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DECOMPOSING REPRESENTATIONS OF FINITE GROUPS
ON RIEMANN-ROCH SPACES

DAVID JOYNER AND AMY KSIR

(Communicated by Michael Stillman)

Abstract. If G is a finite subgroup of the automorphism group of a projective
curve X and D is a divisor on X stabilized by G, then we compute a simplified
formula for the trace of the natural representation of G on the Riemann-Roch
space L(D), under the assumption that L(D) is “rational”, D is nonspecial,
and the characteristic is “good”. We discuss the partial formulas that result

if L(D) is not rational.

1. Introduction

Let X be a smooth projective (irreducible) curve over an algebraically closed
field k of characteristic p ≥ 0 and let G be a finite group of automorphisms of X
over k. We assume throughout this paper that either p = 0 or p does not divide the
order of the group G. If D is a divisor of X that is stable under the action of G,
then G acts on the Riemann-Roch space L(D). We are interested in decomposing
this representation into irreducible components.

This question was originally addressed by Hurwitz, in the case where D was the
canonical divisor and G was cyclic, over k = C. Chevalley and Weil expanded this
result to any finite G [CW]. Since then further work has been done by Ellingsrud
and Lønsted [EL], Kani [Ka], Nakajima [N], Köck [Ko], and Borne [B]. In the
case where D is a nonspecial divisor, an equivariant Riemann-Roch formula has
been given for the character of L(D) (see for example [B]), giving the desired
decomposition.

In this paper, we use a more concrete approach to the problem and end up
with a simpler and more explicit formula for the decomposition of L(D), but under
slightly stronger hypotheses. First of all, we work only over “good” characteristic
(as described above), while Borne’s formula holds more generally. Secondly, our
formula gives the complete decomposition of L(D) when it is “rational,” and partial
information otherwise. For many groups, such as the symmetric groups Sn, or any
other group all of whose characters have values in Q, the rationality condition is
automatic. For other groups the rationality of L(D) may depend on D. We give
several examples to illustrate different types of rationality behavior.
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Our approach is to consider quotients of X by cyclic subgroups of G and com-
pare Riemann-Roch spaces of divisors on these quotient curves. Recall that the
characters of irreducible representations over C form an orthonormal basis for the
space of functions on the set of conjugacy classes of elements of G. It is well known
that, in a similar way, the characters of irreducible representations over Q form an
orthonormal basis for the space of functions on the set of conjugacy classes of cyclic
subgroups of G ([Se], §13.1). Because we are using cyclic subgroups as our tool, they
give us the coarser information of a decomposition into irreducible Q[G]-modules
rather than irreducible C[G]-modules. If L(D) does not have a Q[G]-module struc-
ture, a näıve application of our formula will give the correct multiplicity for any
character with rational values, and the average multiplicity over a Galois orbit for
the others.

One motivation for seeking such a decomposition formula comes from coding
theory. The construction of algebraic geometry codes uses the Riemann-Roch space
L(D) of a divisor on a curve defined over a finite field. Automorphisms of L(D)
may provide more efficient encoding and storage of information, for some algebraic
geometry codes. See [JT] for more background on algebraic geometry codes and
automorphisms of Riemann-Roch spaces.

In Section 2, we apply the method described above in the case where D is the
pullback of a divisor on X/G, and obtain our main results: a complete decompo-
sition of L(D) if L(D) has a Q[G]-module structure, and its “Galois average” if
not. In Section 3, we extend to the case that D is not necessarily a pullback. In
this case we use the previously established equivariant Riemann-Roch formula (see
for example [B]) which expresses L(D) in terms of the equivariant degree of D and
the ramification module of the cover, which does not depend on D. Our results
from Section 2 then give us a simple formula for the ramification module, when
it has a Q[G]-module structure, or its “Galois average” when it does not. This
simple formula for the multiplicity of a Q[G]-module in the ramification module
has also been obtained by Köck [Ko] using other methods. In Section 4, we give
some examples.

The authors would like to thank Bernhard Köck for many helpful discussions
while preparing this paper, and an anonymous reviewer for several excellent sug-
gestions.

