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ALL TILTING MODULES ARE OF FINITE TYPE

SILVANA BAZZONI AND JAN ŠŤOVÍČEK

(Communicated by Martin Lorenz)

Abstract. We prove that any infinitely generated tilting module is of finite
type, namely that its associated tilting class is the Ext-orthogonal of a set
of modules possessing a projective resolution consisting of finitely generated
projective modules.

1. Introduction

In the early eighties Brenner and Butler in [9] and Happel and Ringel in [18] gen-
eralized the classical Morita equivalence induced by a progenerator by introducing
the notion of a tilting module over a finite-dimensional Artin algebra. In order to
obtain equivalences between subcategories of the module category, tilting modules
were assumed to be finitely generated and moreover of projective dimension at most
one. Later, Miyashita [20] considered tilting modules of finite projective dimension
and studied the equivalences induced by them. Colby and Fuller in [10] extended
the setting to arbitrary rings, but in all the above-mentioned papers the tilting
modules were always assumed to be finitely generated. The notion of infinitely
generated tilting modules over arbitrary rings was introduced by Colpi and Trlifaj
in [11] for the one-dimensional case and by Angeleri-Hügel and Coelho in [1] in the
general case of finite projective dimension.

One of the advantages in dealing with infinitely generated tilting modules is
evident in connection with the good approximation theory that they induce and
which we are going to illustrate (cf. [3] and [1]). We recall that the tilting class
B associated to a tilting module T over a ring R is the class of R-modules which
are in the kernel of all the functors Exti

R(T,−). Such intersection of kernels is also
called a right orthogonal of T and denoted by T⊥. If A denotes the class of the
R-modules which are in the kernel of all the functors Exti

R(−, B), for any B ∈ B,
then the pair (A,B) of classes of R-modules is a hereditary cotorsion pair which
induces special precovers and preenvelopes (cf. [16] and [24]). Alternatively, in the
terminology used in [4] and [5] for classes of finitely generated modules, it induces
right and left approximations.
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There remained the problem of illustrating to what extent finitely and infinitely
generated tilting modules are related. More precisely, the question was to decide
whether the tilting classes are determined by finitely presented data in the sense
that they are the right Ext-orthogonals of a set of finitely generated modules.
There have been various efforts by many authors in order to solve this problem.
A first answer was given by Eklof, Trlifaj and the first author in [7]. Using set-
theoretic methods, they show that one-dimensional tilting modules are of countable
type in the sense that their associated tilting classes are the right Ext-orthogonal
of a set of countably generated modules. Moreover, in [7] it is shown that the
problem of determining whether a one-dimensional tilting module is of finite type
is equivalent to proving that the associated tilting class is a definable class (see
Section 2 for precise definitions). Herbera and the first author in [8] proved that
every tilting module of projective dimension one is of finite type. The solution of
the problem is obtained by proving that suitable countable inverse limits of groups
of homomorphisms satisfy the Mittag-Leffler condition and that this condition is
inherited by pure submodules. Almost at the same time Trlifaj and the second
author in [22] were able to extend the set-theoretic methods used in [7] to the case
of tilting modules of any finite-projective dimension and to prove that they are of
countable type.

In the present paper, we prove that tilting modules of any finite projective dimen-
sion are of finite type. Let S be a set of modules possesing a projective resolution
with finitely generated projective modules and such that all modules in S have pro-
jective dimension ≤ n for some natural number n. It is well known that the right
Ext-orthogonal of such S is a tilting class (it follows by [1, Theorem 4.1] and [15,
Theorem 2]). Our result thus states that every tilting class arises in this way. We
call two tilting modules T1 and T2 equivalent if their corresponding classes coincide.
As a consequence, every tilting module T is up to equivalence determined by a set
S of modules with projective resolutions formed by finitely generated projective
modules as above. We then have S⊥ = T⊥, and in principle we can construct the
tilting module T from S using [15, Theorem 2].

