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ABSTRACT. Suppose G is a second countable, locally compact, Hausdorff, prin-
cipal groupoid with a fixed left Haar system. We define a notion of integrability
for groupoids and show G is integrable if and only if the groupoid C*-algebra
C*(G) has bounded trace.

1. INTRODUCTION

Let H be a locally compact, Hausdorff group acting continuously on a locally
compact, Hausdorff space X, so that (H, X) is a transformation group. A lovely the-
orem of Green says that if H acts freely on X, then the associated transformation-
group C*-algebra Cy(X)x H has continuous trace if and only if the action of H on X
is proper [5, Theorem 17]. Muhly and Williams defined a notion of proper groupoid
and proved that for principal groupoids G, the groupoid C*-algebra C*(G) has con-
tinuous trace if and only if the groupoid is proper [8, Theorem 2.3]. Of course, when
G = H x X is the transformation-group groupoid, then G is proper if and only if
the action of H on X is proper.

In [13] Rieffel introduced a notion of an integrable action of a group H on a C*-
algebra A. This notion of integrability for A = Cy(X) turned out to characterize
when Co(X) x H, arising from a free action of H on X, has bounded trace [6]
Theorem 4.8]. In this paper we define a notion of integrability for groupoids (see
Definition B.)) which, when G = H x X is the transformation-group groupoid,
reduces to an integrable action of H on X (see Example B3)). We then prove that
for principal groupoids G, C*(G) has bounded trace if and only if the groupoid
is integrable (see Theorem [£4]). This theorem is thus very much in the spirit of
[8, Theorem 2.4], [4, Theorem 7.9], [4, Theorem 4.1] (see also [3, Corollary 5.9])
and [4] Theorem 5.3], which characterize when principal-groupoid C*-algebras are,
respectively, continuous-trace, Fell, CCR and GCR C*-algebras. The key technical
tools used to prove Theorem 4] are, first, a homeomorphism of the spectrum
of C*(G) onto the orbit space [, Proposition 5.1] and, second, a generalisation to
groupoids of the notion of k-times convergence in the orbit space of a transformation
group from [I].
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2. PRELIMINARIES

Let A be a C*-algebra. An element a of the positive cone AT of A is called a
bounded-trace element if the map 7 — tr(w(a)) is bounded on the spectrum A of
A; the linear span of the bounded-trace elements is a two-sided *-ideal in A. We
say A has bounded trace if the ideal of (the span of) the bounded-trace elements is
dense in A.

Throughout, G is a locally compact, Hausdorff groupoid; in our main results G
is assumed to be second-countable and principal. We denote the unit space of G by
G°, and the range and source maps r, s : G — G are r(y) = vy~ and s(y) =y~ 1,
respectively. We let 7 : G — G° x G° be the map 7(y) = (r(7), s(7)); recall that
G is principal if 7 is injective. In order to define the groupoid C'*-algebra, we also
assume that G is equipped with a fixed left Haar system: a set {\* : z € G°} of
non-negative Radon measures on G such that

(1) supp X* = r~'({z});
(2) for f € C.(G), the function z +— [ fdA* on G is in C.(G); and
(3) for f € C.(G) and v € G, the following equation holds:

[ o0 = [ f@)avDia),

Condition (3) implies that A\*(")(y~1E) = A"()(E) for measureable sets E. The
collection {)\, : x € G}, where \,(E) := \*(E~1), gives a fixed right Haar system
such that the measures are supported on s~ ({x}) and

[ 100 hwy = [ 16) dra

for f € C.(G) and v € G. We will move freely between these two Haar systems.

If N C G° then the saturation of N is r(s7'(N)) = s(r~*(N)). In particular,
we call the saturation of {z} the orbit of z € G° and denote it by [z].

If G is principal and all the orbits are locally closed, then by [4, Proposition 5.1]
the orbit space G°/G = {[z] : z € G} and the spectrum C*(G)" of the groupoid
C*-algebra C*(G) are homeomorphic. This homeomorphism is induced by the map
z— L : GO — C*(G)", where L® : C*(G) — B(L*(G, \;)) is given by

L (f)E(y) = / f(r)E(a 1N (a)

for f € C,(G) and & € L2(G, \,).

