(0)=0$ implies $u(t)=0$ for all $t \in\left[T_{0}, 0\right]$.
Proof. For $t \in\left[T_{0}, 0\right]$, denote $\widetilde{L}(t)=L(\|u(t)\|)$. By continuity, it is sufficient to assume $\|u(t)\| \neq 0$ for $t \in\left[T_{0}, 0\right)$ and prove that $\|u(0)\| \neq 0$. For this, we introduce the log-Dirichlet quotient

$$
\widetilde{Q}(t)=\frac{Q(t)}{L(\|u\|)^{\alpha}}=\frac{\left\|A^{1 / 2} u\right\|^{2}}{\|u\|^{2} L(\|u\|)^{\alpha}}=\frac{\left\|A^{1 / 2} u(t)\right\|^{2}}{\|u(t)\|^{2} \widetilde{L}(t)^{\alpha}}
$$

where $Q(t)=\left\|A^{1 / 2} u\right\|^{2} /\|u\|^{2}$ is the classical Dirichlet quotient (O, BT. Note that while $Q(t)$ controls the exponential decay of $\|u(t)\|$, we shall show that the \log-Dirichlet quotient controls $\exp \left(-C|t|^{1 /(1-\alpha)}\right)$ type decay if $\alpha \in(0,1)$, and $\exp \left(-C e^{|t|}\right)$ type decay if $\alpha=1$.

Note that our assumptions imply

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}(u, u)=\mathbb{R e}\left(u_{t}, u\right)=-(A u, u)+\mathbb{R} e(f, u) \tag{4}
\end{equation*}
$$

and

$$
\frac{1}{2} \frac{d}{d t}(A u, u)=\mathbb{R e}\left(u_{t}, A u\right)=-(A u, A u)+\mathbb{R e}(f, A u)
$$

From here, we obtain the identity ([CFNT, G])

$$
\begin{equation*}
\frac{1}{2} Q^{\prime}(t)+\|(A-Q(t) I) w\|^{2}=\mathbb{R e}\left(\frac{f}{\|u\|},(A-Q(t) I) w\right), \quad t \in\left[T_{0}, 0\right) \tag{5}
\end{equation*}
$$

where $w=u /\|u\|$, which can be verified by a direct calculation. Using the identity

$$
\widetilde{Q}^{\prime}(t)=\frac{Q^{\prime}(t)}{\widetilde{L}(t)^{\alpha}}-\alpha \frac{Q(t) \widetilde{L}^{\prime}(t)}{\widetilde{L}(t)^{\alpha+1}}
$$

with

$$
\widetilde{L}^{\prime}(t)=-\frac{\frac{d}{d t}\|u\|^{2}}{\|u\|^{2}}=2 Q(t)-2 \frac{\mathbb{R e}(f, u)}{\|u\|^{2}}
$$

we get

$$
\frac{1}{2} \widetilde{Q}^{\prime}(t)+\frac{\alpha \widetilde{Q}(t)^{2}}{\widetilde{L}(t)^{1-\alpha}}+\frac{\|(A-Q(t) I) w\|^{2}}{\widetilde{L}(t)^{\alpha}}=\frac{\mathbb{R e}(f,(A-Q(t) I) w)}{\|u\| \widetilde{L}(t)^{\alpha}}+\frac{\alpha \widetilde{Q}(t) \mathbb{R e}(f, u)}{\|u\|^{2} \widetilde{L}(t)},
$$

