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(Communicated by Joseph A. Ball)

Abstract. Let P and Q be two idempotents on a Hilbert space. In 2005,
J. Giol in [Segments of bounded linear idempotents on a Hilbert space, J. Funct.
Anal. 229(2005) 405-423] had established that, if P + Q− I is invertible, then
P and Q are homotopic with s̃(P, Q) ≤ 2. In this paper, we have given a
necessary and sufficient condition that s̃(P, Q) ≤ 2, where s̃(P, Q) denotes the
minimal number of segments required to connect not only from P to Q, but
also from Q to P in the set of idempotents.

1. Introduction and statement of the main theorem

Let H be a separable Hilbert space. The set of all bounded linear operators
on H is denoted by B(H). An operator P ∈ B(H) is said to be an idempotent
if P 2 = P . For the sake of convenience, we denote the set of all idempotents in
B(H) by P. Two idempotents P and Q in P are said to be homotopic if they
can be connected by a continuous path of idempotents in B(H); we shall denote
this equivalence relation by P ∼ Q. As is well known, P ∼ Q if and only if
dimR(P ) = dimR(Q) and dimN (P ) = dimN (Q) (see [11]), where R(K) and
N (K) denote the range and the null-space of an operator K ∈ B(H), respectively.

Recently, a number of researchers have considered questions concerning the path
connectivity between idempotents (see [7, 8, 9, 11]). In 1979, J. Zemánek found that
the components of P are arcwise connected ([12]). In 1983, J. Esterle established
that there exists a polynomial connection between two homotopic idempotents of P
in a Banach algebra [8]. Particularly, in 2004, J. Esterle had obtained that, for two
homotopic idempotents P and Q in a finite dimensional real algebra, s̃(P, Q) ≤ 3
[9]. In 2005, J. Giol had proved that in an infinite dimensional Hilbert space, for
two homotopic idempotents P and Q, s̃(P, Q) ≤ 4 (see [11]), where s̃(P, Q) denotes
the minimal number of segments required to connect not only from P to Q, but
also from Q to P in P. Moreover, J. Giol had proved in [11] the following result.

Theorem G ([11]). Let P, Q ∈ P. If P + Q − I is invertible, then P ∼ Q with
s̃(P, Q) ≤ 2.
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In the present paper, our main task is to improve the above theorem by using
the different ideas and methods from that in [11].

To state the main result in this note, we need a notation.

Definition 1.1. Let P, Q ∈ P. If there exists an idempotent K such that R(K) =
R(P ), N (K) = N (Q), then K is called an insert of P and Q, denoted by K(P, Q).

Theorem 1.2. Let P, Q ∈ P. Then
(1) there exists an insert K(P, Q) of P and Q if and only if R(QP ) is closed,

R(P ) ∩N (Q) = {0} and N (P ∗) ∩R(Q∗) = {0};
(2) there exists an insert K(Q, P ) of Q and P if and only if R(PQ) is closed,

R(Q) ∩ N (P ) = {0} and N (Q∗) ∩R(P ∗) = {0}.

The proof of this result is decomposed in Section 2. As a consequence, we get
the following corollary.

Corollary 1.3. Let P, Q ∈ P. Then s̃(P, Q) ≤ 2 if and only if R(QP ) and R(PQ)
are closed, R(P )∩N (Q) = {0} and N (P ∗)∩R(Q∗) = {0}, and R(Q)∩N (P ) = {0}
and N (Q∗) ∩R(P ∗) = {0}.

From the details in Section 3, we shall see that Corollary 1.3 is an improvement
of Theorem G.

2. Proof of the main theorem and auxiliary results

In this section, we begin with some notation and terminology which are used
later.

Throughout this paper, the spectrum and the point spectrum, and the adjoint
of A ∈ B(H) are denoted by σ(A), σp(A), A∗, respectively. An operator P ∈ B(H)
is said to be orthogonal projection if P 2 = P = P ∗. An operator A ∈ B(H) is said
to be positive if (Ax, x) ≥ 0 for all x ∈ H. If A is positive, then A1/2 denotes the
positive square root of A. If ‖ A ‖≤ 1, then A is called a contraction operator. The
identity on a Hilbert space is denoted by I and the restriction of the identity on a
subspace M of H is denoted by IM, or shortly by I if there does not exist danger
of confusion. Besides, we denote the orthogonal direct sum and topological direct
sum by ⊕ .