First of all we note that the reduction to the countable case as proved in [22] is
crucial. The next step is to prove that a tilting class is of finite type if and only if it
is definable. In our situation this amounts to proving that, if (A,B) is the cotorsion
pair induced by a tilting module, then every countably presented module in the
class A is a direct limit of finitely presented modules in the class A. This result
will be achieved in Section 3 by using a particular notion of “freeness” for modules
whose origin (for general algebraic structures) goes back to ideas introduced by
Shelah to prove the singular compactness theorem. We say that a module is “free”
if it admits a filtration of submodules with finitely presented factors. An adaptation
of the proof of [14, XII.1.14] to our situation allows us to represent every countably
presented module in the class A as a countable direct limit of finitely presented
modules in the class A. Our final result, Theorem 4.2, is obtained by induction
on the projective dimension of a tilting module: we induct on the tilting cotorsion
pairs induced by the syzygies of a tilting module and then we use arguments similar
to the ones developed in [8] for the one-dimensional case.
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2. Preliminaries

In what follows, R is always an associative ring with unit and all modules are
right R-modules. First, we fix the terminology and recall some definitions.

Pn will denote the class of all modules of projective dimension at most n.
For a class C of modules and an infinite cardinal κ, we define C<κ to be the class

of all modules in C possessing a projective resolution consisting of < κ generated
projective modules.

An ascending chain (Mα | α < κ) of submodules of a module M indexed by a
cardinal κ is called continuous if Mα =

⋃
β<α Mβ for all limit ordinals α < κ. It is

called a filtration of M if M0 = 0 and M =
⋃

α<κ Mα.
Given a class C of modules, we say that a module M is C-filtered if it admits a

filtration (Mα | α < κ) such that Mα+1/Mα is isomorphic to some module in C for
every α < κ. In this case we say that (Mα | α < κ) is a C-filtration of M .

A class of modules is called definable if it is closed under arbitrary direct prod-
ucts, direct limits, and pure submodules (cf. [12, §2.3]). Definable classes are ax-
iomatizable by first-order formulas and they are determined by the subclass of
pure-injective modules that they contain.

Let C ⊆ ModR. Define

C⊥1 = Ker Ext1R (C,−) = {M ∈ ModR | Ext1R (X, M) = 0 for all X ∈ C},
⊥1C = Ker Ext1R (−, C), C⊥ =

⋂

i≥1

Ker Exti
R(C,−),

and
⊥C =

⋂

i≥1

Ker Exti
R(−, C).

If the class C has only one element, say C = {X}, we write just X⊥1 instead of
{X}⊥1 , and similarly in the other cases.

A pair of classes of modules (A,B) is a cotorsion pair provided that A = ⊥1B
and B = A⊥1 . Note that for every class C, ⊥C is a resolving class, that is, it
is closed under extensions, kernels of epimorphisms and contains the projective
modules. In particular, it is syzygy-closed. Dually, C⊥ is coresolving : it is closed
under extensions, cokernels of monomorphisms and contains the injective modules.
In particular, it is cosyzygy-closed. A pair (A,B) is called a hereditary cotorsion
pair if A = ⊥B and B = A⊥. It is easy to see that (A,B) is a hereditary cotorsion
pair if and only if (A,B) is a cotorsion pair and A is resolving if and only if (A,B)
is a cotorsion pair and B is coresolving.

A cotorsion pair (A,B) is complete provided that every R-module M admits a
special B-preenvelope, that is, if there exists an exact sequence of the form 0 →
M → B → A → 0 with B ∈ B and A ∈ A. For a class C of modules, the
pair C = (⊥(C⊥), C⊥) is a (hereditary) cotorsion pair; it is called the cotorsion pair
cogenerated by C. Every cotorsion pair cogenerated by a set of modules is complete,
[15]. If all the modules in C have projective dimension ≤ n, then ⊥(C⊥) ⊆ Pn as
well.

If C is a set, then a complete description of the modules in ⊥1(C⊥1) is available.
In fact, by results in [15] and by [23, Theorem 22], a module belongs to ⊥1(C⊥1)
if and only if it is a direct summand of a C′-filtered module where C′ = C ∪ {R}.
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Clearly, ⊥(C⊥) = ⊥1(C⊥1) provided that a first syzygy of M is contained in C
whenever M ∈ C.

A hereditary cotorsion pair C = (A,B) in ModR is of countable type, and finite
type, provided there is a class S of modules in A<ℵ1 , and A<ℵ0 , respectively, such
that S cogenerates C, that is, B = S⊥.

