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A SHARP VANISHING THEOREM FOR LINE BUNDLES
ON K3 OR ENRIQUES SURFACES

ANDREAS LEOPOLD KNUTSEN AND ANGELO FELICE LOPEZ

(Communicated by Michael Stillman)

Abstract. Let L be a line bundle on a K3 or Enriques surface. We give
a vanishing theorem for H1(L) that, unlike most vanishing theorems, gives
necessary and sufficient geometrical conditions for the vanishing. This result
is essential in our study of Brill-Noether theory of curves on Enriques surfaces
(2006) and of Enriques-Fano threefolds (2006 preprint).

1. Introduction

Since Grothendieck’s introduction of basic tools such as the cohomology of
sheaves and the Grothendieck-Riemann-Roch theorem, vanishing theorems have
proved to be essential in many studies in algebraic geometry.

Perhaps the most influential one, at least for line bundles, is the well-known
Kawamata-Viehweg vanishing theorem ([K, V]) which, in its simplest form, asserts
that Hi(KX+L) = 0 for i > 0 and any big and nef line bundle L on a smooth variety
X. On the other hand, as most vanishing theorems (even for special surfaces [CD,
Thm.1.5.1]), it gives only sufficient conditions for the vanishing. Practice shows
though that, in many situations, it would be very useful to know that a certain
vanishing is equivalent to some geometrical/numerical properties of L.

In this short note we accomplish the above goal for line bundles on a K3 or En-
riques surface, by proving that, when L2 > 0, the vanishing of H1(L) is equivalent
to the fact that the intersection of L with all effective divisors of self-intersection
−2 is at least −1.

In the statement of the theorem we will employ the following

Definition 1.1. Let X be a smooth surface. We will denote by ∼ (respectively
≡) the linear (respectively numerical) equivalence of divisors (or line bundles) on
X. We will say that a line bundle L is primitive if L ≡ kL′ for some line bundle L′

and some integer k implies k = ±1.

Theorem. Let X be a K3 or an Enriques surface and let L be a line bundle on
X such that L > 0 and L2 ≥ 0. Then H1(L) �= 0 if and only if one of the three
following occurs:
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(i) L ∼ nE for E > 0 nef and primitive with E2 = 0, n ≥ 2 and h1(L) = n−1
if X is a K3 surface, h1(L) = �n

2 � if X is an Enriques surface;
(ii) L ∼ nE +KX for E > 0 nef and primitive with E2 = 0, X is an Enriques

surface, n ≥ 3 and h1(L) = �n−1
2 �;

(iii) there is a divisor ∆ > 0 such that ∆2 = −2 and ∆.L ≤ −2.

Note that the hypothesis L > 0 is not restrictive since, if L is nontrivial, from
L2 ≥ 0 we get by Riemann-Roch that either L > 0 or KX − L > 0, and h1(L) =
h1(KX − L) by Serre duality.

The theorem has of course many possible applications. For example, if L is
base-point free and |P | is an elliptic pencil on X, the knowledge of h0(L− nP ) for
n ≥ 1 (which follows by Riemann-Roch if we know that h1(L−nP ) = 0) determines
the type of scroll spanned by the divisors of |P | in PH0(L) and containing ϕL(X)
([SD, KJ, Co]). Most importantly for us, this result proves crucial in our study
of the Brill-Noether theory [KL1, KL2] and Gaussian maps [KL3] of curves lying
on an Enriques surface, and especially in our proof of a genus bound for threefolds
having an Enriques surface as a hyperplane section given in [KLM].

2. Proof of the Theorem

We first record the following simple but useful fact.

Lemma 2.1. Let X be a smooth surface and let A > 0 and B > 0 be divisors on
X such that A2 ≥ 0 and B2 ≥ 0. Then A.B ≥ 0 with equality if and only if there
exists a primitive divisor F > 0 and integers a ≥ 1, b ≥ 1 such that F 2 = 0 and
A ≡ aF, B ≡ bF .

Proof. The first assertion follows from the signature theorem [BPV, VIII.1]. If
A.B = 0, then we cannot have A2 > 0, otherwise the Hodge index theorem implies
the contradiction B ≡ 0. Therefore A2 = B2 = 0. Now let H be an ample
line bundle on X and set α = A.H, β = B.H. We have (βA − αB)2 = 0 and
(βA−αB).H = 0, therefore βA ≡ αB by the Hodge index theorem. As there is no
torsion in Num(X) we can find a divisor F as claimed. �

We now proceed with the theorem.