2. Decomposition of L(D) when D is a pullback

We start with some definitions and notation.
Let X be a smooth projective irreducible curve over an algebraically closed field

k of characteristic p ≥ 0 and let G be a finite group of automorphisms of X over
k. We assume that either p = 0 or p does not divide the order of the group G.
This assumption will guarantee both that the cover π : X → Y = X/G is tamely
ramified and that all k[G]-modules are semisimple. For any point P ∈ X(k), let
GP be the decomposition group at P (i.e., the subgroup of G fixing P ); since
π : X → Y = X/G is tamely ramified, this group GP will be cyclic.

Let 〈G〉 denote the set of conjugacy classes of cyclic subgroups of G. For each
class in 〈G〉 we choose a representative cyclic subgroup H�, � = 1, . . . , M , and
partially order them so that |Hi| ≤ |Hj | if i ≤ j. For each branch point of the
cover π : X → Y , the inertia groups at the ramification points above that branch
point will be cyclic and conjugate to each other. For each � > 1, let R� denote the
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number of branch points in Y above which the inertia groups are conjugate to H�.
(R1 may be set to 0; it does not play a role in the formula.)

Let G∗
Q denote the set of isomorphism classes of irreducible Q[G]-modules. By

results in ([Se], §13.1, §12.4), this set has the same number of elements, M , as
〈G〉. For each class in G∗

Q, choose a representative irreducible Q[G]-module Vj ,
j = 1, . . . , M , and denote its character by χj . The character table of G over Q is
a square matrix with rows labelled by G∗

Q and columns labelled by 〈G〉. The rows
are linearly independent (as Q-class functions), so in fact the character table is an
invertible matrix.

Let µ be the least common multiple of the orders of the elements of G, and let
F be a finite abelian extension of Q containing the µth roots of unity. Then every
irreducible F [G]-module is absolutely irreducible (irreducible over C), so that the
character table of G over F is the same as the character table for G over C ([Se],
p. 94). Let Vj be an irreducible Q[G]-module; then Vj ⊗Q[G] F [G] decomposes
into irreducible F [G]-modules. The Galois group of F over Q permutes the com-
ponents transitively, so each must have the same multiplicity (the Schur index of
the representation Vj) and the same dimension. We write

(1) Vj ⊗Q[G] F [G] � mj

dj⊕
r=1

Wjr,

where mj is the Schur index and the Wjr’s are irreducible F [G]-modules. Note
that dimQ Vj = dimF (Vj ⊗Q[G] F [G]) = mjdj dimF Wjr for all r. Let χjr denote
the character of Wjr.

Now we will use the technique described in the introduction to prove the following
theorem. The proof is similar to the proof of Theorem 2.3 in [Ks]. Recall that a
divisor D is nonspecial if L(K − D) = {0}.
Theorem 1. Let D = π∗(D0) be a nonspecial divisor on X which is a pullback of
a divisor D0 on Y = X/G, and assume that the (Brauer) character of L(D) is the
character of a Q[G]-module L(D)Q. Then for each irreducible Q[G]-module Vj, its
multiplicity in L(D)Q is given by

(2) nj =
1

m2
jdj

(
dim(Vj)(deg(D0) + 1 − gY ) −

M∑
�=1

(dim(Vj) − dim(V H�
j ))

R�

2

)
.

Proof. We consider the quotients X/H� of X by cyclic subgroups H�. The mor-
phism π : X → Y factors through these quotients, so on each X/H� there is a
pull-back divisor D� of D0. Let π� denote the covering π� : X → X/H�.

First, note that our assumption that D is nonspecial means that for any quotient
X/H�, the pullback D� of D0 to X/H� is also nonspecial. This is because

KX −D = π∗
� (KX/H�

) + Ram(X/H�)− π∗
� (D�) = π∗

� (KX/H�
−D�) + Ram(X/H�),

where Ram(X/H�) is the ramification divisor of the covering π�. Any nontrivial
element of L(KX/H�

− D�) would pull back to X to give a nontrivial element of
L(KX − D − Ram(X/H�)). Since Ram(X/H�) is effective, this would also give a
nontrivial element of L(KX−D), contradicting our assumption that D is nonspecial.