To prove the main result, we need some lemmas.

Lemma 2.1. Let P, Q ∈ P and K(P, Q) be an insert of P and Q. If S is an
invertible operator in B(H), then SK(P, Q)S−1 is an insert of SPS−1 and SQS−1.

Proof. Observing that R(SPS−1) = SR(P ), R(SK(P, Q)S−1) = SR(K(P, Q)),
by Definition 1.1, we see that R(K(P, Q)) = R(P ), hence R(SK(P, Q)S−1) =
R(SPS−1). Similarly, we also have N (SK(P, Q)S−1) = N (SQS−1). So according
to Definition 1.1, SKS−1 is an insert of SPS−1 and SQS−1. �

This lemma shows that an insert of two idempotents P and Q is invariant under
similarity.

Lemma 2.2 ([5, 10]). Let A ∈ B(H). Then the following statements are equivalent:
(1) R(A) is closed.
(2) There exists an operator X ∈ B(H) such that AXA = A.
(3) R(A) = R(A∗A).
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Lemma 2.3 ([2]). Let P, Q ∈ P. If P + Q − I is invertible, then the following
statements hold:

(1) P (P +Q− I) = PQ = (P +Q− I)Q, Q(P +Q− I) = QP = (P +Q− I)P ;
(2) (P + Q − I)−1P = Q(P + Q − I)−1, P (P + Q − I)−1 = (P + Q − I)−1Q;
(3) P (P + Q − I)2 = PQP = (P + Q − I)2P, Q(P + Q − I)2 = QPQ =

(P + Q − I)2Q;
(4) (P + Q − I)−2P = P (P + Q − I)−2, Q(P + Q − I)−2 = (P + Q − I)−2Q.

Lemma 2.4 ([3]). Let P and Q be orthogonal projections. If R(P )∩R(Q) = {0},
R(P ) ∩ N (Q) = {0}, N (P ) ∩ R(Q) = {0}, and N (P ) ∩ N (Q) = {0}, then P and
Q have the following operator matrix forms:

P =
(

I 0
0 0

)
and Q =

(
Q0 Q

1
2
0 (I − Q0)

1
2 D

D∗Q
1
2
0 (I − Q0)

1
2 D∗(I − Q0)D

)

with respect to the space decomposition H = R(P ) ⊕N (P ), respectively, where Q0

is a positive contraction on R(P ), 0 and 1 are not in σp(Q0) and D is a unitary
from N (P ) onto R(P ).

Lemma 2.5. The set of all idempotents in A is invariant under similarity. That
is, let P be an idempotent in A. If S is an invertible element in A, then S−1PS is
still an idempotent.

Proof. In fact, (S−1PS)2 = S−1PSS−1PS = S−1P 2S = S−1PS, so the result
holds. �

Lemma 2.6 ([7]). Let P ∈ P. Then there exists an invertible operator U ∈ B(H)
such that U−1PU is an orthogonal projection.

Lemma 2.7 ([6]). Let A ∈ B(H) be invertible and Ã =
(

A B
C D

)
∈ B(H ⊕ K).

Then Ã is invertible if and only if D − CA−1B is invertible.

Lemma 2.8 ([1]). Let P, Q ∈ P. The segment [P, Q] is contained in the set of
idempotents if and only if (P −Q)2 = 0, where [P, Q] = {λP +(1−λ)Q, λ ∈ [0, 1]}.

Following we will give the proof of our main results.

Proof of Theorem 1.2. According to the property of symmetry, it is enough to show
that statement (1) holds. Moreover, observing that all of the concepts considered
in this theorem are similarly invariant, from Lemma 2.6, we can assume that Q is
an orthogonal projection.