Proof. One immediately sees that h1(L) has the given values in (i) and (ii). In the
case (iii) we first observe that h2(L−∆) = 0. In fact (KX −L+∆)2 > 0, whence if
KX −L+∆ ≥ 0 the signature theorem [BPV, VIII.1] implies 0 ≤ L.(KX −L+∆) =
−L2 + L.∆ ≤ −2, a contradiction. Therefore by Riemann-Roch we get
1
2
L2+χ(OX) <

1
2
L2−∆.L−1+χ(OX) ≤ h0(L−∆) ≤ h0(L) =

1
2
L2+χ(OX)+h1(L)

whence h1(L) > 0.
Now assume that h1(L) > 0.
First we suppose that L is nef. By Riemann-Roch we have that L + KX > 0.

Since h1(−(L+KX)) = h1(L) > 0, by [BPV, Lemma12.2], we deduce that L+KX

is not 1-connected, whence that there exist L′ > 0 and L′′ > 0 such that L+KX ∼
L′ + L′′ and L′.L′′ ≤ 0. Now (L′)2 ≥ (L′)2 + L′.L′′ = L′.L ≥ 0 and similarly
(L′′)2 ≥ 0, whence Lemma 2.1 implies that L′ ≡ aE, L′′ ≡ bE for some a, b ≥ 1
and for E > 0 nef and primitive with E2 = 0. This gives us the two cases (i) and
(ii).
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Now assume that L is not nef, so that the set

A1(L) := {∆ > 0 : ∆2 = −2, ∆.L ≤ −1}
is not empty. Similarly define the set

A2(L) = {∆ > 0 : ∆2 = −2, ∆.L ≤ −2}.
If A2(L) �= ∅ we are done. Assume therefore that A2(L) = ∅ and pick Γ ∈ A1(L).

Then Γ.L = −1, and we can clearly assume that Γ is irreducible. Hence if we set
L1 = L − Γ we have that L1 > 0, L2

1 = L2 and, since h0(L1) = h0(L), also that
h1(L1) = h1(L) > 0.

If L1 is nef, by what we have just seen, we have L1 ≡ nE, for n ≥ 2, whence
L ≡ nE + Γ and −1 = Γ.L = nE.Γ − 2, a contradiction.

Therefore L1 is not nef and A1(L1) �= ∅.
If A2(L1) �= ∅ we pick a ∆ ∈ A2(L1). We have −2 ≥ ∆.L1 = ∆.(L − Γ) ≥

−1 − ∆.Γ, whence ∆.Γ ≥ 1, (∆ + Γ)2 ≥ −2 and (∆ + Γ).L1 ≤ −1. Now Lemma
2.1 yields (∆ + Γ)2 = −2, so that ∆.Γ = 1. Also −1 ≤ ∆.L = ∆.(L1 + Γ) ≤ −1,
whence ∆.L = −1 and (∆ + Γ).L = −2, contradicting A2(L) = ∅.

We have therefore shown that A2(L1) = ∅.
This means that we can continue the process. But the process must eventually

stop, since we always remove base components. This gives the desired contradiction.
�

Remark 2.2. A naive guess, to insure the vanishing of H1(L) for a line bundle
L > 0 with L2 ≥ 0, could be that it is enough to add the hypothesis L.R ≥ −1
for every irreducible rational curve R. However this is not true. Take, for example,
a nef divisor B with B2 ≥ 4 and two irreducible rational curves R1, R2 such that
B.Ri = 0, R1.R2 = 1. Then L := B +R1 +R2 satisfies the above requirements, but
L.(R1 + R2) = −2, whence H1(L) �= 0 by the theorem.

Remark 2.3. It would be of interest to know if, in the statement of the theorem, it
is possible to replace divisors ∆ > 0 such that ∆2 = −2 with chains of irreducible
rational curves.

Definition 2.4. An effective line bundle L on a K3 or Enriques surface is said to
be quasi-nef if L2 ≥ 0 and L.∆ ≥ −1 for every ∆ such that ∆ > 0 and ∆2 = −2.

An immediate consequence of the theorem is

Corollary 2.5. An effective line bundle L on a K3 or Enriques surface is quasi-nef
if and only if L2 ≥ 0 and either h1(L) = 0 or L ≡ nE for some n ≥ 2 and some
primitive and nef divisor E > 0 with E2 = 0.

Acknowledgments

The authors wish to thank Roberto Muñoz for several helpful discussions.
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