Using $(f,(A-Q(t) I) w) \leq\|f\|\|(A-Q(t) I) w\|$ on the first term on the right-hand side and

$$
\frac{\alpha \widetilde{Q}(t) \mathbb{R} e(f, u)}{\|u\|^{2} \widetilde{L}(t)} \leq \frac{\alpha \widetilde{Q}(t)\|f\|}{\|u\| \widetilde{L}(t)} \leq \frac{\alpha \widetilde{Q}(t)^{2}}{2 \widetilde{L}(t)^{1-\alpha}}+\frac{\alpha\|f\|^{2}}{2 \widetilde{L}(t)^{1+\alpha}\|u\|^{2}} \leq \frac{\alpha \widetilde{Q}(t)^{2}}{2 \widetilde{L}(t)^{1-\alpha}}+\frac{\|f\|^{2}}{2 \widetilde{L}(t)^{\alpha}\|u\|^{2}}
$$

on the second, we obtain

$$
\begin{equation*}
\widetilde{Q}^{\prime}(t)+\frac{\alpha \widetilde{Q}(t)^{2}}{\widetilde{L}(t)^{1-\alpha}}+\frac{\|(A-Q(t) I) w\|^{2}}{\widetilde{L}(t)^{\alpha}} \leq \frac{2\|f\|^{2}}{\|u\|^{2} \widetilde{L}(t)^{\alpha}} \tag{6}
\end{equation*}
$$

Therefore, by squaring (1) and applying $\|A u\| \leq\|(A-Q(t) I) u\|+Q(t)\|u\|$,

$$
\begin{aligned}
\frac{2\|f\|^{2}}{\|u\|^{2} \widetilde{L}(t)^{\alpha}} & \leq \frac{4 K_{1}^{2}}{\widetilde{L}(t)^{\alpha+\beta}} \frac{\left\|A^{1 / 2} u\right\|^{2-2 \beta}\|A u\|^{2 \beta}}{\|u\|^{2}}+4 K_{2}^{2} \\
& \leq \frac{8 K_{1}^{2}}{\widetilde{L}(t)^{\alpha+\beta}} Q(t)^{1-\beta}\|(A-Q(t) I) w\|^{2 \beta}+\frac{8 K_{1}^{2} Q(t)^{1+\beta}}{\widetilde{L}(t)^{\alpha+\beta}}+4 K_{2}^{2}
\end{aligned}
$$

If $\beta \in(0,1)$, we use $a b \leq a^{p} / p+b^{q} / q$ with $p=1 / \beta$ and $q=1 /(1-\beta)$. We obtain

$$
\begin{aligned}
& \frac{2\|f\|^{2}}{\|u\|^{2} \widetilde{L}(t)^{\alpha}} \leq \frac{(1-\beta)\left(8 K_{1}^{2}\right)^{1 /(1-\beta)} \widetilde{Q}(t)}{\widetilde{L}(t)^{\beta /(1-\beta)}}+\frac{\beta\|(A-Q(t) I) w\|^{2}}{\widetilde{L}(t)^{\alpha}} \\
&+\frac{8 K_{1}^{2} Q(t)^{1+\beta}}{\widetilde{L}(t)^{\alpha+\beta}}+4 K_{2}^{2} .
\end{aligned}
$$

The third term equals

$$
\begin{aligned}
\frac{8 K_{1}^{2} \widetilde{Q}(t)^{1+\beta}}{\widetilde{L}(t)^{\beta(1-\alpha)}} & =\left(\frac{\alpha \widetilde{Q}(t)^{2}}{\widetilde{L}(t)^{1-\alpha}}\right)^{\beta} \frac{8 K_{1}^{2} \widetilde{Q}(t)^{1-\beta}}{\alpha^{\beta}} \\
& \leq \frac{\alpha \beta \widetilde{Q}(t)^{2}}{\widetilde{L}(t)^{1-\alpha}}+(1-\beta)\left(\frac{8 K_{1}^{2}}{\alpha^{\beta}}\right)^{1 /(1-\beta)} \widetilde{Q}(t)
\end{aligned}
$$

Since $\widetilde{L}(t) \geq 1$, we get $\widetilde{Q}^{\prime}(t) \leq K_{5} \widetilde{Q}(t)+K_{6}$, where $K_{5}=(1-\beta)\left(8 K_{1}^{2}\right)^{1 /(1-\beta)}(1+$ $\left.\alpha^{-\beta /(1-\beta)}\right)$ and $K_{6}=4 K_{2}^{2}$, which implies

$$
\begin{equation*}
\sup _{t \in\left[T_{0}, 0\right)} \widetilde{Q}(t)<\infty \tag{7}
\end{equation*}
$$