Necessity. Define H1 = R(P )∩R(Q), H2 = R(P )∩N (Q), H3 = R(P )� (H1 ⊕
H2), H4 = N (P ∗) � (H5 ⊕H6), H5 = N (P ∗) ∩ N (Q) and H6 = N (P ∗) ∩ R(Q∗).
Then P and Q have the following operator matrix forms:

(1) P =

⎛
⎜⎜⎜⎜⎜⎜⎝

I P11 P12 P13

I P21 P22 P23

I P31 P32 P33

0
0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

,



3486 YAN-NI CHEN, HONG-KE DU, AND HAI-YAN ZHANG

(2) Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I
0

Q0 Q
1
2
0 (I − Q0)

1
2 D0

D∗
0Q

1
2
0 (I − Q0)

1
2 D∗

0(I − Q0)D0

0
I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with respect to the space decomposition H =
⊕6

i=1 Hi, respectively, where Q0 and
I − Q0 as operators defined on H3 are positive and injective, and D0 is a unitary
from H4 onto H3 by Lemma 2.4. In this case, I − Q has the operator matrix

(3) I − Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
I

I − Q0 −Q
1
2
0 (I − Q0)

1
2 D0

−D∗
0Q

1
2
0 (I − Q0)

1
2 D∗

0(Q0)D0

I
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

By the assumption that there exists K which is the insert of P and Q, then
H = R(K) ⊕ N (K) = R(P ) ⊕ N (Q), so R(P ) and N (Q) are complementary;
hence R(P ) ∩ R(I − Q) = R(P ) ∩ N (Q) = {0} by (1) and (3), that is, H2 = {0}.
From H = R(P ) ⊕ N (Q) = R(P ) ⊕R(I − Q), we have H6 = {0} by (1) and (3),
too. Now, (1), (2) and (3) can be simplified as follows:

(4) P =

⎛
⎜⎜⎝

I P11 P12

I P31 P32

0
0

⎞
⎟⎟⎠ ,

(5) Q =

⎛
⎜⎜⎜⎝

I

Q0 Q
1
2
0 (I − Q0)

1
2 D0

D∗
0Q

1
2
0 (I − Q0)

1
2 D∗

0(I − Q0)D
0

⎞
⎟⎟⎟⎠

and

(6) I − Q =

⎛
⎜⎜⎜⎝

0

I − Q0 −Q
1
2
0 (I − Q0)

1
2 D0

−D∗
0Q

1
2
0 (I − Q0)

1
2 D∗

0Q0D0

I

⎞
⎟⎟⎟⎠

with respect to the space decomposition H = H1 ⊕H3 ⊕H4 ⊕H5, respectively.
In general, H = R(P )⊕R(I−Q) = R(PR(P )+I−Q) (see [10]), so PR(P )+I−Q

as a self adjoint operator is invertible, that is,

PR(P ) + I − Q =

⎛
⎜⎜⎜⎝

I

2 − Q0 −Q
1
2
0 (I − Q0)

1
2 D0

−D∗
0Q

1
2
0 (I − Q0)

1
2 D∗

0Q0D0

I

⎞
⎟⎟⎟⎠
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is invertible. By Lemma 2.7 and directly computing, PR(P ) + I − Q is invertible if
and only if Q0 is invertible.

The remainder of this part of the proof is to show that R(QP ) is closed. Observe
that

QP =

⎛
⎜⎜⎝

I P11 P12

Q0 Q0P31 Q0P32

D∗
0Q

1
2
0 (I − Q0)

1
2 D∗

0Q
1
2
0 (I − Q0)

1
2 P31 D∗

0Q
1
2
0 (I − Q0)

1
2 P32

0

⎞
⎟⎟⎠

with respect to the space decomposition H = H1⊕H3⊕H4⊕H5. Define an operator
S by

S =

⎛
⎜⎜⎝

I −P11 −P12

I −P31 −P32

I
I

⎞
⎟⎟⎠ .

Clearly, S is invertible and

QPS =

⎛
⎜⎜⎝

I
Q0 0

D∗
0Q

1
2
0 (I − Q0)

1
2 0

0

⎞
⎟⎟⎠ .

