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A SUFFICIENT AND NECESSARY CONDITION FOR THE
CONVERGENCE OF THE SEQUENCE OF SUCCESSIVE

APPROXIMATIONS TO A UNIQUE FIXED POINT

TOMONARI SUZUKI

(Communicated by N. Tomczak-Jaegermann)

Abstract. If (X, d) is a complete metric space and T : X → X is a con-
traction mapping, then the conclusion of the Banach-Caccioppoli contraction
principle is that the sequence of successive approximations of T starting from
any point of the space converges to a unique fixed point. In this paper, we
obtain a sufficient and necessary condition of the above conclusion in terms of

the so-called strong Leader mappings.

1. Introduction

The following famous theorem is referred to as the Banach-Caccioppoli contrac-
tion principle. This theorem is very forceful and simple, and it became a classical
tool in nonlinear analysis.

Theorem 1 (Banach [1] and Caccioppoli [2]). Let (X, d) be a complete metric
space and let T be a contraction mapping on X; i.e., there exists r ∈ [0, 1) such
that d(Tx, Ty) ≤ r d(x, y) for all x, y ∈ X. Then the following holds:

(A) T has a unique fixed point, and for any x ∈ X the sequence of successive
approximations {Tnx} converges to the fixed point.

There are thousands of fixed point theorems in metric spaces. However, the
conclusion of most of theorems is (A). For example, the conclusion of Ćirić’s [5],
Edelstein’s [6], Kannan’s [8], Kirk’s [10], Matkowski’s [12], Meir-Keeler’s [13] and
Suzuki’s [15, 16] fixed point theorems is (A). There are a few exceptions. For
example, the conclusions of Caristi’s [3, 4] and Subrahmanyam’s [14] fixed point
theorems and their generalizations are not (A). See Kirk’s survey [9].

In 1983, Leader obtained a sufficient and necessary condition of some condition
which is closely connected with (A). See also [7, 18].

Definition 1 (Leader [11]). Let T be a mapping on a metric space (X, d). Then
T is called a Leader mapping if the following holds:
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(B) For x, y ∈ X and ε > 0, there exist δ > 0 and ν ∈ N such that

d(T ix, T jy) < ε + δ implies d(T i+νx, T j+νy) < ε

for all i, j ∈ N ∪ {0}, where T 0 is the identity mapping on X.

Theorem 2 (Leader [11]). Let T be a mapping on a metric space (X, d). Then T
is a Leader mapping if and only if the following holds:

(C) {Tnx} is a Cauchy sequence and limn d(Tnx, Tny) = 0 for all x, y ∈ X.

Conditions (A) and (C) are very close. However, Theorem 2 does not assure the
existence of fixed points. So from this point of view, we might be able to consider
that both conditions are quite different. The author thinks that Theorem 2 is
excellent; however, it is not perfect. In this paper, we proceed with Leader’s study
and complete the study. That is, we obtain a sufficient and necessary condition of
(A).

2. Main results

Throughout this paper we denote by N the set of all positive integers.
Since Condition (C) is weaker than (A), we have to introduce a condition which

is stronger than (B).

Definition 2. Let T be a mapping on a metric space (X, d). Then T is called a
strong Leader mapping if (B) and the following hold:

(D) For x, y ∈ X, there exist ν ∈ N and a sequence {αn} in (0,∞) such that

d(T ix, T jy) < αn implies d(T i+νx, T j+νy) < 1/n

for all i, j ∈ N ∪ {0} and n ∈ N.

We shall prove that Condition (A) and the conjunction of Conditions (B) and
(D) are equivalent.

Theorem 3. Let (X, d) be a complete metric space and let T be a strong Leader
mapping on X. Then (A) holds.

Proof. By Theorem 2, {Tnx} is a Cauchy sequence and limn d(Tnx, Tny) = 0 for
all x, y ∈ X. Since X is complete, there exists z ∈ X such that limn Tnx = z for
all x ∈ X. From this, there exists at most one fixed point of T . Fix x ∈ X. From
(D), there exist ν ∈ N and a sequence {αn} in (0,∞) such that

d(T ix, T jz) < αn implies d(T i+νx, T j+νz) < 1/n

for all i, j ∈ N ∪ {0} and n ∈ N. For k ∈ N, there exists � ∈ N such that � ≥ k and
d(T �x, z) < αk because limn Tnx = z. So we have

d(T �+νx, T νz) < 1/k.

As k tends to ∞, we obtain d(z, T νz) = 0; that is, T νz = z. Since limn Tnz = z, z
is a fixed point of T . �

Theorem 4. Let (X, d) be a metric space and let T be a mapping on X. Assume
that (A) holds. Then T is a strong Leader mapping.
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Proof. Let z ∈ X be a unique fixed point of T . From the assumption, {Tnx} is
a Cauchy sequence and limn d(Tnx, Tny) = d(z, z) = 0 for all x, y ∈ X. So by
Theorem 2, T satisfies (B). Let us prove (D). Fix x, y ∈ X and n ∈ N. We choose
L ∈ N such that d(Tmx, z) < 1/(2 n) and d(Tmy, z) < 1/(2 n) for all m ∈ N with
m > L. Put

αn := min
{

min
{

inf{d(T �x, Tmy) : m ∈ N ∪ {0}, Tmy �= T �x}

: � ∈ {0, 1, · · · , L}, T �x �= z
}
,

min
{

inf{d(T �y, Tmx) : m ∈ N ∪ {0}, Tmx �= T �y}
: � ∈ {0, 1, · · · , L}, T �y �= z

}
,

1
}

,

where min ∅ = ∞ and inf ∅ = ∞.
We shall show αn > 0. If not, then without loss of generality, we may assume

there exists λ ∈ {0, 1, · · · , L} such that

Tλx �= z and inf
{
d(Tλx, Tmy) : m ∈ N ∪ {0}, Tmy �= Tλx

}
= 0.