Now we decompose L(D)Q as

(3) L(D)Q �
M⊕

j=1

njVj .
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For each H� in 〈G〉, consider the dimension of the piece of this module fixed by
H�. Since the elements of L(D) fixed by H� are exactly the elements of L(D�),
dimQ L(D)H�

Q = dimk L(D)H� = dimk L(D�) and we get an equation for each �:

(4) dimk L(D�) =
M∑

j=1

nj dimQ(V H�
j ), 1 ≤ � ≤ M.

This gives us a system of M equations in the M unknowns nj . We need to show
that the matrix (dim(V H�

j ))j,� is invertible, so this system has a unique solution,
and that the above equation is the claimed solution.

First let us consider the matrix (dim(V H�
j ))j,�. Each matrix entry is equal to the

multiplicity of the trivial representation 1 of H� in the restricted representation of
H� on Vj . This is the inner product of characters 〈ResG

H�
χj ,1〉, which is defined as

(5) dim V H�
j =

1
|H�|

∑
a∈H�

χj(a).

Thus each column of the matrix (dim(V H�
j ))j,� is a sum of columns of the character

table of G over Q. Each element a in H� generates either all of H� or a cyclic
subgroup of lower order, hence earlier in the list 〈G〉. Thus if we write our matrix
in terms of the basis of columns of this character table, we get a lower triangular
matrix. Since at least one element of H� generates all of H�, this lower triangular
matrix has nonzero entries on the diagonal. This implies that our matrix is also
invertible.

Now it remains to verify that our equation is the correct solution to (4).
Note that

(6) dim L(D�) =
|G|
|H�|

deg(D0) + 1 − g(X/H�),

for 1 ≤ � ≤ M , by the Riemann-Roch theorem and the hypothesis that D� is
nonspecial.

We will now substitute (2) into (4) and verify that the result agrees with (6), for
each 1 ≤ � ≤ M . The argument is similar to that in [Ks].

Plugging (2) into (4) gives

M∑
j=1

njdim(V
H�

j ) = (deg(D0) + 1 − gY )

M∑
j=1

1

m2
jdj

dim(V
H�

j )dim(Vj)

−
M∑

i=1

(
M∑

j=1

1

m2
jdj

[dim(V
H�
j )dim(Vj) − dim(V

H�
j )dim(V Hi

j )]
Ri

2

)
.

Note that

(7) dim(V H�
j ) = 〈ResG

H�
χj ,1〉 = mj

dj∑
r=1

〈ResG
H�

χjr,1〉 = mj

dj∑
r=1

〈χjr, IndG
H�

1〉,
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using (1) and Frobenius reciprocity. This gives us
M∑

j=1

1
m2

jdj
dimV H�

j dimVj =
M∑

j=1

dj∑
r=1

dim Wjr〈ResG
H�

χjr,1〉

=
1

|H�|
∑

a∈H�

M∑
j=1

dj∑
r=1

χjr(e)χjr(a).

(8)

The last part of this is the sum over all irreducible F -characters of G, so the last
expression is in fact the inner product of two columns of the character table for G
over F . This inner product will be zero unless a = e, so the sum becomes

(9)
1

|H�|

M∑
j=1

dj∑
r=1

χjr(e)2 =
|G|
|H�|

.

We would like to do a similar simplification of

(10)
M∑

j=1

1
m2

jdj
dim(V H�

j ) dim(V Hi
j )

using (7) twice. The induced representation IndG
Hi

1 corresponds to the permutation
action of G on the cosets of Hi, and thus has a Q[G]-module structure as well as an
F [G]-module structure. It can be decomposed into irreducible F [G]-modules, such
that for each j the multiplicities 〈χjr, IndG

Hi
1〉 of Wjr do not depend on r. Using

that fact, Frobenius reciprocity, and the definition of the Schur inner product, we
have

M∑
j=1

1
m2

jdj
dim(V H�

j ) dim(V Hi
j )

=
M∑

j=1

1
dj

dj∑
r=1

〈ResG
H�

χjr,1〉
dj∑

s=1

〈χjs, IndG
Hi

1〉

=
M∑

j=1

dj∑
r=1

〈ResG
H�

χjr,1〉〈χjr, IndG
Hi

1〉

=
M∑

j=1

dj∑
r=1

〈ResG
H�

χjr,1〉〈ResG
Hi

χjr,1〉

=
1

|H�|
1

|Hi|
∑

a∈H�

∑
b∈Hi

M∑
j=1

dj∑
r=1

χjr(a)χjr(b).