If $\beta=0$, all the above inequalities hold trivially. If $\beta=1$, then we have

$$
\begin{aligned}
\widetilde{Q}^{\prime}(t)+\frac{\alpha \widetilde{Q}(t)^{2}}{\widetilde{L}(t)^{1-\alpha}} & +\frac{\|(A-Q(t) I) w\|^{2}}{\widetilde{L}(t)^{\alpha}} \\
& \leq \frac{8 K_{1}^{2}}{\widetilde{L}(t)^{1+\alpha}}\|(A-Q(t) I) w\|^{2}+\frac{8 K_{1}^{2} \widetilde{Q}(t)^{2}}{\widetilde{L}(t)^{1-\alpha}}+4 K_{2}^{2}
\end{aligned}
$$

Since (3) holds if $\beta=1$, we get $\widetilde{Q}^{\prime} \leq K_{5} \widetilde{Q}+K_{6}$ with $K_{5}=0$ and $K_{6}=4 K_{2}^{2}$, and (7) follows also in this case.

It remains to be checked that (7) implies that $\|u(0)\|$ is nonzero. From (4), we get

$$
\frac{\frac{1}{2} \frac{d}{d t}\|u\|^{2}}{\widetilde{L}(t)^{\alpha}\|u\|^{2}}+\widetilde{Q}(t)=\frac{\mathbb{R e}(f, u)}{\widetilde{L}(t)^{\alpha}\|u\|^{2}}, \quad t \in\left[T_{0}, 0\right)
$$

Using (2), we get

$$
\frac{\frac{1}{2} \frac{d}{d t}\|u\|^{2}}{\widetilde{L}(t)^{\alpha}\|u\|^{2}}+\widetilde{Q}(t) \geq-\frac{K_{3} Q(t)^{\beta_{0} / 2}}{\widetilde{L}(t)^{\alpha \beta_{0} / 2}}-K_{4}=-K_{3} \widetilde{Q}(t)^{\beta_{0} / 2}-K_{4}
$$

Therefore,

$$
\begin{equation*}
\frac{\frac{1}{2} \frac{d}{d t}\|u\|^{2}}{\widetilde{L}(t)^{\alpha}\|u\|^{2}}+K_{7} \widetilde{Q}(t) \geq-K_{8} \tag{8}
\end{equation*}
$$

where $K_{7}=1+\beta_{0} K_{3} / 2$ and $K_{8}=K_{4}+\left(2-\beta_{0}\right) K_{3} / 2$.

If $\alpha<1$, then we integrate (8) to obtain

$$
\widetilde{L}\left(t_{2}\right)^{1-\alpha} \leq \widetilde{L}\left(t_{1}\right)^{1-\alpha}+2(1-\alpha) K_{7} \int_{t_{1}}^{t_{2}} \widetilde{Q}(\tau) d \tau+2(1-\alpha) K_{8}\left(t_{2}-t_{1}\right)
$$

if $T_{0} \leq t_{1} \leq t_{2}<0$, from which
$\log \left\|u\left(t_{2}\right)\right\|^{2}$
$\geq 2 \log M_{0}-\left(\widetilde{L}\left(t_{1}\right)^{1-\alpha}+2(1-\alpha) K_{7} \int_{t_{1}}^{t_{2}} \widetilde{Q}(\tau) d \tau+2(1-\alpha) K_{8}\left(t_{2}-t_{1}\right)\right)^{1 /(1-\alpha)}$
and using (77) we conclude that $\|u(0)\|$ cannot vanish. If $\alpha=1$, then $\frac{1}{2} \frac{d}{d t}(-\log \widetilde{L}(t))$ $\geq-K_{7} \widetilde{Q}(t)-K_{8}$, and we get

$$
\begin{equation*}
\log \left\|u\left(t_{2}\right)\right\|^{2} \geq \log M_{0}^{2}-\widetilde{L}\left(t_{1}\right) \exp \left(2 K_{7} \int_{t_{1}}^{t_{2}} \widetilde{Q}(\tau) d \tau+2 K_{8}\left(t_{2}-t_{1}\right)\right) \tag{9}
\end{equation*}
$$

for $T_{0} \leq t_{1} \leq t_{2}<0$.
Remark 2.2. It is easy to adjust the statement so that K_{1}, K_{2}, K_{3}, and K_{4} depend on t under suitable integrability conditions. We only need to require that K_{5}, K_{6}, K_{7}, and K_{8} are integrable on $\left[0, T_{0}\right]$.