Then we can choose a sequence {mj} in N ∪ {0} such that

Tmj y �= Tλx and lim
j→∞

d(Tλx, Tmj y) = 0.

Since Tmj y �= Tλx for all j ∈ N, we have limj mj = ∞ and hence

d(Tλx, z) = lim
j→∞

d(Tλx, Tmj y) = 0.

This is a contradiction. Therefore we obtain αn > 0.
Fix i, j ∈ N ∪ {0} with d(T ix, T jy) < αn. We consider the following cases:

(i) T ix = T jy,
(ii) i ≤ L and T ix �= z,
(iii) j ≤ L and T jy �= z,
(iv) T ix = z and T jy = z,
(v) T ix = z and j > L,
(vi) T jy = z and i > L,
(vii) i > L and j > L.

i ≤ L, T ix �= z i ≤ L, T ix = z i > L

j ≤ L, T jy �= z (ii), (iii) (iii) (iii)
j ≤ L, T jy = z (ii) (iv) (vi)

j > L (ii) (v) (vii)

In the first case, it is obvious that d(T i+1x, T j+1y) = 0 < 1/n. In the second case,
we have

d(T ix, T jy) < αn ≤ inf
{
d(T ix, Tmy) : m ∈ N ∪ {0}, Tmy �= T ix

}

and hence T ix = T jy. Thus the first case includes the second case. Similarly the
first case includes the third case. Also, it is obvious that the first case includes the
fourth case. In the fifth case, we have

d(T i+1x, T j+1y) = d(Tz, T j+1y) = d(z, T j+1y) < 1/(2 n) < 1/n.
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In the sixth case, we can prove d(T i+1x, T j+1y) < 1/n as in the fifth case. In the
seventh case, we obtain

d(T i+1x, T j+1y) ≤ d(T i+1x, z) + d(T j+1y, z) < 1/(2 n) + 1/(2 n) = 1/n.

Thus we obtain (D). �

From the proof Theorem 4, we obtain the following.

Theorem 5. Let T be a mapping on a complete metric space (X, d). Then the
following are equivalent:

(i) (A) holds.
(ii) T is a strong Leader mapping.
(iii) (B) and the following hold:

(E) For x, y ∈ X, there exists a sequence {αn} in (0,∞) such that

d(T ix, T jy) < αn implies d(T i+1x, T j+1y) < 1/n

for all i, j ∈ N ∪ {0} and n ∈ N.

3. Additional result

We finally give an alternative proof of Lemma 2 in [11] (Lemma 1 below). The
lemma played a very important role in the proof of Theorem 2. Since Leader
proved Lemma 1 by reductio ad absurdum, we will give a proof without reductio
ad absurdum. See also the proof of Theorem 1 in [17].

Lemma 1 (Leader [11]). Let {xn} and {yn} be sequences in a metric space (X, d).
Let ε ∈ (0,∞), δ ∈ (0,∞] and ν ∈ N satisfy

d(xi, yj) < ε + δ implies d(xi+ν , yj+ν) < ε

for all i, j ∈ N. Let n ∈ N satisfy

max
{
d(xi, yj) : i, j ∈ {n, n + 1, · · · , n + ν}

}
< min{ε, δ/2}.

Then d(xi, yj) < 3 ε for all i, j ∈ N with i ≥ n and j ≥ n.

Proof. We first show by induction

(1) d(xn+ν , yn+m) < ε

for all m ∈ N∪{0}. From the assumption, (1) holds for m = 0, 1, · · · , ν. We assume
(1) holds for some m ∈ N. That is, d(xn+ν , yn+m) < ε, which implies

d(xn, yn+m) ≤ d(xn, yn) + d(yn, xn+ν) + d(xn+ν , yn+m) < δ/2 + δ/2 + ε = ε + δ.

From the assumption, we have d(xn+ν , yn+m+ν) < ε. Thus, (1) holds when m :=
m + ν. By induction, (1) holds for all m ∈ N ∪ {0}. Similarly we can prove
d(yn+ν , xn+m) < ε for all m ∈ N ∪ {0}. Therefore we obtain

d(xi, yj) ≤ d(xi, yn+ν) + d(yn+ν , xn+ν) + d(xn+ν , yj) < ε + ε + ε = 3 ε

for i, j ∈ N with i ≥ n and j ≥ n. �

Acknowledgement

The author is very grateful to the referee for suggestions that improved the
presentation of this paper.



FIXED POINT 4093

References

[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations
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