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FINITE UNIONS OF EQUIVALENCE RELATIONS

JOHN KITTRELL

(Communicated by Julia Knight)

Abstract. Say that a class of equivalence relations C has the finite union
property if every equivalence relation that is the union of finitely many members
of C must itself be a member of C. Then the classes of hyperfinite, measure-
amenable, Fréchet-amenable, and cheap equivalence relations have the finite
union property.

1. Introduction

Let X be a standard Borel space. An equivalence relation E on X is hyperfinite
if there is an increasing sequence 〈Fn〉n∈N of finite Borel subequivalence relations
of E such that E =

⋃
n∈N

Fn (equivalently, if there is a Borel action of Z on X
that induces E). For more on countable Borel equivalence relations in general,
see Jackson-Kechris-Louveau [2]. Despite being the object of much scrutiny in
recent years, many basic questions about hyperfiniteness remain open. We answer
one such question by showing that if there are hyperfinite equivalence relations
E1, ..., En such that E =

⋃
i≤n Ei is an equivalence relation, then E is hyperfinite.1

Our proof will actually extend to wider classes of equivalence relations, so we state
the theorem in a more general form.

Suppose Y is a non-empty set and E is an arbitrary equivalence relation on Y .
A set B ⊆ Y is E-invariant if

(∀x ∈ B)(∀y ∈ Y )xEy ⇒ y ∈ B.

A set C ⊆ Y is a complete section of E if (∀x ∈ Y )[x]E ∩ C �= ∅. If F is also an
equivalence relation on Y and E ⊆ F , say that E has finite index in F if every F -
class contains at most finitely many E-classes. If C is a class of equivalence relations,
say that C has the finite union property if E ∈ C whenever there are equivalence
relations E1, ..., En ∈ C such that dom(E1) = · · · = dom(En) and E =

⋃
i≤n Ei.

Theorem 1.1. Suppose that C is a class of countable Borel equivalence relations
such that for E and F arbitrary countable Borel equivalence relations,

(1) if dom(E) = dom(F ), E ⊆ F , E ∈ C, and E has finite index in F , then
F ∈ C,
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(2) if B ⊆ dom(E) is Borel and E ∈ C, then E|B ∈ C;
(3) if B ⊆ dom(E) is a Borel complete section of E and E|B ∈ C, then E ∈ C;

and
(4) if {Xi}i≤N is a partition of dom(E) into finitely many Borel E-invariant

sets with E|Xi ∈ C for each i ≤ N , then E ∈ C.
Then C has the finite union property.

The key to proving Theorem 1.1 is a lemma about covering sets with equivalence
classes. We therefore make a brief combinatorial excursion before embarking on the
proof.

2. The lemma

Fix a non-empty set Y . Observe that if E, E1, ..., En are equivalence relations
on Y such that E =

⋃
i≤n Ei, then for every E-class C we have

(∀x ∈ C)
⋃

i≤n

[x]Ei
= C.

However, not all of the Ei subequivalence classes in the above union may be neces-
sary to cover C. Some classes may be contained in the union of others. It will be
convenient to analyze this observation in a more general setting.

Definition 2.1. Suppose A ⊆ Y is a non-empty set and E = 〈E1, ..., En〉, where
each Ei is an equivalence relation on Y . Say that a sequence α ∈ (P(A))n is an
E -minimal cover of A if there are points x1, ..., xn ∈ A such that

(1) α = 〈[x1]E1 , ..., [xn]En
〉,

(2) A =
⋃

i≤n[xi]Ei
, and

(3) (∀i ≤ n)[xi]Ei
�

⋃
j �=i[xj ]Ej

.

The goal is to show that there are at most finitely many E -minimal covers of a
set for a fixed E . In the following remarks assume A, Ei, and E are as above.

First, we would like to “relativize” the notion of an E -minimal cover to subsets
of A. Informally speaking, the first remark below says that removing sets from an
E -minimal cover leaves an E ′-minimal cover for the leftover portion of A, where
E ′ is a sequence of equivalence relations on Y with lh(E ′) < lh(E ). The second
remark below says that E -minimal covers of subsets of A in the relative sense are
uniquely determined by E .

Notation. If t = 〈i1, ..., im〉 is a subsequence of 〈1, ..., n〉 and α = 〈a1, ..., an〉, let α|t
denote the sequence 〈ai1 , ..., aim

〉.