(11)

Again, this last sum is an inner product of columns of the character table of G over
k, so will be zero unless a and b are in the same conjugacy class. Let CG(a) denote
the conjugacy class of a in G. We end up with

M∑
j=1

1
m2

jdj
dim(V H�

j ) dim(V Hi
j ) =

1
|H�||Hi|

∑
a∈H�

#(Hi ∩ CG(a))
M∑

j=1

dj∑
r=1

χjr(a)2

= |H�\G/Hi|,

(12)
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the number of double cosets. Therefore, we get

M∑
j=1

nj dimV
H�

j = (deg(D0) + 1 − gY )
|G|
|H�|

−
M∑

i=1

(
|G|
|H�|

− |Hi\G/H�|)
Ri

2

= (deg(D0) + 1 − gY )
|G|
|H�|

+ 1 +
|G|
|H�|

(gY − 1) − gX/H�

= deg(D0)
|G|
|H�|

+ 1 − gX/H�
,

where the last equalities come from applying the Hurwitz formula to the cover
X/H� → Y (see [Ks] for details). This is (6), as desired. �

Theorem 2. Let D = π∗(D0) be a nonspecial divisor on X which is a pullback of
a divisor D0 on Y = X/G and assume that the (Brauer) character of L(D) is the
character of a Q[G]-module. Then for each absolutely irreducible character of G,
the multiplicity of the corresponding module W in L(D) is given by

(13) n = dim(W )(deg(D0) + 1 − gY ) −
M∑

�=1

(dim(W ) − dim(WH�))
R�

2
.

Proof. We use the decomposition (1) to compute the multiplicity of each Wjr in
L(D)Q ⊗ F . By our definition of F , each absolutely irreducible character is the
character of one of the Wjr’s, and the character of L(D) is the same as the character
of L(D)Q ⊗ F , so this will give us the correct answer.

The multiplicity of Wjr in Vj is mj , and dimVj = mjdj dim Wjr. Equation (7)
and the fact that IndG

H�
1 has a Q[G]-module structure imply that dimWH�

jr is the
same for each r, so dim V H�

j = mjdj dim WH�
jr . Thus we can factor mjdj out from

the inside of (2) and multiply the whole thing by mj to get formula (13). �

Remark 1. If L(D) does not have a Q[G]-module structure, formula (13) instead
computes an average of multiplicities. If the character of L(D) is not the character
of a Q[G]-module, it will still be the character of an F -module L(D)F , and L(D)F

will decompose into irreducibles Wjr. However in this case for a given j, the
multiplicities of the Wjr’s may not be all the same. We can replace (3) with

L(D)F �
M⊕

j=1

dj⊕
r=1

njrWjr

and the system of equations (4) with

dim L(D�) =
M∑

j=1

dj∑
r=1

njr dim(WH�
jr ) =

M∑
j=1

∑dj

r=1 njr

mjdj
dim(V H�

j ), 1 ≤ � ≤ M.

This is now the same system of equations, but with our old unknowns replaced by
1

mjdj

∑dj

r=1 njr. We get the same solution,

1

mjdj

dj∑
r=1

njr =
1

m2
jdj

(
dim(Vj)(deg(D0) + 1 − gY ) −

M∑
�=1

(dim(Vj) − dim(V H�
j ))

R�

2

)
.
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Recall from the proof of Theorem 2 that dim WH�
jr does not depend on r, so this

can be simplified to

(14)
1

dj

dj∑
r=1

njr = dim(Wjr)(deg(D0) + 1 − gY ) −
M∑

�=1

(dim(Wjr) − dim(W
H�
jr ))

R�

2
.