Noting that R(QP ) = R(QPS), R(QP ) is closed if and only if the range of the

operator

(
Q0

D∗
0Q

1
2
0 (I − Q0)

1
2

)
is closed. For the sake of convenience, define A =(

Q0

D∗
0Q

1
2
0 (I − Q0)

1
2

)
. Observing that

A∗A = (Q0, Q
1
2
0 (I − Q0)

1
2 D0)

(
Q0

D∗
0Q

1
2
0 (I − Q0)

1
2

)
= Q0,

we find that the invertibility of Q0 implies that R(QP ) is closed.
Sufficiency. First, assume that R(QP ) is closed. Meanwhile, from the above

process, we can see that R(QP ) is closed if and only if Q0 is invertible.
Next, we shall construct an operator K such that K = K(P, Q).
Suppose that there exists an operator K = K(P, Q). Since R(K) = R(P ), K

should have the following operator matrix form:

K =

⎛
⎜⎜⎝

I K11 K12

I K31 K32

0
0

⎞
⎟⎟⎠

with respect to the space decomposition H = H1 ⊕H3 ⊕H4 ⊕H5. Since

N (Q) =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

0

−Q
− 1

2
0 (I − Q0)

1
2 D0x4

x4

x5

⎞
⎟⎟⎠ : xi ∈ Hi, i = 4, 5

⎫⎪⎪⎬
⎪⎪⎭
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and N (K) = N (Q), we have KN (Q) = 0. That is,

K

⎛
⎜⎜⎝

0

−Q
− 1

2
0 (I − Q0)

1
2 D0x4

x4

x5

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

I K11 K12

I K31 K32

0
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0

−Q
− 1

2
0 (I − Q0)

1
2 D0x4

x4

x5

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

K11x4 + K12x5

−Q
− 1

2
0 (I − Q0)

1
2 D0x4 + K31x4 + K32x5

0
0

⎞
⎟⎟⎠ = 0,

hence {
K11x4 + K12x5 = 0,

−Q
− 1

2
0 (I − Q0)

1
2 D0x4 + K31x4 + K32x5 = 0.

Since x4 and x5 are arbitrary, then K11 = 0, K12 = 0, K32 = 0, and K31 =
Q

− 1
2

0 (I − Q0)
1
2 D. Therefore, K(P, Q) has the following matrix form:

K =

⎛
⎜⎜⎝

I

I Q
− 1

2
0 (I − Q0)

1
2 D0

0 0
0

⎞
⎟⎟⎠

with respect to the space decomposition H = H1 ⊕ H3 ⊕ H4 ⊕ H5. In this case,
noting that

(P − K)2 =

⎛
⎜⎜⎝

0 P11 P12

0 0 P31 − Q
− 1

2
0 (I − Q0)

1
2 D0 P32

0 0
0

⎞
⎟⎟⎠

2

= 0,

from Lemma 2.8 we see that [P, K] is in P.
We will now prove that all of the points in [K, Q] are idempotents, that is,

(Q − K)2 = 0. In fact, observing that

rclQ − K =

⎛
⎜⎜⎜⎝

0

Q0 − I Q
1
2
0 (I − Q0)

1
2 D0 − Q

− 1
2

0 (I − Q0)
1
2 D0

D∗
0Q

1
2
0 (I − Q0)

1
2 D∗

0(I − Q0)D0

0

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0

−(I − Q0) −Q
− 1

2
0 (I − Q0)

3
2 D0

D∗
0Q

1
2
0 (I − Q0)

1
2 D∗

0(I − Q0)D0

0

⎞
⎟⎟⎟⎠ ,

where D0 is unitary, we get direct calculations that show that (Q − K)2 = 0. �
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Proof of Corollary 1.3. From (1) in Theorem 1.2, we obtain that P and Q can be
connected by two idempotent-valued segments [P, K] and [K, Q]; that is, s(P, Q) ≤
2, where s(P, Q) denotes the minimal number of segments required to connect P
and Q in P. Similarly, from (2) in Theorem 1.2, we obtain s(Q, P ) ≤ 2. Therefore,
s̃(P, Q) ≤ 2. �

3. Consequences and remarks

Proposition 3.1. Let P, Q ∈ P. If P +Q−I is invertible, then R(PQ) and R(QP )
are closed, R(P )∩N (Q) = {0} and N (P ∗)∩R(Q∗) = {0}, and R(Q)∩N (P ) = {0}
and N (Q∗) ∩R(P ∗) = {0}.