Remark 2.2. Let n ≥ 2 and x1, ..., xn ∈ A be such that 〈[x1]E1 , ..., [xn]En
〉 is an

E -minimal cover of A. Fix i ≤ n. Define the non-empty set Ai = A\[xi]Ei
. Then

let
Ei = 〈E1|Ai, ..., En|Ai〉 and αi = 〈[x1]E1 ∩ Ai, ..., [xn]En

∩ Ai〉.
If t = 〈1, ..., î, ..., n〉 (the sequence 〈1, ..., n〉 with its ith term deleted), then αi|t is
an Ei|t-minimal cover of Ai. Indeed, αi|t clearly satisfies conditions (1) and (2) of
Definition 2.1 relative to Ei|t and Ai. For j ≤ n, define the set

rj = [xj ]Ej
\

⋃

l �=j

[xl]El
.
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Then rj �= ∅ by condition (3) of Definition 2.1 relative to E and A. Suppose now
that j is a term in t. Then rj ⊆ [xj ]Ej

∩ Ai and rj � [xl]El
for any l �= j. Hence

[xj ]Ej
∩ Ai �

⋃

l �=j,i

[xl]El
∩ Ai.

So αi|t satisfies condition (3) of Definition 2.1 relative to Ei|t and Ai.

Remark 2.3. Suppose B ⊆ A is a non-empty set and let

EB = 〈E1|B, ..., En|B〉.

If there are points x1, ..., xn ∈ A such that

αB = 〈[x1]E1 ∩ B, ..., [xn]En
∩ B〉

is an EB-minimal cover of B, then αB is uniquely determined by the equivalence
classes [x1]E1 , ..., [xn]En

. That is to say, there is no other choice of equivalence
classes [x′

1]E1 , ..., [x
′
n]En

such that

αB = 〈[x′
1]E1 ∩ B, ..., [x′

n]En
∩ B〉.

Indeed, suppose there was an x′
1 ∈ A (say) such that [x′

1]E1 �= [x1]E1 and

[x′
1]E1 ∩ B = [x1]E1 ∩ B.

Then this would contradict the fact that [x′
1]E1 ∩ [x1]E1 = ∅ and [x1]E1 ∩ B �= ∅.

We now come to the key lemma.

Lemma 2.4. If A ⊆ Y is a non-empty set and E = 〈E1, ..., En〉, where each Ei

is an equivalence relation on Y , then there are at most finitely many E -minimal
covers of A.

Proof. The proof is by induction on n. The base case n = 1 is trivial (there is
at most one way to cover a set with one E1-class). Inductively, assume that the
lemma holds at n ≥ 1. That is, if A′ ⊆ Y is a non-empty set and E ′ is a sequence
of equivalence relations on Y of length n, then there are at most finitely many
E ′-minimal covers of A′. Suppose A ⊆ Y is non-empty and E = 〈E1, ..., En+1〉,
where each Ei is an equivalence relation on Y .

For a sequence s, let πi(s) denote the ith term that occurs in s. Define the set

S = {α : α is an E -minimal cover of A}.

Fix a ∈ A. Then define the set

Si = {α ∈ S : a ∈ πi(α)}.

It follows that S =
⋃

i≤n+1 Si, as a must belong to some term in α, for any α ∈ S.
Note that

(∀α, β ∈ Si)πi(α) = πi(β),

since two components of the same partition sharing a point must be the same. So
let [xi]Ei

be this common ith coordinate of all α ∈ Si.
We now use the induction hypothesis to show that Si is finite. Fix α ∈ Si. Say

that there are points x1, ..., xn+1 ∈ A (including xi from above) such that

α = 〈[x1]E1 , ..., [xn+1]En+1〉.
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It suffices to show that there are only finitely many choices for the terms in α (we
already know that there is only one choice for its ith coordinate, namely [xi]Ei

).
Let Ai = A\[xi]Ei

�= ∅. Then set

Ei = 〈E1|Ai, ..., En+1|Ai〉 and αi = 〈[x1]E1 ∩ Ai, ..., [xn+1]En+1 ∩ Ai〉.

If t = 〈1, ..., î, ..., n + 1〉, then αi|t is an Ei|t-minimal cover of Ai by Remark 2.2.
By the induction hypothesis, there are only finitely many choices for the terms in
αi|t, as lh(t) = n. By Remark 2.3, the terms in αi|t are uniquely determined by
the terms in α|t, so there are only finitely many choices for the terms in α|t. Since
[xi]Ei

(the ith coordinate of α) is fixed, there are only finitely many choices for the
terms in α. �

3. The proof

Given equivalence relations E1, ..., En having a common domain, Lemma 2.4
allows us to specify finitely many Ei-classes contained in a particular type of set
(viz., a set that can be minimally covered by the equivalence relations). If we
return to the original scenario and think of this particular set as an E-class of an
equivalence relation E such that E =

⋃
i≤n Ei, an approach to proving Theorem 1.1

presents itself.