We are interested in cotorsion pairs cogenerated by an n-tilting module. Recall
that for n < ω, a module T is n-tilting provided that

(T1) T ∈ Pn,
(T2) Exti

R(T, T (I)) = 0 for each i ≥ 1 and all sets I, and
(T3) there exist r ≥ 0 and a long exact sequence

0 → R → T0 → · · · → Tr → 0

such that Ti ∈ Add(T ) for each 0 ≤ i ≤ r.

Here, Add(T ) denotes the class of all direct summands of arbitrary direct sums
of copies of T .

A class of modules T is n-tilting provided there is an n-tilting module T such that
T = T⊥. In this case, the cotorsion pair cogenerated by T , namely (⊥T , T ), is called
an n-tilting cotorsion pair. Every module in ⊥T then has projective dimension ≤ n
and the class T is closed under arbitrary direct sums. If (⊥T , T ) is of countable
type or of finite type, then T and T are called n-tilting of countable type or of finite
type, respectively.

Notice that any tilting class of finite type is definable. More generally, for any
cotorsion pair (A,B) of finite type the class B is definable. This follows from the
well-known facts that if F possesses a projective resolution of finitely generated
projective modules, then Extn

R(F,−) commutes with direct limits for all n < ω,
and that G⊥1 is closed under pure submodules whenever G is finitely presented.

3. Countably generated modules

The aim of this section is to investigate conditions under which, for a given class
C, a module M ∈ C<ℵ1 is a countable direct limit of objects in C<ℵ0 . The key
idea is to look at conditions which imply that the first sygyzy module of M is
C<ℵ0 -filtered.

A particular notion of “freeness” will be used. Its origin goes back to Shelah’s
singular compactness theorem. The original version of the theorem appears in [21];
a shorter and more algebraic proof is given in [19]. In these papers, an algebraic
structure is called “free”, if it satisfies certain rather general axioms which are
generalizations of properties valid for free structures and for their bases. For R-
modules, this notion applies to more general situations than just free R-modules. In
our setting, for instance, M is considered as “free” provided that M is Q-filtered by
a family Q of < µ-presented modules for some cardinal µ. Rather than stating the
general axioms for the “freeness”, we will concentrate on our case, where the key
results concerning this notion have been collected and very well illustrated in [14,
XII.1.14] or [13].

The following result is inspired by the proof of [14, XII.1.14]. The difference in
our situation is that we need to take care of possibly finitely presented modules,
and to explicitly state some properties contained only implicitly in the proofs in
the original papers. For the sake of further simplification, we prove the proposition
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only for µ = ℵ0 or µ = ℵ1. It could be, however, extended to any regular cardinal
by following the original proofs.

Proposition 3.1. Let µ = ℵ0 or µ = ℵ1. Let M be a Q-filtered module where Q
is a family of < µ-presented modules. Then there exists a subset S of Q-filtered
submodules of M satisfying the following properties:

(1) 0 ∈ S.
(2) S is closed under unions of arbitrary chains.
(3) For every N ∈ S, N and M/N are Q-filtered.
(4) For every subset X ⊆ M of cardinality < µ, there is a < µ-presented module

N ∈ S such that X ⊆ N .

Proof. Let (Mα | α < λ) be a Q-filtration of M and let S be the set of all submod-
ules N of M with the property:

(∗) for all α < λ, N ∩ (Mα+1 \ Mα) 
= ∅ implies N + Mα ⊇ Mα+1.

The properties (1) and (2) are then clear.
(3). We first show that every N ∈ S is Q-filtered. Consider the family (N ∩Mα |

α < λ); then (N ∩Mα+1)/(N ∩Mα) is zero if N ∩ (Mα+1 \Mα) = ∅ and isomorphic
to Mα+1/Mα otherwise. Thus, possibly by omitting some indicies, we get a Q-
filtration of N .