Remark 2.3. Nonnegativity of A was not used in the preceding. Therefore, Theorem [2.1] still holds by letting $\beta=1, \beta_{0}=2, \alpha=1$ in the assumptions and substituting $\left\|A^{1 / 2} u\right\|^{2}$ with $(A u, u)$. Other cases can also be handled similarly.
Remark 2.4. The proof of Theorem 2.1 also gives a lower bound on the long term decay of bounded solutions $\|u\|$ on $(0, \infty)$. In particular, if $\alpha=1$, the proof implies the boundedness of \widetilde{Q} for all $t \geq 0$, and the decay estimate (9) follows.

3. Applications

In this section, we present examples of partial differential equations where Theorem 2.1 applies.
3.1. A second-order evolution equation. First, consider a solution of

$$
\frac{\partial u}{\partial t}-\Delta u+W_{j}(x, t)|u|^{\theta} \partial_{j} u+V(x, t)|u|^{\theta} u=0
$$

where $u \in C^{1}\left([0, T], H^{2}\left(\mathbb{R}^{n}\right)\right) \cap C\left([0, T], L^{2}\left(\mathbb{R}^{n}\right)\right) \cap L^{\infty}\left(\mathbb{R}^{n} \times[0, T]\right)$ and where $\theta>0$ is arbitrary. By Theorem 2.1, if $u(0) \neq 0$ and $V \in L^{\infty}\left([0, T], L^{p}\left(\mathbb{R}^{n}\right)\right)$ and $W_{j} \in$ $L^{\infty}\left([0, T], L^{q}\left(\mathbb{R}^{n}\right)\right)$ for $j=1, \ldots, n$ where $p>n / 2$ and $q>n$, with an additional condition $p, q \geq 2$, then

$$
u(t) \neq 0, \quad t \in(0, T]
$$

A similar statement can be obtained for higher-order parabolic equations. Let $n \geq 4$ (the cases $n=1,2,3$ are similar). It is sufficient to check the assumptions under the restriction $p \in(n / 2, n)$ since other cases can be covered by a standard logarithmic convexity argument. As $n \geq 4$ and $p \in(n / 2, n)$, we may choose $\epsilon \in(0, \theta)$ such that

$$
\frac{1}{n}<\frac{1}{p}+\frac{\epsilon}{2}<\frac{2}{n}
$$

and estimate for every $t \in[0, T]$,

$$
\left\|V|u|^{1+\theta}\right\|_{L^{2}} \leq M^{\theta-\epsilon}\|V\|_{L^{p}}\|u\|_{L^{2}}^{\epsilon}\|u\|_{L^{\tilde{p}}}
$$

where $M=\|u\|_{L^{\infty}\left(\mathbb{R}^{n} \times[0, T]\right)}$ and $1 / p+\epsilon / 2+1 / \widetilde{p}=1 / 2$ and then interpolate

$$
\|u\|_{L^{\tilde{p}}} \leq C\|\nabla u\|_{L^{2}}^{1-\gamma}\|\Delta u\|_{L^{2}}^{\gamma}
$$