We see that our formula has computed the average of the multiplicities over a Galois
orbit.

3. The ramification module

Now we wish to extend our results to the case where D is not necessarily the
pullback of a divisor on Y = X/G. For this we need to build on work previously
done on this problem by Nakajima, Borne, Ellingsrud and Lønsted, Köck, Kani,
and others. We refer to [B] for references. We start with two definitions: the
ramification module of the cover X → X/G and the equivariant degree of a divisor.

For any point P ∈ X(k), the inertia group GP acts on the cotangent space of
X(k) at P by a k-character ψP . This character is the ramification character of
X at P . Because the ramification is tame, ψP will be a primitive character of the
cyclic group GP . The ramification module is defined by

ΓG =
∑

P∈X(k)ram

IndG
GP

(
eP −1∑
�=1

�ψ�
P ),

where eP = |GP |. It was shown by Kani [Ka] and Nakajima [N] that there is a
unique G-module Γ̃G such that

ΓG = |G|Γ̃G.

In this paper we are only concerned with Γ̃G, so we abuse terminology and call Γ̃G

the ramification module.
Now consider a G-invariant divisor D on X(k). If D = 1

eP

∑
g∈G g(P ), then

we call D a reduced orbit. The reduced orbits generate the group of G-invariant
divisors Div(X)G.

Definition 3. The equivariant degree is a map from Div(X)G to the Grothen-
dieck group Rk(G) = Z[G∗

k] of virtual k-characters of G,

degeq : Div(X)G → Rk(G),

defined by the following conditions:
(1) degeq is additive on G-invariant divisors of disjoint support;
(2) if D = r 1

eP

∑
g∈G g(P ) is a multiple of a reduced orbit, then

degeq(D) =

⎧⎪⎨
⎪⎩

IndG
GP

(
∑r

�=1 ψ−�
P ), if r > 0,

−IndGP
G(

∑−(r+1)
�=0 ψ�

P ), if r < 0,

0, r = 0,

where ψP is the ramification character of X at P .

The following is a minor variant of Corollary 4.19 in [B].

Lemma 4 (Equivariant Riemann-Roch formula). If D is a G-invariant nonspecial
divisor, then the (virtual) character of L(D) is given by

(15) χ(L(D)) = (1 − gY )χ(k[G]) + degeq(D) − χ(Γ̃G).
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We derive the following from the equivariant Riemann-Roch formula and Theo-
rem 2. The notation is as in Section 1.

Proposition 5. If Γ̃G has a Q[G]-module structure, then it decomposes into irre-
ducible Q[G]-modules as

Γ̃G �
⊕

j

1
m2

jdj
(
∑

�

(dim(Vj) − dim(V H�
j ))

R�

2
)Vj .

Proof. The ramification module does not depend on the divisor, so we compare
Theorem 2 with the equivariant Riemann-Roch formula in the case where D is a
pull-back. If D = π∗(D0) is the pull-back of a divisor D0 ∈ Div(Y ), then the
equivariant degree degeq(D) has a very simple form. On each orbit, r is a multiple
of eP , so every character of the cyclic group GP appears in the sum being induced
in the definition of degeq(D). Thus, the equivariant degree on this orbit is induced
from a multiple of the regular representation of GP . The equivariant degree of the
whole divisor is then

(16) degeq(D) = deg(D0)χ(k[G]).

(This is also a special case of Corollary 4.9 in [B].)
The first two terms of the equivariant Riemann-Roch formula then become

(deg D0 + 1 − gY )χ(k[G]).

This is clearly the character of a Q[G]-module, so L(D) will have a Q[G]-module
structure if and only if Γ̃G does. The rest of the proposition follows from Theorem
2. �

Proposition 5 has also been proven by Köck [Ko], using a different method.

Corollary 6. Suppose that Γ̃G has a Q[G]-module structure. Let W be an irre-
ducible F [G]-module. Then the multiplicity of the character of W in Γ̃G is

(17)
∑

�

(dim(W ) − dim(WH�))
R�

2
.