3. INTEGRABLE GROUPOIDS AND CONVERGENCE
IN THE ORBIT SPACE OF A GROUPOID

The following definition is motivated by the notion of an integrable action of a
locally compact, Hausdorff group on a space from [6, Definition 3.2].

Definition 3.1. A locally compact, Hausdorff groupoid G is integrable if for every
compact subset N of G°,

(3.1) sup{\* (s 1(N))} < oo,

rEN

or, equivalently, sup,c y{ Az (r 7 (N))} < oo.
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Remark 3.2. (1) Suppose that G is a principal groupoid. Then \*(s~(E)) =
N(s71(E)) for all z,y € G° such that y € [z]. The map A — s % A%, where
5% X (E) = X" (s71(E)), gives a family of measures {a,) : [z] € G°/G} such that
afy] is a measure on [x] supported on [z], and, for any f € C.(G), the function

T = f(ﬂ-_l(x’ y)) da[x] (y)
y€lz]

is continuous. (Recall that 7 : v — (r(7), s(v)) is injective by definition of princi-
pality.) In fact, the existence of the Haar system {\*} is equivalent to the existence
of the family {4} [12, Examples 2.5(c)]. Thus a principal groupoid G is integrable
if and only if for every compact subset M of G°/G, the function [z] — apy (M) is
bounded.
(2) We could have taken the supremum in [B1) over the whole unit space, that

is,

sup {A7(s~ ()} = sup (A" (s~ (N))}.

z€GO zEN
To see this, first note that if y is not in the saturation r(s~*(N)) = s(r~1(V)) of
N, then s71(N)Nr~1({y}) = 0, and hence A\Y(s~1(N)) = 0. Second, if y is in the
saturation of N, then there exists a v € G such that s(y) = y and r(y) € N. Then

Py NsTHN) =T T {yh) nsTHI)) =47 T ({r(n b nsTHY)),
and now
M (sTHN)) = M (r({y}) N s~ V) = X0 (k7 ({r()}) N sTH))
= 2O ([fr))) N ) = MO (57 ())
with r(y) € N.
Example 3.3. Let (H, X) be a locally compact, Hausdorff transformation group
with H acting on the left of the space X. Then G = H x X with
G* ={((h,z),(k,y) EGxG:y=h"""a}

and operations (h,z)(k,h~1-2) = (hk,z) and (h,2)~! = (h=1, A1 2) is called the
transformation-group groupoid. We identify the unit space {e} x X with X, and
then the range and source maps r,s : G — X are s(h,z) = h™! -z and r(h,z) = z.
If §, is the point-mass measure on X and p is a left Haar measure on H, then
{A\*:=pu X d,: x € X} is a left Haar system for G. Now

N (s HN)=p({he H:h 'z €N}

and hence

sup {A"(s'(\))} = sup{u({h € H:h™" - € N}));
zeN zEN

that is, Definition B reduces to [6, Definition 3.2].

Example 3.4. In [B pp. 95-96] Green describes an action as follows: the space
X is a closed subset of R? and consists of countably many orbits, with orbit rep-

resentatives x¢ = (0,0,0) and x,, = (2727,0,0) for n = 1,2,.... The action of the
group H = R on X is given by s - zg = (0, s,0) for all s; and for n > 1,
(2727, 5,0) if s < m;
Sy =4 (272" — (£2)272""! ncos(s — n),nsin(s —n)) ifn<s<n+m;

(27271 s — 7 —2n,0) if s >n+m.
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So the orbit of each z, (n > 1) consists of two vertical lines joined by an arc
of a helix situated on a cylinder of radius n; the action moves z,, along the ver-
tical lines at unit speed and along the arc at radial speed. This action is free,
non-proper and integrable (see [I3, Example 1.18] or [6, Example 3.3]). So the
associated transformation-group groupoid G = H x X is principal and integrable
by Example B3

The following characterization of integrability will be important later. In the
case of a transformation-group groupoid, Lemma reduces to a special case of
[1, Lemma 3.5].