where $\gamma=n / p+\epsilon n / 2-1$, which gives (11). Other conditions and cases are checked in a similar manner. We note that the equation $W_{j}=0, \theta=0$ was treated in K by reducing the backward uniqueness to a unique continuation theorem in [E, EV] (however, the assumption $n \geq 5$ should be added to the assumptions or a requirement $p \geq 2$ added for $v \in C\left(\left[T_{0}, 0\right], L^{p}\left(\mathbb{R}^{n}\right)\right)$ in \mathbb{K}, Corollary 2.3]).
3.2. A second-order parabolic system. Consider a solution of
$\frac{\partial u_{i}}{\partial t}-\partial_{k}\left(a_{i j k l}(x, t) \partial_{l} u_{j}\right)+W_{i j k}(x, t)|u|^{\theta} \partial_{j} u_{k}+V_{i k}(x, t)|u|^{\theta} u_{k}=0, \quad i=1, \ldots, m$, where $u=\left(u_{1}, u_{2}, \ldots, u_{m}\right) \in C^{1}\left([0, T], H^{2}\left(\mathbb{R}^{n}\right)^{m}\right) \cap C\left([0, T], L^{2}\left(\mathbb{R}^{n}\right)^{m}\right) \cap L^{\infty}\left(\mathbb{R}^{n} \times\right.$ $[0, T])$ and where $\theta>0$ is arbitrary. We assume that the coefficient tensor $a_{i j k l}(x, t)$ is bounded, C^{1}, symmetric, and uniformly strictly elliptic. By Theorem 2.1 if $u(0) \neq 0$ and $V \in L^{\infty}\left([0, T], L^{p}\left(\mathbb{R}^{n}\right)\right)$ and $W_{j} \in L^{\infty}\left([0, T], L^{q}\left(\mathbb{R}^{n}\right)\right)$ for $j=1, \ldots, n$, where $p>n / 2$ and $q>n$ with an additional assumption $p, q \geq 2$, then

$$
u(t) \neq 0, \quad t \in(0, T] .
$$

Strictly speaking, Theorem 2.1 gives the statement if $a_{i j k l}$ depends only on x. It is easy to extend the statement to the general case as well.
3.3. 2D Navier-Stokes equation. Consider the Navier-Stokes system

$$
\begin{aligned}
& \partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=f \\
& \nabla \cdot u=0
\end{aligned}
$$

with periodic boundary conditions on $\Omega=[0,2 \pi]^{2}$. Let H be the closure of

$$
\begin{aligned}
& \left\{v \in L_{\mathrm{per}}^{2}(\Omega)^{2}: v \text { is an } \Omega\right. \text {-periodic trigonometric polynomial, } \\
& \left.\qquad \nabla \cdot v=0 \text { in } \Omega, \int_{\Omega} v=0\right\}
\end{aligned}
$$

in the (real) Hilbert space $L_{\text {per }}^{2}(\Omega)^{2}$. Then, under the condition $f \in H$ (f is timeindependent), the equation possesses a global attractor

$$
\mathcal{A}=\left\{u_{0} \in H: S(t) u_{0} \text { exists for all } t \in \mathbb{R}, \sup _{t \in \mathbb{R}}\left\|S(t) u_{0}\right\|_{L_{\mathrm{per}}^{2}(\Omega)}<\infty\right\}
$$

where $S(t) u_{0}$ denotes a solution starting at u_{0} on its maximal interval of existence (cf. CF$]$). It is an open problem whether

$$
\sup _{u_{1}, u_{2} \in \mathcal{A}, u_{1} \neq u_{2}} \frac{\left\|\nabla\left(u_{1}-u_{2}\right)\right\|_{L_{\text {per }}^{2}(\Omega)}^{2}}{\left\|u_{1}-u_{2}\right\|_{L_{\text {per }}^{2}(\Omega)}^{2}}<\infty
$$

By the proof of Theorem 2.1, we get the following statement.
Theorem 3.1. With the above assumptions, we have

$$
\sup _{u_{1}, u_{2} \in \mathcal{A}, u_{1} \neq u_{2}} \frac{\left\|\nabla\left(u_{1}-u_{2}\right)\right\|_{L_{\text {per }}^{2}(\Omega)}^{2}}{\left\|u_{1}-u_{2}\right\|_{L_{\text {per }}^{2}(\Omega)}^{2} \log \left(M_{0}^{2} /\left\|u_{1}-u_{2}\right\|_{L_{\text {per }}^{2}}^{2}\right)}<\infty
$$

where $M_{0}=4 \sup _{u_{0} \in \mathcal{A}}\left\|u_{0}\right\|_{L_{\text {per }}^{2}(\Omega)}$.