Proof. The same as the proof of Theorem 2 from Theorem 1. �
Remark 2. Again, the rationality criterion is necessary. If Γ̃G does not have a
Q[G]-module structure, we get an average of multiplicities, similar to (14):

(18)
1
dj

dj∑
r=1

〈χjr, Γ̃G〉 =
M∑

�=1

(dim(Wjr) − dim(WH�
jr ))

R�

2

with notation as in (1).

4. Examples

Example 1. Let k be an algebraically closed field whose characteristic is not 2 or
3. Consider the nonsingular projective curve X which is the closure of

{(x, y, t) ∈ k3 | y2 = x(x − 2)(x − 4), t2 = x + 4}.
This has an action of G = C2 × C2 given by

α : (x, y, t) 
−→ (x,−y, t),
β : (x, y, t) 
−→ (x, y,−t),

αβ : (x, y, t) 
−→ (x,−y,−t).
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The cover X → X/〈β〉 is a degree-two cover of an elliptic curve, ramified at the
two points with x = −4, so X has genus 2. The quotient Y = X/G is the projective
x-line.

The divisor

D = (0, 0, 2) + (0, 0,−2) + (−4, 8
√

3, 0) + (−4,−8
√

3, 0)

is G-invariant, and 2D is the pullback of the divisor D0 = {x = 0, x = −4} on Y .
The Riemann-Roch theorem implies that dim L(2D) = 7.

First, let us use Theorem 2 to decompose L(2D) into irreducibles. The cyclic
subgroups of G are the trivial group H1 and each of the two-element subgroups
generated by α, β, and αβ. Let us call the last three Hα, Hβ, and Hαβ . Each is in
its own conjugacy class.

The cover X → X/G has 5 branch points: three with inertia group Hα (at
x = 0, 2, 4), one with inertia group Hβ (at x = −4), and one with inertia group
Hαβ (at x = ∞). This means that

Rα = 3, Rβ = 1, Rαβ = 1.

The group G has character table

1 α β αβ
χ1 1 1 1 1
χ2 1 1 −1 −1
χ3 1 −1 1 −1
χ4 1 −1 −1 1

Each irreducible representation is one dimensional, and every C[G]-module is a
Q[G]-module, so dj and the Schur index mj are both 1. The dimension dim(V H�

j )
is 1 if the character of Vj is 1 on the generator and 0 otherwise. Consequently, we
get:

n1 = (2 + 1 − 0) − 0 = 3,

n2 = (2 + 1 − 0) − 1
2
(Rβ + Rαβ) = 3 − 1 = 2,

n3 = (2 + 1 − 0) − 1
2
(Rα + Rαβ) = 3 − 2 = 1,

n4 = (2 + 1 − 0) − 1
2
(Rα + Rβ) = 3 − 2 = 1.

Thus the character of L(2D) is 3χ1 + 2χ2 + χ3 + χ4.
Now let us consider L(D). The Riemann-Roch theorem tells that this will be a

three-dimensional space. Since D is not a pullback from Y , we cannot use Theorem
2. However, the ramification module does have a Q[G]-module structure, so we can
use Proposition 5 with the equivariant Riemann-Roch formula. The calculations
above tell us that the ramification module has character χ2 + 2χ3 + 2χ4.

Now we need to calculate the equivariant degree of D. The divisor consists of
two reduced orbits, the orbit of (0, 0, 2) and the orbit of (−4, 8

√
3, 0). At the first

point the inertia group is Hα, and at the second point the inertia group is Hβ . In
both cases the ramification character is the nontrivial character of C2. Adding the
induced characters of G gives us degeq(D) = χ2 + χ3 + 2χ4.