Lemma 3.5. Let G be a locally compact, Hausdorff groupoid. Then G is integrable
if and only if, for each z € G, there exists an open neighborhood U of z in G° such
that

sup{\*(s71(U))} < .

xelU
Proof. The proof is exactly the same as the proof of [I, Lemma 3.5]. (]

If a groupoid fails to be integrable, there exists a z € G° such that
sup{A”(s™(U))} = o0
zecU

for every open neighborhood U of z; we then say that the groupoid fails to be
integrable at z.

It is evident from [I], 2] that integrability and k-times convergence in the orbit
space of a transformation group are closely related. Moreover, Lemma 2.6 of [§]
says that, if a principal groupoid fails to be proper and the orbit space G°/G is
Hausdorff, then there exists a sequence that converges 2-times in G°/G in the sense
of Definition

Definition 3.6. A sequence {x,} in the unit space of a groupoid G converges
k-times in G°/G to z € GV if there exist k sequences

i P ca

such that

(1) r(fyy(f))ézasneooforlgigk;

(2) 5(7,(5)) =z, for 1 <i<k;

(3) if1 <i < j <k, then ’y,(lj)('y,(f))*l — 00 as n — oo, in the sense that

{’y,(f )('y,(f))*l} admits no convergent subsequence.

Remarks 3.7. (a) Condition (2) in Definition [3.0]is needed so that the composition
in (3) makes sense.

(b) Definition does not require that x,, — z, but as in the transformation-
group case (|2, Definition 2.2]), this can be arranged by changing the sequence
which converges k-times: replace x,, by r(fy,(LI)) and replace ’y?(lj ) by %(lj )(%(11))71.

(c) Part (3) of Definition B.6l means %(Zj ) (’y,@)’1 is eventually outside every com-

pact set. In particular, if LL~! is compact, L"/,(ZZ) N L'y,(f ) = () eventually.

Example 3.8. Let G = H x X be a transformation-group groupoid (see Exam-
ple B.3) and suppose that {z,} C G is a sequence converging 2-times in G°/G to
z € GY. Then there exist two sequences

{3} = {(snyn)} and  {9P} = {(t, 20)}
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in G such that (1) y, — z and 2, — 2; (2) s} -y, = 2, and ¢t} - 2, = z,,; and
(3) (tns,',zn) — 00 as n — oo. To see that the sequence {z,} converges 2-times
in X/H to z in the sense of [2] §4], consider the two sequences {s,,} and {¢,} in H.
We have s, - ¢, — z and t,, - , — z using (1) and (2). Also, since z, — z by (1),
(3) implies that t,s, ' — oo in H.

Conversely, if {z,} C X converges 2-times in X/H to z, then there exist two
sequences {s,}, {t,} in H such that (1) s, -z, — z and t, -2, — 2 and (2)
tns,! — co. It is easy to check that

() = A{Gnssn-wa)} and (9P} = {(tn, t - 70)}

witness the 2-times convergence in G°/G of {z,} C G° to z € G°.

In the transformation-group groupoid of Example B4, the sequence {z, =
(2727,0,0)} converges 2-times in G°/G to zp = (0,0,0); to see this, just take
s, = e and t,, = 2n + 7 for each n.

In §4lwe will prove that a principal groupoid G is integrable if and only if C*(G)
has bounded trace. For the “only if” direction we will need to know that the
orbits are locally closed so that [4, Proposition 5.1] applies and « — L* induces
a homeomorphism of G°/G onto C*(G)"; Lemma below establishes that if
G is integrable, then the orbits are in fact closed, hence locally closed. We will
prove the contrapositive of the “if” direction, and a key observation for the proof is
Proposition B.11} if a groupoid fails to be integrable at some z, then there is a non-
trivial sequence {x,} which converges k-times in G°/G to z, for every k € N\ {0}.

We thank an anonymous referee for providing the proof of Lemma 3.9

Lemma 3.9. Let G be a second countable, locally compact, Hausdorff, principal
groupoid. If G is integrable, then all orbits are closed.