Next, we define by induction on ρ a Q-filtration (Nρ/N | ρ < τ ) of M/N such
that, in addition, Nρ ∈ S for all ρ. Let N0 = N and assume the Nρ have been
defined for all ρ < σ (σ > 0). If σ is limit ordinal, let Nσ =

⋃
ρ<σ Nρ; then again

Nσ ∈ S by (2). If σ = β + 1, choose a minimal cardinal δ such that Mδ � Nβ .
If there is no such cardinal, then Nβ = M , and we have already the filtration.
Otherwise by continuity, δ = γ + 1 for some γ < λ. We define Nβ+1 = Nβ + Mγ+1.
By (∗) and by the choice of γ + 1, it is easy to verify that Mγ+1/Mγ

∼= Nβ+1/Nβ

via x + Mγ �→ x + Nβ . So Nβ+1/Nβ is isomorphic to an element of Q. It remains
to show that Nβ+1 satisfies (∗). Let Nβ+1 ∩ (Mα+1 \ Mα) 
= ∅, for some α < λ.
If α ≤ γ, then Nβ+1 + Mα ⊇ Mα+1, since Nβ+1 ⊇ Mγ+1 ⊇ Mα+1. If α > γ, let
x = y + z ∈ Nβ+1 ∩ (Mα+1 \Mα) with y ∈ Nβ and z ∈ Mγ+1. Then y ∈ Mα+1 and
y /∈ Mα; thus by induction Nβ + Mα ⊇ Mα+1 and Nβ+1 satisfies (∗).

(4). Let X be a subset of M of cardinality < µ. Let ρ(X) be the least ordinal
number such that X ⊆ Mρ. We prove by induction on ρ that there exists a < µ-
presented module N ∈ S such that X ⊆ N ⊆ Mρ. If ρ = 0 there is nothing to
prove. If ρ is a limit ordinal, then X is not a finite subset of M , so µ = ℵ1. Let
x1, x2, . . . , xn, . . . be an enumeration of X and let βn < ρ be the least ordinal such
that {x1, x2, . . . , xn} ⊆ Mβn

, for every n < ω. By induction, we can define an
ascending chain (Nn | n < ω) of modules of S with Nn < µ-presented, Nn ⊆ Mβn

and Nn+1 ⊇ Nn ∪ {xn+1}. Set N =
⋃

n<ω Nn; by (2) N ∈ S. Clearly, X ⊆ N and
N is < µ-presented contained in Mρ.

If ρ is not a limit ordinal, let ρ = β + 1 for some β < λ. Let L be a < µ-
generated submodule of Mβ+1 such that L ⊇ X and L + Mβ = Mβ+1. Since
Mβ+1/Mβ is < µ-presented, we infer that L ∩ Mβ is < µ-generated. Let Y be
a generating system of L ∩ Mβ of cardinality < µ. By the induction hypothesis,
there exists a < µ-presented module N0 ∈ S such that Y ⊆ N0 ⊆ Mβ. We claim
that N = L + N0 satisfies the wanted conditions. Clearly X ⊆ N . Moreover,
N/N0

∼= L/(N0 ∩ L) and L/(N0 ∩ L) ∼= Mβ+1/Mβ via x + (N0 ∩ L) �→ x + Mβ ,
since N0 ⊆ Mβ . Thus, N is < µ-presented. It remains to show that N ∈ S. Let
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γ < λ be such that x ∈ N ∩ (Mγ+1 \Mγ). Then γ ≤ β, since N ⊆ Mβ+1. If γ < β,
then x ∈ N0, since N0 ⊆ Mβ . So N + Mγ ⊇ N0 + Mγ ⊇ Mγ+1. If γ = β, then
N + Mβ = L + Mβ = Mβ+1. We conclude that N satisfies the condition (∗). �

We will underline an immediate consequence of the condition (4) in Proposition
3.1 stating it as a corollary:

Corollary 3.2. Let M be a countably generated Q-filtered module where Q is a
family of finitely presented modules. Then there is a filtration (Mn | n < ω) of
M consisting of finitely presented submodules of M such that Mn and M/Mn are
Q-filtered for every n < ω.

The following technical lemma will be of use later:

Lemma 3.3. Let Q be a family of finitely presented modules containing the regular
module R. Let M be a countably presented module and let

0 → K → F → M → 0

be a free presentation of M with F and K countably generated. Assume that K is
a direct summand of a Q-filtered module. Then, there exists an exact sequence

0 → H → G → M → 0

where H and G are countably generated Q-filtered modules.