The upper bound can be explicitly estimated in terms of $\|f\|_{L_{\text {per }}^{2}}$ A similar statement holds for the 2D Navier-Stokes equations in a smooth bounded domain.

References

[A] S. Agmon, Unicité et convexité dans les problèmes différentiels, Séminaire de Mathématiques Supérieures, No. 13 (Eté, 1965), Les Presses de l'Université de Montréal, Montreal, Que., 1966. MR0252808 (40:6025)
[AN1] S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math. 16 (1963), 121-239. MR0155203 (27:5142)
[AN2] S. Agmon and L. Nirenberg, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space, Comm. Pure Appl. Math. 20 (1967), 207-229. MR 0204829 (34:4665)
[BT] C. Bardos and L. Tartar, Sur l'unicité rétrograde des équations paraboliques et quelques questions voisines, Arch. Rational Mech. Anal. 50 (1973), 10-25. MR0338517|(49:3281)
[CF] P. Constantin and C. Foias, "Navier-Stokes Equations Chicago," Lectures in Mathematics, Chicago/London, 1988. MR972259 (90b:35190)
[CFKM] P. Constantin, C. Foias, I. Kukavica, and A. J. Majda, Dirichlet quotients and 2D periodic Navier-Stokes equations, J. Math. Pures Appl. 76 (1997), 125-153. MR1432371 (97m:35200)
[CFNT] P. Constantin, C. Foias, B. Nicolaenko, R. Temam, Spectral barriers and inertial manifolds for dissipative partial differential equations, J. Dynam. Diff. Eq. 1 (1989), 45-73. MR1010960 (90i:35234)
[E] L. Escauriaza, Carleman inequalities and the heat operator, Duke Math. J. 104 (2000), 113-127. MR 1769727 (2001m:35135)
[EV] L. Escauriaza and L. Vega, Carleman inequalities and the heat operator. II, Indiana Univ. Math. J. 50 (2001), 1149-1169. MR1871351 (2003b:35088)
[G] J.-M. Ghidaglia, Some backward uniqueness results, Nonlinear Anal. 10 (1986), 777-790. MR851146 (87m:34083)
[K] I. Kukavica, Backward uniqueness for solutions of linear parabolic equations, Proc. Amer. Math. Soc. 132 (2004), 1755-1760. MR2051137 (2005f:35128)
[L] P.D. Lax, A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations, Canad. J. Math. 9 (1956), 747-766. MR 0086991 (19:281a)
[LP] M. Lees and M.H. Protter, Unique continuation for parabolic differential equations and inequalities, Canad. J. Math. 28 (1961), 369-382. MR.0140840 (25:4254)
[O] H. Ogawa, Lower bounds for solutions of differential inequalities in Hilbert space, Proc. Amer. Math. Soc. 16 (1965), 1241-1243. MR0185291 (32:2759)
[P] M.H. Protter, Properties of solutions of parabolic equations and inequalities, Canad. J. Math. 13 (1961), 331-345. MR0153982 (27:3943)
[S] J. Serrin, The initial value problem for the Navier-Stokes equations, 1963 Nonlinear Problems (Proc. Sympos., Madison, Wis. pp. 69-98) Univ. of Wisconsin Press, Madison, Wis. MR0150444 (27:442)

Department of Mathematics, University of Southern California, Los Angeles, CalIFORNIA 90089

E-mail address: kukavica@usc.edu

[^0]: Received by the editors November 1, 2004 and, in revised form, August 30, 2005.
 2000 Mathematics Subject Classification. Primary 35B42, 35B41, 35K55, 35K15, 35G20.
 Key words and phrases. Backward uniqueness, logarithmic convexity, Navier-Stokes equations.
 The author was supported in part by the NSF grant DMS-0306586.