Proof. Let {ap;) : [z] € G°/G} be the family of measures from Remark B2(1).
We claim that, for fixed h € C.(G°/G), the function [z] fyem h(y) doy (y) is
continuous. To see this, choose g, € C.(G° x GY) such that, for all u € G°, the

function g, (u,-) increases to the function v — 1. Then

[ o) o) =tim [ gu(e )b darg@) =t [ fa)an )
y€lz] " Jyela] n Ja
where f,(7) = gn(7(y))h(s(7)). Since f, € C.(G), the function

wH/ﬂMMVW
G

is continuous for each n. Note that x — ny[x] gn(z,y)h(y) doyy (y) is compactly
supported for each n. Since limits of uniformly continuous functions are continuous,
= e h(y) doysy(y) is continuous; this function is constant on orbits, which
proves the claim.

Fix 29 € G° and suppose that G is integrable. Since G is principal, for each
compact subset M of G°/G, the function [] — (M) is bounded. In particular,
for each h € C.(G°/G)", [hday, € R. Since the the support of o) is [z], we
have

(3.2) {zo} = ﬂ {x : /hdam < /hda[wol}.

heC.(GY/G)+
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But the function [z] — [ cla] h(y) doz(y) is continuous, hence lower semi-continu-

y
ous, so the left-hand side of ([B:2) is an intersection of closed sets. Thus {z¢} is
closed in G°/G, and hence [x] is closed in G°. O

The transformation group of [I3, Example 1.18] provides an example of a non-
integrable free action with closed orbits (by choosing repetition numbers with in-
finite supremum). Thus there are non-integrable principal groupoids with closed
orbits.

Recall that a neighborhood W of G° is called conditionally compact if the sets
WV and VW are relatively compact for every compact set V' in G. The following
lemma will be used repeatedly.

Lemma 3.10. Let G be a second countable, locally compact, Hausdorff groupoid.

(1) Let z € G° and let K be a relatively compact neighborhood of z in G. There
exist a € R and a neighborhood U of z in G° such that 0 < a < \;(K) for
allz e U.

(2) Let Q be a conditionally compact neighborhood in G. Given any relatively
compact neighborhood V in G° such that QV # (), there exists ¢ € R such
that ¢ > 0 and A\ (Q) < c for allxz € V.

Proof. (1) Suppose not. Let {U;} be a decreasing sequence of open neighborhoods
of zin G°. There exists an increasing seqence i, < 49 < - < ip < --- and x,, € U;
such that A, (K) < 1/n for each n > 1. Note that z,, — z.
Let f € C.(G) such that 0 < f < 1, f(z) = 1 and supp f C K; note that
[ f(v)dA.(y) > 0. By the continuity of the Haar system,
> ()2 [ 1), 0) [ F)d) asn - o,

which is impossible since the left-hand side converges to 0 and [ f(7) dA.(vy) > 0.

(2) Let V be any relatively compact neighborhood in GY such that QV # 0.
Let f € C.(G) such that 0 < f < 1 and f is identically one on the relatively
compact subset QV. The function w — [ f(7)dA\,(7) is in C.(GP), so it achieves
a maximum ¢ > 0. Then, for x € V,

Ae(Q) = Ao (Qa) < / F) () < c. 0

n

Proposition 3.11. Let G be a locally compact, Hausdorff groupoid. Let z € G°
and suppose that G fails to be integrable at z. Then there exists a sequence {x,}
in G such that x, — z, and {x,} converges k-times in G°/G to z, for every
k € N\ {0}. In addition, if G is second countable, principal and the orbits are
locally closed, then x,, # z eventually.

Proof. Suppose the groupoid fails to be integrable at z. Fix k € N\ {0}. Let {U,}
be a decreasing sequence of open relatively compact neighborhoods of z in G°. By
Lemma

sup (N (s™H ()} = o0

yeUn
for each n. So we can choose a sequence {x,} such that z,, € U, and \*»(s~(U,,))
> n. Note that x,, — z as n — oo.

Let @ be an open symmetric conditionally compact neighborhood of z in G and

let V be an open relatively compact neighborhood of z in G°. By Lemma B.10(2)
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there exists ¢ > 0 such that \,(Q?) < ¢ whenever v € V. Choose ngy such that
(1)

ng > (k—1)c and U,, C V. Temporarily fix n > ng. Set vy’ = x,. For k > 2
choose k — 1 elements 7(2) .. ,fyr(f) as follows. Note that since z,, = r(fy,(ll)) eV,
we have

A(f%m»fxxwﬁ%
Ao, (rH(U) N7 ({zn})) = A, 0)(@Q7)
(k —1)c—c—(k 2)c > 0.