Adding the pieces of the equivariant Riemann-Roch formula, we get the character
of L(D) to be χ1+χ2+χ4. In fact, one can check that the three functions {1, 1

t ,
y
xt}
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form a basis for L(D), and G acts on the three basis elements by the three respective
characters. �

Example 2. Spectral curves. The curve in Example 1 is one of the family of spec-
tral curves of the integrable system used to solve N = 2 Seiberg-Witten theory in
the case of the gauge group SU(2) with matter in the adjoint representation [D1].
Many similar examples can be constructed using the spectral curves of other inte-
grable systems. In general, the cameral curves (Galois closures of spectral curves)
of an integrable system with a Lie algebra structure will have an automorphism
group which is the Weyl group of the Lie algebra [D1, D2]. It is known that for
these groups, which include the symmetric groups Sn, any representation has a
rational structure [[BZ], section 3.4]. This gives a large class of curves for which
the rationality criterion is automatic, and therefore Theorem 2 gives the correct
multiplicity for all irreducible representations.

Example 3. Here is an elementary example where the group has representations
which are not rational, but the ramification module is rational. Let X = P1 and
let G be a cyclic group of prime order q. Let a be a generator of G, and let a act
on X by z 
−→ ζz, where ζ is a primitive qth root of unity. The cyclic subgroups of
G are the trivial group and G itself; the irreducible representations of G over Q are
the one-dimensional trivial representation and a (q−1)-dimensional representation
V . Let ψ be the character of G over C whose value on a is ζ; then the irreducible
characters of G over C are the tensor powers ψ, ψ2, . . . , ψq−1, ψq = 1. The character
of V is ψ + ψ2 + · · · + ψq−1.

The cover X → X/G is totally ramified at 0 and ∞. The ramification module
in this case is a Q[G]-module, so we can use either Proposition 5 or Corollary 6 to
find that

Γ̃G = ψ + ψ2 + · · · + ψq−1 = V.

Example 4. Here is an example that illustrates what can happen when the ratio-
nality condition is not met.

Let X be the Klein quartic

{ (x, y, z) ∈ P2 | x3y + y3z + z3x = 0 }.

We assume that k contains both cube roots of unity and 7th roots of unity; let ω
be a primitive cube root of unity and ζ be a primitive seventh root of unity. Let G
be the group generated by

σ : (x : y : z) 
−→ (y : z : x),
τ : (x : y : z) 
−→ (ζx : ζ4y : ζ2z).

The group G of automorphisms generated by these two actions is the semidirect
product C7 � C3. (This is not the full automorphism group of this curve; see
example 5 below.) X has genus 2, and the quotient Y = X/G has genus 0 [E].
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The group G has character table:1

e σ τ σ−1 τ−1

χ1 1 1 1 1 1
χ2 1 ω2 1 ω 1
χ3 1 ω 1 ω2 1
χ4 3 0 ζ3 + ζ5 + ζ6 0 ζ + ζ2 + ζ4

χ5 3 0 ζ + ζ2 + ζ4 0 ζ3 + ζ5 + ζ6

There are two conjugacy classes of nontrivial cyclic subgroups, with representatives
generated by σ and τ . Let H3 = 〈σ〉 and H7 = 〈τ 〉. The irreducible representations
over Q have characters χ1, χ2 + χ3, and χ4 + χ5. Each has Schur index 1.

The points of X fixed by H7 are P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), and
P3 = (0 : 0 : 1). These form one orbit under G, so R7 = 1. There are seven points
in the orbit of (1 : ω : ω2) and seven points in the orbit of (1 : ω2 : ω), all fixed by
cyclic groups of order 3. Since these form two orbits, we have R3 = 2.

We now compute

(19)
M∑

�=1

(dim(W ) − dim(WH�))
R�

2
,

as in (18), for the irreducible representations over C. We find that
1
2
〈χ2 + χ3, Γ̃G〉 = 1,

1
2
〈χ4 + χ5, Γ̃G〉 =

7
2
.

These give the average multiplicities. In fact one can compute directly that Γ̃G =
χ2 + χ3 + 3χ4 + 4χ5.

Example 5. The Klein quartic in Example 4 is also known as the modular curve
X(7), whose full automorphism group is PSL2(GF (7)). In general, the ramification
module for the modular curve X(N) will be rational if and only if N ≡ 1 (mod 4).
The ramification modules for X(N) have been computed for all N in [JK].
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