Proof. It is only to prove that R(PQ) is closed since P and Q are symmetrical.
In fact, by the assumption that P + Q − I is invertible, then using Lemma 2.3,

we have P = PQ(P + Q − I)−1 and Q = (P + Q − I)−1PQ, so

PQ = PQ(P + Q − I)−1(P + Q − I)−1PQ = PQ(P + Q − I)−2PQ.

Hence R(PQ) is closed by Lemma 2.2.
Meanwhile, by the fact that P + Q − I is invertible, it is not difficult to get

R(P )∩N (Q) = {0} and R(Q)∩N (P ) = {0}. Similarly, by the fact that (P +Q−
I)∗ = P ∗ + Q∗ − I is invertible, we can also get that N (P ∗) ∩ R(Q∗) = {0} and
N (Q∗) ∩R(P ∗) = {0}. �

Remark 3.2. In Proposition 3.1, R((I −P )(I −Q)) and R((I −Q)(I −P )) are also
closed. In fact, observing that P + Q − I = −((I − P ) + (I − Q)− I) is invertible,
from Proposition 3.1 the result holds.

Remark 3.3. (1) In Theorem 1.2, the operator P +Q−I is not necessarily invertible.
In fact, noting that

P + Q − I =

⎛
⎜⎜⎜⎝

I 0 P11 P12

0 Q0 P31 + Q
1
2
0 (I − Q0)

1
2 D0 P32

0 D∗
0Q

1
2
0 (I − Q0)

1
2 −D∗

0Q0D0 0
0 0 0 −I

⎞
⎟⎟⎟⎠ ,

then by Lemma 2.7 we see that P + Q − I is invertible if and only if Q0 and
I + Q

− 1
2

0 (I −Q0)
1
2 P31D

∗ are invertible. By the discussion in the preceding section,
R(QP ) is closed if and only if Q0 is invertible.

This shows that our improvement is meaningful.
(2) Let P, Q ∈ P. Then the fact that R(PQ) is closed does not imply that R(QP )

is closed.
For instance, define two operators P and Q on H⊕H by

P =
(

I 0
0 0

)
and Q =

(
0 A
0 I

)
,

respectively, where R(A) is not closed. It is clear that P and Q are idempotents.
We observe that

PQ =
(

0 A
0 0

)
and QP = 0,

where R(PQ) = R(A) is not closed, but R(QP ) is closed.
This shows us that the statements (1) and (2) in Theorem 1.2 are independent

of each other.
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Lemma 3.4 ([4]). Let f be an element in a Banach algebra. If ‖ 1− f ‖< 1, then
f is invertible with

‖ f−1 ‖≤ 1
1− ‖ 1 − f ‖ .

The following corollary was obtained by J. Giol in [11]. Here, we give an alter-
native proof, which is based on the ideas and the methods used in Section 2.

Corollary 3.5 (Lemma 6.1 in [11]). The following assertions are equivalent for
every pair of orthogonal projections in B(H):

(1) ‖ P − Q ‖< 1.
(2) The element P + Q − I is invertible.
(3) s̃(P, Q) ≤ 2.
(4) H = R(P ) ⊕N (Q).

Proof. Let P and Q be a pair of orthogonal projections and denote H1 = R(P ) ∩
R(Q), H2 = R(P ) ∩ N (Q), H3 = R(P ) � (H1 ⊕ H2), H4 = N (P ) � (H5 ⊕ H6),
H5 = N (P ) ∩ N (Q) and H6 = N (P ) ∩ R(Q). Then P and Q have the following
operator matrix forms:

(7) P =

⎛
⎜⎜⎜⎜⎜⎜⎝

I
I

I
0

0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

and

(8) Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I
0

Q0 Q
1
2
0 (I − Q0)

1
2 D0

D∗
0Q

1
2
0 (I − Q0)

1
2 D∗

0(I − Q0)D0

0
I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with respect to the space decomposition H =
⊕6

i=1 Hi, respectively.
Following we will complete the proof.
(1)⇒(2) If ‖ P − Q ‖< 1, then H2 = {0}, H6 = {0} and ‖ I − Q0 ‖< 1, so from