Proof of Theorem 1.1. Suppose E is an equivalence relation such that E =
⋃

i≤n Ei,
Ei ∈ C for each i, and X = dom(E1) = · · · = dom(En). We must show that E ∈ C.
Let E = 〈E1, ..., En〉. The idea is to break X into finitely many Borel E-invariant
pieces corresponding to the “lexicographically least” minimal cover of a point’s
E-class, then show that the set of points that induce these covers is a complete
section of E on which the restriction of E belongs to C. Let x ∈ X and t ∈ Seqn

be arbitrary for the remainder of the paragraph, where

Seqn = {t : t �= ∅ is a subsequence of 〈1, ..., n〉}.
Define the sequence

α(x) = 〈[x]E1 , ..., [x]En
〉.

Let tx denote the lexicographically least t such that

(∃y ∈ [x]E)α(y)|t is an E |t-minimal cover of [x]E .

Note that tx is E-invariant. Define the Borel set

Xt = {y ∈ X : ty = t}.
One approach to seeing that sets of this form are Borel is by using the Feldman-
Moore Theorem [1] to define them in a first order way using only number quantifiers
and Borel relations. Moreover, Xt is E-invariant. We denote the collection of
lexicographically least minimal covers of [x]E as

Qx = {α : (∃y ∈ [x]E)α = α(y)|tx is a E |tx-minimal cover of [x]E}.
Then Qx is finite by Lemma 2.4 and is E-invariant. Finally, define the Borel set

Ct = {y ∈ Xt : α(y)|t ∈ Qy}.
Informally, a point belongs to Ct if it induces the correct minimal cover of the
E-class to which it belongs.
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Let t ∈ Seqn be such that Xt �= ∅. Observe that Ct is a Borel complete section
of E|Xt. Indeed, fix x ∈ Xt. If y ∈ [x]E , then

[x]E =
⋃

i≤n

[y]Ei
,

and so there will be a collection of sequences s ∈ Seqn such that α(y)|s is an E |s-
minimal cover of [x]E (just throw away the terms in α(y) that are not needed to
cover [x]E). Take the ≤lex-infimum of all such sequences s as y varies over [x]E .
This infimum will be t, and the non-empty set of points y ∈ [x]E such that α(y)|t
is an E |t-minimal cover of [x]E will be [x]E ∩ Ct.

We now show that E|Ct ∈ C. Let i be a term in t, say the jth one. By properties
(1) and (2), it suffices to show that Ei|Ct has finite index in E|Ct. Fix x ∈ Ct and
say Qx = {β1, ..., βk}. Note that

(∀y ∈ [x]E)α(y)|t = βl ⇒ y ∈ πj(βl).

So the set {y ∈ [x]E : α(y)|t = βl} is contained in one Ei-class; namely, πj(βl).
Seeing it as

[x]E|Ct
=

⋃

l≤k

{y ∈ [x]E : α(y)|t = βl},

the above observation shows that [x]E|Ct
contains at most k-many Ei|Ct-classes.

It follows that E|Ct ∈ C. Hence E|Xt ∈ C by property (3), as Ct is a complete
section of E|Xt. Since the non-empty Xt sets partition X, we have E ∈ C by
property (4). �
Corollary 3.1. The classes of hyperfinite, measure-amenable, Fréchet-amenable
and cheap equivalence relations have the finite union property.

Proof. It suffices to show that each class satisfies properties (1)-(4) in Theorem 1.1.
The hyperfinite case follows from some applications of the Feldman-Moore Theorem
[1]. See Proposition 1.3 of Jackson-Kechris-Louveau [2], for example. Proofs of the
relevant closure properties for the amenable classes can also be found in Jackson-
Kechris-Louveau (Propositions 2.9 and 2.15). See Section 26 of Kechris-Miller [3]
for the case of cheap equivalence relations. �
Remark 3.2. It is an open question whether the class of treeable equivalence relations
(namely, those countable Borel equivalence relations that admit a tree structure on
their equivalence classes) satisfies property (2) in Theorem 1.1. An affirmative
answer would imply that this class also has the finite union property.
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