Aa, (rHUD\ QPY) 2

>

So there exists
12 e (rH UL NsT {2 ) \ Q%5Y;
note that r(*y( )€U, CV and s(yn (2 )) = z,. Next,

Az, ((ri (Un) \ (Q2'Vn U Q2%(12)))

> Az, (r_l(Un)) — Az, (QZ'YS)) - (QQ'%(LQ))
> Ae, (7 (U) N5 ({))) - (Mwwawyw>
> (k—3)c>0.

Continue until 77(11), e ,'yn ") have been chosen in this way.

If n > ng, then by construction s(%(L)) =z, and r('yﬁb)) € U, for each n; so

r('yr(f))—>zasn—>oofor1<z<k: Moreover (])( ) ¢gQ*for1<i<j<k
and n > ng. To see that {Vn ( T ) 13 tends to infinity, suppose that it doesn’t.
Then, 7(3)( ())_ — 7 by passing to a subsequence and relabelling. But then
SO = r(n’) = = and r(o (317) ) = (") — # implies 7 = 2,
which is impossible because ’y?(l )( (z)) ¢ Q? and Q contains G°. Hence {z,}
converges k-times in G°/G to z.

We claim that if G is second countable and principal, then x,, # z eventually. To
see this, suppose z,, = z frequently. Then \*(s~1(U,,)) > n frequently, and hence

(3.3) N (s7H(Uy)) = o0

The orbits are locally closed and G is second countable and principal, so the source
map restricts to a homeomorphism s| : 7=*({z}) — [z]. Since U; is relatively
compact, s~1([z]NUy) is relatively compact in r~1({z}) because s| : r=1({2}) — [2]
is a homeomorphism. But now A\*(s~1([z2]NU;)) = A\*(s~1(U1)) < oo, contradicting

@3). O

4. INTEGRABILITY OF G AND TRACE PROPERTIES OF C*(G)

Proposition 4.1. Let G be a second-countable, locally compact, Hausdorff, prin-
cipal groupoid. If C*(G) has bounded trace, then G is integrable.

The proof of Proposition f1]is based on that of [8, Theorem 2.3]. There, Muhly
and Williams choose a sequence {x,,} C GO with z,, — z which witnesses the failure
of the groupoid to be proper. They then carefully construct a function f € C.(G)
to obtain an element d of the Pedersen ideal of C*(G) such that tr(L*"(d)) does
not converge to tr(L*(d)). Since the Pedersen ideal is the minimal dense ideal [9]
Theorem 5.6.1], the ideal of continuous-trace elements cannot be dense, so C*(G)
does not have continuous trace. We adopt the same strategy, use exactly the
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same function f, but adapt the proof of [8 Theorem 2.3] using ideas from [6]
Proposition 3.5].

Proof of Proposition [l Fix M € N\ {0}. We will show that there is an element
d of the Pedersen ideal of C*(G), a sequence of representations {L*"} and ng > 0
such that tr(L*~(d)) > M whenever n > ng. Since M is arbitrary, C*(G) cannot
have bounded trace.

If G is not integrable, then the integrability fails at some z € GV by Lemma 3.5
If the orbits are not closed, then C*(G) cannot be CCR by [4, Theorem 4.1] and
hence cannot have bounded trace. So from now on we may assume that the orbits
are closed. By Proposition [B11] there exists a sequence {x,} such that x, # z,
T, — z, and {z,} converges k-times in G°/G to z, for every k € N\ {0}.

Since we will use exactly the same function f that was used in the proof of [8]
Theorem 2.3], our first task is to briefly outline its construction. Fix a function
g € C.(G) such that 0 < g < 1 and g is identically one on a neighborhood U of z.
Let N = suppg and let

FY =s7'({zphnr ! (ZnN) = s ' ({z) nrmH(N),
Fi=r'{z))ns  ([z]nN) =r"1({z}) nsH(N).