Proof. Let K be a summand of a Q-filtered module P . Since K is countably
generated, Proposition 3.1 implies that K is contained in a countably generated
Q-filtered submodule of P ; thus we may assume that P is countably generated. By
Eilenberg’s trick, K ⊕ P (ω) ∼= P (ω). Consider the exact sequence

0 → K ⊕ P (ω) → F ⊕ P (ω) → M → 0

and let H = K ⊕ P (ω) ∼= P (ω), G = F ⊕ P (ω). Then G and H are countably
generated Q-filtered modules. �

We apply the preceding results to the context of n-tilting cotorsion pairs.

Lemma 3.4. Let (A,B) be an n-tilting cotorsion pair. If A ∈ A is a countably or
finitely generated module, then A ∈ A<ℵ1 or A ∈ A<ℵ0 , respectively.

Proof. Since A is a resolving class, it is enough to show that every countably or
finitely generated module in A is countably or finitely presented, respectively.

By [22, Theorems 1 and 15], (A,B) is of countable type and every module A ∈ A
is A<ℵ1-filtered. By Proposition 3.1 (4), a countably generated A ∈ A is countably
presented.

Assume now that A ∈ A is finitely generated and let 0 → K → Rn → A → 0
be a presentation of A. By the first part of the proof, K is countably generated.
Write K =

⋃
n∈ω Kn, where Kn is a chain of finitely generated submodules of K.

Consider the map φ : K →
∏

n<ω En defined by φ(x) = (x + Kn)n<ω, where En

is an injective envelope of K/Kn for every n < ω. The image of φ is contained in⊕
n<ω En, which is an object of B. Thus, φ extends to some ψ : Rn →

⊕
n<ω En.

As a consequence, the image of φ is contained in
⊕

n≤m En, for some m < ω. Hence
K is finitely generated. �
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In order to use an inductive argument we show now that for an n-tilting module
T , n ≥ 1, the cotorsion pair cogenerated by a first syzygy of T is an (n− 1)-tilting
cotorsion pair.

Lemma 3.5. Let (A,B) be the cotorsion pair cogenerated by an n-tilting module T
with n ≥ 1. Let (A1,B1) be the cotorsion pair cogenerated by a first syzygy module
of T . Then:

(1) (A1,B1) is an (n − 1)-tilting cotorsion pair,
(2) X ∈ B1 if and only if (any) first cosyzygy of X belongs to B,
(3) M ∈ A implies that (any) first syzygy of M belongs to A1.

Proof. Let 0 → Ω(T ) → F → T → 0 be a presentation of T with F free and Ω(T )
a first syzygy module of T . Then Ω(T ) has projective dimension at most n−1 and,
by [6, Lemma 3.4], Ω(T ) ⊥ is closed under direct sums. By the characterization
of tilting classes (cf. [1] or [22]), Ω(T ) ⊥ is an (n − 1)-tilting class. Let (A1,B1)
be the associated cotorsion pair, namely B1 = Ω(T ) ⊥ and A1 = ⊥B1 = ⊥1B1.
For modules X and M consider exact sequences 0 → X → I → Ω−(X) → 0 and
0 → Ω(M) → F ′ → M → 0, where I is an injective module, F ′ is a free module and
Ω−(X), Ω(M) are first cosyzygy and syzygy modules of X and M , respectively.
Then Exti

R (Ω(M), X) ∼= Exti+1
R (M, X) and Exti+1

R (M, X) ∼= Exti
R (M, Ω−(X))

for all i ≥ 1. The last two statements follow immediately by these formulas. �
The following provides the key ingredient for proving our main result.

Lemma 3.6. Let (A,B) be the cotorsion pair cogenerated by an n-tilting module
T . Assume that the cotorsion pair (A1,B1) cogenerated by a first syzygy of T is of
finite type. Then any countably generated module A ∈ A is isomorphic to a direct
limit of a countable direct system of the form:

C1
f1→ C2

f2→ C3 → · · · → Cn
fn→ Cn+1 → · · · ,

where the modules Cn are in A<ℵ0 .