Remark 3.3, Q0 is invertible; hence (7) and (8) can be simplified as follows

P =

⎛
⎜⎜⎝

I
I

0
0

⎞
⎟⎟⎠

and

Q =

⎛
⎜⎜⎜⎝

I

Q0 Q
1
2
0 (I − Q0)

1
2 D0

D∗
0Q

1
2
0 (I − Q0)

1
2 D∗

0(I − Q0)D0

0

⎞
⎟⎟⎟⎠ .
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Observing that

P + Q − I =

⎛
⎜⎜⎜⎝

I

Q0 Q
1
2
0 (I − Q0)

1
2 D0

D∗
0Q

1
2
0 (I − Q0)

1
2 −D∗

0Q0D0

−I

⎞
⎟⎟⎟⎠ ,

since −D∗
0Q0D0−D∗

0Q
1
2
0 (I−Q0)

1
2 Q−1

0 Q
1
2
0 (I−Q0)

1
2 D0 = −I is invertible, P +Q−I

is invertible by Lemma 2.7.
(2)⇒(3) If P + Q − I is invertible, then let K(P, Q) = P (P + Q − I)−1Q and

K ′(Q, P ) = Q(P + Q − I)−1P, so from Theorem 1.2, we have s̃(P, Q) ≤ 2.
(3)⇒(4) It is obvious.
(4)⇒(1) Noting that P and Q are orthogonal projections, if H = R(P )⊕N (Q),

then H = R(P ) ⊕R(I − Q) = R(P + I − Q). Obviously, P + I − Q is invertible,
and R(P ) ∩ R(I − Q) = {0}, R(P ) ⊕R(I − Q) = H. Observe that P and I − Q
have the following operator matrix forms:

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

I
I

I
0

0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

and

I − Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
I

I − Q0 −Q
1
2
0 (I − Q0)

1
2 D0

−D∗
0Q

1
2
0 (I − Q0)

1
2 D∗

0Q0D0

I
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with respect to the space decomposition H =
⊕6

i=1 Hi, respectively. In this case,

‖ P − Q ‖ = ‖
(

I − Q0 −Q
1
2
0 (I − Q0)

1
2 D0

−D∗
0Q

1
2
0 (I − Q0)

1
2 −D∗

0(I − Q0)D0

)
‖ =‖ I − Q0 ‖ 1

2 < 1.

�
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[12] J. Zemánek, Idempotents in Banach algebra, Bull. London Math. Soc. 11 (1979) 177-183.
MR0541972 (80h:46073)

Department of Mathematics, Shaanxi University of Technology, Hanzhong 723001,

People’s Republic of China

E-mail address: operatorguy@126.com

College of Mathematics and Information Science, Shaanxi Normal University, Xi’an

710062, People’s Republic of China

E-mail address: hkdu@snnu.edu.cn

College of Mathematics and Information Science, Shaanxi Normal University, Xi’an

710062, People’s Republic of China

http://www.ams.org/mathscinet-getitem?mr=1634900
http://www.ams.org/mathscinet-getitem?mr=1634900
http://www.ams.org/mathscinet-getitem?mr=2161918
http://www.ams.org/mathscinet-getitem?mr=2161918
http://www.ams.org/mathscinet-getitem?mr=2199192
http://www.ams.org/mathscinet-getitem?mr=2199192
http://www.ams.org/mathscinet-getitem?mr=2305151
http://www.ams.org/mathscinet-getitem?mr=2305151
http://www.ams.org/mathscinet-getitem?mr=697127
http://www.ams.org/mathscinet-getitem?mr=697127
http://www.ams.org/mathscinet-getitem?mr=2038725
http://www.ams.org/mathscinet-getitem?mr=2038725
http://www.ams.org/mathscinet-getitem?mr=0293441
http://www.ams.org/mathscinet-getitem?mr=0293441
http://www.ams.org/mathscinet-getitem?mr=2182594
http://www.ams.org/mathscinet-getitem?mr=2182594
http://www.ams.org/mathscinet-getitem?mr=0541972
http://www.ams.org/mathscinet-getitem?mr=0541972

	1. Introduction and statement of the main theorem 
	2. Proof of the main theorem and auxiliary results 
	3. Consequences and remarks
	Acknowledgments
	References