There exist symmetric, open, conditionally compact neighborhoods Wy and Wy in
G such that

GOCWo CWo CW, and FgUFEN CW,.
Thus WIz \ Woz C r=}(G°\ N). (The reason for using W; becomes clear at

[E4) below.) By a compactness argument, there exist open, symmetric, relatively
compact neighborhoods Vi € G° and V; of z in G such that Vi C V; and

(4.1) WiV \ WoVh C r~1(G°\ N).

Now note that if v € WIVlWI \ WoVoWo, then r(vy) € T(WIVQ \WoVp) € G°\ N.
It follows that the function ¢(") : G — [0, 1] defined by

. —7— —7
gV (7) = g(r(v)) ifye W, ViWy,
0 if v & WoVoWo

is well-defined and continuous with compact support in G. By construction
(WoVoWo)? = WoVoW2VoWo € WaVoWit € WoVoWo € WiViW} € WiV, W),

So there exists a function b € C.(G) such that 0 < b < 1, b is identically one on

WoVoWgVoWy and it is identically zero on the complement of valW‘j. Further,
we can replace b with (b + b*)/2 to ensure that b is self-adjoint. Set

note that f € C.(G) is self-adjoint.
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For € € L2(G, \,) and 7 € G we have
(g = [ Faga™) dr(a)
= [sreDglstanaa) dxa)
—5r() [ a(s(a)btra)é(a) dx'(a)
(4.2 — () [ r(@)blra Ne(a) druf)

By [8, Lemma 2.8], gV is an eigenvector for L®~ (f) with eigenvalue
i) = [atr@e V@) arefo) = [ gr(@)? dh, (o).
WoVoWo

By [8, Lemma 2.9], there exist an open Vo C V; and a conditionally compact
neighborhood Y of G° so that Y C W and if v € V3, then 7(Yv) C U. Notice that
YV,Y is a relatively compact subset of Wy VoWy. By LemmaB.I0(1) there exist an
open neighborhood V3 of z and a > 0 such that

(4.3) Ao (YV2Y') > a whenever v € V3.
Now, if @ € YVLY, then r(a) € U and hence g(r(«)) = 1; it follows that

pult) > / g(r(a)? drg, (@) = Ay, YVRY) >a >0
YW,V

whenever z,, € V3.

So far our set-up is the one from [§]. Now choose [ € N\ {0} such that la® > M.
(Note that a is independent of I!) The sequence {x,} converges k-times in G/G° to
z for every k € N\ {0}, so it certainly converges | times. So there exist | sequences

) 2% Wy ca
such that
(1) r(fyy(f))ézasnaooforlgigl;
(2) s(1)) =@, for 1 <i < ks
(3) if 1 <i<j <l then 73 ({1 = .
Moreover, by construction (see Proposition BI1]), we may take %(Ll) = x,. Tem-
porarily fix n. Set gT(Ll) =¢M, and for 2 < j <1 set

Dy o JIDOGT, i s(7) = s(3);
97’ (v) = .
0, otherwise
. T 7 .
_ Jalr(y)), ity e WiViW ;s
0, otherwise
. T 7 .
0, if 5y & WoVoWod,.
Each 97(3) (1 <4 <) is a well-defined function in C.(G) with support contained
" WOVOWO%S])' For1<i<j<li 77(1])(’)’7(11))71 ¢ (WoVoWy)? eventually, so there
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exists ng > 0 such that, for every 0 <i,j <1, i # 7,
WoVoWor? N WoVoWorl) =

whenever n > ng.

We now prove a generalization of [8, Lemma 2.8] which, together with (2],
immediately implies that each ggj ) is an eigenvector of L*(f) for 1 < j <.

Lemma 4.2. With the choices made above, for all a,v € G and 1 < j <,
g(r(M)g(r(@)blya™h)g? (@) = g7 (7)g(r(a))g (a).

Proof. Tf o ¢ WOVOWO%(lj ), then both sides are zero. So we may assume throughout
that a € WoVoWor{.

If v € WoVuWor?, then g (1) = g(r(7)) and ya~' € WoVoWgVoWs, so
b(ya~') =1 and both sides agree.