Proof. Since the cotorsion pair (A1,B1) is of finite type, it is cogenerated by (a
representative subset of) A<ℵ0

1 . As recalled in Section 2, A1 coincides with the
class of all direct summands of the A<ℵ0

1 -filtered modules.
Fix a countably generated module A ∈ A and let

0 → K →
⊕

n<ω

xnR → A → 0

be a presentation of A. Then K ∈ A1; thus K is a summand in an A<ℵ0
1 -filtered

module. By Lemma 3.4, A is countably presented; so by the hypotheses and
Lemma 3.3, there exists an exact sequence 0 → H → G → A → 0, where G
and H are countably generated A<ℵ0

1 -filtered modules. By Corollary 3.2, we can
write H =

⋃
n<ω Hn and G =

⋃
n<ω Gn where, for every n < ω, Hn and Gn

are finitely presented A<ℵ0
1 -filtered modules, and H/Hn, G/Gn are A<ℵ0

1 -filtered.
W.l.o.g. we can assume that H is a submodule of G. Given n < ω, there is an m(n)
such that Hn ⊆ Gm(n), and we can choose the sequence (m(n))n<ω to be strictly
increasing.

We claim that Gm(n)/Hn ∈ A<ℵ0 . By Lemma 3.4, it is enough to show that
Gm(n)/Hn ∈ A. Let B ∈ B; we have to show that Ext1R(Gm(n)/Hn, B) = 0.
But H/Hn is A<ℵ0

1 -filtered, thus in A1, and it is immediate to check that A1 ⊆
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A. Moreover, G/H ∼= A ∈ A. Hence, every homomorphism f : Hn → B can
be extended to a homomorphism g : G → B, and the restriction of g to Gm(n)

obviously induces an extension of f to Gm(n). Thus Ext1R(Gm(n)/Hn, B) = 0, since
Gm(n) ∈ A1 ⊆ A.

Set Cn = Gm(n)/Hn. Since (m(n))n<ω is increasing and unbounded in ω, the
inclusions Gm(n) ⊆ Gm(n+1) induce maps fn : Cn → Cn+1, and A is a direct limit
of the direct system (Cn; fn)n<ω. �

4. Finite type

In the last step before stating the main result, we give a criterion similar to [2,
Proposition 2.6] for a tilting cotorsion pair to be of finite type.

Proposition 4.1. Let (A,B) be an n-tilting cotorsion pair. Assume that every
countably generated module A ∈ A is isomorphic to a direct limit of some modules
in A<ℵ0 . Then the following are equivalent:

(1) the cotorsion pair (A,B) is of finite type;
(2) B is closed under pure submodules;
(3) B is a definable class.

Proof. The implication (3) ⇒ (2) is clear. For the converse, recall that B is a
coresolving class closed under direct sums. So if B is closed under pure submodules,
then it is also closed under direct limits. B is always closed under products; thus
(2) implies (3).

(1) ⇒ (3) is clear.
(3) ⇒ (1) First of all recall that, by [22, Theorem 1], every n-tilting cotorsion pair

is of countable type. Hence B = (A<ℵ1)⊥. Let B′ = (A<ℵ0)⊥; then B′ is a definable
class containing B and it is well known (cf. [12]) that two definable classes coincide
if and only if they contain the same pure-injective modules. Let M be a pure-
injective module in B′ and let A ∈ A<ℵ1 . By hypothesis A ∼= lim−→Cn, Cn ∈ A<ℵ0 .
Then, from a well-known result by Auslander, Exti

R(A, M) ∼= lim←−Exti
R(Cn, M) = 0.

Hence, M ∈ B and we conclude that B = B′. �

We are now in a position to prove our main result.

Theorem 4.2. Let R be any ring and T be an n-tilting R-module, n ≥ 0. Then T
is of finite type.

Proof. The proof is by induction on the projective dimension n of T .
If n = 0, the conclusion is obvious. Next, assume that all m-tilting modules are

of finite type for every m < n. Let T be a tilting module of projective dimension n
and let (A,B) be the n-tilting cotorsion pair cogenerated by T . By [22, Theorem
1], (A,B) is of countable type; hence B = (A<ℵ1)⊥.

Consider a free presentation of T :

0 → Ω(T ) → F → T → 0,

and let (A1,B1) be the cotorsion pair cogenerated by Ω(T ). By Lemma 3.5, (A1,B1)
is an (n−1)-tilting cotosion pair; so it is of finite type by the induction hypothesis.
In particular, B1 = (A<ℵ0

1 )⊥.
Let A ∈ A be a countably generated module.
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We can then apply Lemma 3.6 to conclude that there is a countable direct system
of the form

C1
f1→ C2

f2→ C3 → · · · → Cn
fn→ Cn+1 → · · · ,

where the Cn are finitely presented modules in A and A ∼= lim−→Cn. As in [8], we
consider the representation of the countable direct limit given by the exact sequence:

(†) 0 →
⊕

n<ω

Cn
φ→

⊕

n<ω

Cn → lim−→Cn
∼= A → 0,

where, for every n < ω, φεn = εn − εn+1fn and εn : Cn →
⊕

n<ω Cn denotes the
canonical map.

By Proposition 4.1, (A,B) is of finite type if and only if B is closed under pure
submodules. Let Y be a pure submodule of a module Z ∈ B. Since (A,B) is of
countable type, Y is in B if and only if Exti

R (A, Y ) = 0, for every A ∈ A<ℵ1 and
i ≥ 1. Moreover, A<ℵ1 is clearly closed under countable syzygies; thus Y ∈ B if
and only if Ext1R (A, Y ) = 0, for every A ∈ A<ℵ1 .

We continue now in a similar way as in the proof of [8, Theorem 2.5, 2.6]. We
repeat the argument for the sake of completion.

Set Zn = Z for any n < ω. Since B is closed under direct sums,
⊕

n<ω Zn ∈ B;
hence Ext1R(A,

⊕
n<ω Zn) = 0. From the short exact sequence (†), we see that

for every homomorphism γ :
⊕

n<ω Cn →
⊕

n<ω Zn there exists ψ :
⊕

n<ω Cn →⊕
n<ω Zn such that ψφ = γ. By [8, Theorem 3.7] the inverse system of abelian

groups

(HomR(Cn, Z), HomR(fn, Z))n<ω

is Mittag-Leffler. Since Y is a pure submodule of Z and the modules Cn are finitely
presented, [8, Theorem 4.3] yields that the inverse system

(HomR(Cn, Y ), HomR(fn, Y ))n<ω

is Mittag-Leffler, too.
Applying the functors HomR(Cn,−) to the pure exact sequence

0 → Y → Z → Z/Y → 0,

we obtain an inverse system of pure exact sequences of the form

0 → HomR(Cn, Y ) → HomR(Cn, Z) → HomR(Cn, Z/Y ) → 0.

As (HomR(Cn, Y ), HomR(fn, Y ))n<ω is Mittag-Leffler, we can apply [17, Proposi-
tion 13.2.2] to conclude that there is an exact sequence

0 → lim←−HomR(Cn, Y ) → lim←−HomR(Cn, Y ) → lim←−HomR(Cn, Z/Y ) → 0,

which in turn gives the exact sequence

0 → HomR(A, Y ) → HomR(A, Z) → HomR(A, Z/Y ) → 0.

Therefore, we also have the exact sequence

0 → Ext1R(A, Y ) → Ext1R(A, Z) = 0

from which we deduce that Ext1R(A, Y ) = 0 as desired. �
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Remark 4.3. Let T be an n-tilting module and (A,B) be the induced n-tilting
cotorsion pair. Unlike in the case of countable type, it is not true in general that
T is A<ℵ0-filtered. To see this, consider a projective module P without finitely
generated direct summands. Then R ⊕ P is a projective generator, thus a tilting
module, but it is not a direct sum of finitely generated projective modules.

But we can always find an equivalent tilting module T ′ (that is, T⊥ = (T ′)⊥)
such that T ′ is A<ℵ0-filtered. Indeed, let 0 → R → T0 → X0 → 0 be a special
B-preenvelope of R and 0 → Xi → Ti+1 → Xi+1 → 0 be a special B-preenvelope of
Xi for each i < ω. Then T ′ = (

⊕
i<n Ti)⊕Xn is an n-tilting module equivalent to

T , [1], and we can always construct the special B-preenvelopes so that the Xi are
A<ℵ0-filtered for all i < ω, [15].
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