Ify e WIVlWMj) \WOVoWofy,(Lj)7 then g(r(v)) =0= gT(Lj)('y), so both sides are
zZero.

Finally, if v ¢ WIVlWI%@, then gﬁlj) (7) = 0, so the right-hand side is zero. On
the other hand, if ya=! € W;lleT(: supp b), then

(4.4) Y eMVAW 3y C WA W 5.
So vy ¢ WIV;LWI%(Lj ) implies ya ™! ¢ supp b, so the left-hand side is zero as well. [
()

Let uy;’ be the eigenvalue corresponding to the eigenvector ggj ), Using ({3),
W= [ (@) s (@) 2 A, (YY) = 0 (YVY) 2
WoVoWors o

whenever r('y,(lj)) € V3. Choose ny > ng such that n > ny implies z,, € V3 and
r(’y,(f)) € Vs for 1 < j <I. Then L®(f * f) is a positive compact operator with
l eigenvalues usf ) >a?for 1 < j <. Topush f * f into the Pedersen ideal, let

r € C.(0,00) be any function satisfying

0, ift<
(t)={2t— 22 jfa <420
r(t) = — T3, 1 3.5 <53

t, it 2 <t <||f * £l

Set d :=r(f = f). Now d is a positive element of the Pedersen ideal of C*(G) with
tr(L%(d)) > la® > M whenever n > n;. Since M was arbitrary, L% — tr(L%(d)) is
unbounded on C*(G)”. Thus C*(G) does not have bounded trace. O

Proposition 4.3. Suppose G is a second countable, locally compact, Hausdorff,
principal groupoid. If G is integrable, then C*(G) has bounded trace.

Proof. Since G is principal and integrable, the orbits are closed by Lemma [3.9] and
x +— L® induces a homeomorphism of G°/G onto C*(G)" by [4, Proposition 5.1].
To show that C*(G) has bounded trace, it suffices to see that for a fixed u € G°
and all f € C.(G), tr(L“(f* = f)) is bounded independent of u.

Fix u € G° and let £ € L%(G, \,). Since

L%ﬁaw:/}wwﬂawdmmx
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L¥(f) is a kernel operator on L?(G, \,) with kernel k¢ given by k¢(v,a) = f(ya™?h).
We will show that k; € L?*(G x G,\, x \,) and we will find a bound on k;
independent of u. This will complete the proof since tr(L“(f* = f)) = ||k¢||* by, for
example, [0, Theorem 3.4.16].

Notice that

kg2 = /G g0 d x M) = /G /G Flra D) dhu(y) dhu(a)

(4.5) - /G /G FOP oy (1) dha(@)

by Tonelli’s Theorem and right invariance. For a fixed «, the inner integral

LGB Bhriar2) < 171 o 1)
and is zero unless r(«) € s(supp f). The outer integral is zero unless s(«) = u. Let

K =7~ (s(supp f)) N5~ ({u}).
So

@ < /K 1£12 Ao (supD £) dAu(@)

< |I£1I%, sup {Ar(a)(supp f) : 7(a) € s(supp f) }Au (K
< || fIIA, sup {)\m(supp f) :x € s(supp f)} sup {)\Z(T*I(s(supp f:xze GO}.
Since s(supp f) is a compact subset of G°, by integrability there exists N > 0
such that
sup {)\ (s(supp f))) : x € GO} <N

(see also Remark [32]). Note that N does not depend on w. By Lemma BI0(2),
applied to the conditionally compact neighborhood supp f and the relatively com-
pact neighborhood s(supp f), there exists M > 0 such that A, (supp f) < M for all
x € s(supp f); that is,

sup{ A, (supp f) : « € s(supp f)} < M.

Note that M does not depend on wu.
Thus ||k¢]|? < | FIIZAMN, so ky € L*(G x G, A\, X \y) as claimed, and

tr(L*(f* * f)) = ks [I* < || FlZMN,
which is a bound on tr(L*(f* * f)) independent of w. O
Combining Propositions 1] and 3] we have

Theorem 4.4. Suppose G is a second countable, locally compact, Hausdorff, prin-
cipal groupoid. Then G is integrable if and only if C*(G) has bounded trace.
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