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ON THE LIMIT POINTS OF (anξ)∞n=1 MOD 1
FOR SLOWLY INCREASING INTEGER SEQUENCES (an)∞n=1

ARTŪRAS DUBICKAS

(Communicated by Ken Ono)

Abstract. In this paper, we are interested in sequences of positive inte-
gers (an)∞n=1 such that the sequence of fractional parts {anξ}∞n=1 has only
finitely many limit points for at least one real irrational number ξ. We prove
that, for any sequence of positive numbers (gn)∞n=1 satisfying gn � 1 and
limn→∞ gn = ∞ and any real quadratic algebraic number α, there is an in-

creasing sequence of positive integers (an)∞n=1 such that an � ngn for every
n ∈ N and limn→∞{anα} = 0. The above bound on an is best possible in
the sense that the condition limn→∞ gn = ∞ cannot be replaced by a weaker
condition. More precisely, we show that if (an)∞n=1 is an increasing sequence
of positive integers satisfying lim infn→∞ an/n < ∞ and ξ is a real irrational
number, then the sequence of fractional parts {anξ}∞n=1 has infinitely many
limit points.

1. Introduction

By an old result of Weyl [16], for every increasing sequence of positive inte-
gers (an)∞n=1, the set of real numbers ξ for which the sequence of fractional parts
{anξ}∞n=1 is not uniformly distributed in [0, 1) is of Lebesgue measure zero. In
particular, for almost all real ξ, the set {anξ}∞n=1 is everywhere dense in [0, 1). Of
course, all rational numbers ξ are trivial exceptions, because the set of limit points
of {anξ}∞n=1 is finite if ξ ∈ Q. Another exception is related to the so-called PV-
numbers, named after Pisot and Vijayaraghavan (see [11] and [15]). For instance,
taking the PV-number

√
2+1 and setting Sn = (

√
2+1)n−(

√
2−1)n ∈ N, we have

limn→∞(
√

2Sn + Sn −Sn+1) = 0. More precisely, {Sn

√
2} → 1 as n → ∞. So there

is a geometrically growing sequence (an)∞n=1 and a quadratic number ξ such that
{anξ}∞n=1 has a unique limit point. Erdös asked whether, for every sufficiently fast
growing sequence of integers (an)∞n=1, there are some non-trivial exceptional ξ /∈ Q

for which {anξ}∞n=1 is not dense in [0, 1). For every lacunary sequence (an)∞n=1,
namely, the sequence satisfying an+1 � τan for some τ > 1 and each n ∈ N, the
question of Erdös was answered in the affirmative by de Mathan [5] and Pollington
[12], independently. See also Hilfssatz III in Khintchine’s paper [8].

However, if (an)∞n=1 is a slowly increasing sequence of positive integers, then it
can be no exceptional ξ in the sense that the sequence {anξ}∞n=1 is everywhere

Received by the editors December 17, 2007, and, in revised form, January 19, 2008.
2000 Mathematics Subject Classification. Primary 11B05, 11B37, 11J71, 11R11.
Key words and phrases. Distribution modulo 1, recurrence sequence, quadratic algebraic

number.

c©2008 American Mathematical Society
Reverts to public domain 28 years from publication

449
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dense in [0, 1) for every real irrational number ξ. In this direction, Furstenberg [6]
proved a remarkable result which implies that if an increasing sequence of positive
integers a1 < a2 < a3 < . . . is a multiplicative semigroup which is not generated
by powers of a single integer, then the sequence of fractional parts {anξ}∞n=1 is
everywhere dense in [0, 1) for each irrational real number ξ. The set A is said to
be a multiplicative semigroup if it is closed under multiplication, namely, if aa′ ∈ A
for any a, a′ ∈ A. For example, the set of integers of the form pkqm, where p < q
are two fixed primes and k, m run over all non-negative integers, is a multiplicative
semigroup. It is easy to see that a semigroup with at least two generators must
satisfy the condition limn→∞ an+1/an = 1.

Later, a simpler proof of Furstenberg’s theorem was given by Boshernitzan [4],
whereas the papers of Berend [1], [2], [3], Kra [9] and Urban [14] contain various
generalizations of Furstenberg’s result. See also [13] for a collection of many slowly
increasing sequences (an)∞n=1 such that, for each ξ /∈ Q, the sequence {anξ}∞n=1

is everywhere dense in [0, 1). Such are, for instance, the sequences an = n, an =
P (n), where P (x) ∈ Z[x] has degree � 1, an = P (pn), where pn is the nth prime.
Nevertheless, a similar question on whether, for the sequence of positive integers
(an)∞n=1 of the form pk +qm, where p < q are two fixed primes and k, m run over all
non-negative integers, the sequence {anξ}∞n=1 is everywhere dense in [0, 1) remains
open [10].

In this paper, we investigate whether, for a given increasing sequence of positive
integers (an)∞n=1, there is an exceptional real irrational number ξ in the sense that
the sequence of fractional parts {anξ}∞n=1 has only finitely many limit points. Then
no Furstenberg type theorem holds. How slowly can such a sequence (an)∞n=1 for
which at least one exceptional ξ /∈ Q exists increase? The above examples show that
for each rapidly increasing sequence, e.g., a lacunary sequence (an)∞n=1, such excep-
tional ξ exist, but for most ‘natural’ slowly increasing sequences such exceptional
ξ do not exist.

We shall prove that there is a sequence of positive integers a1 < a2 < a3 < . . .
satisfying an � ngn for each n ∈ N such that {anξ}∞n=1 has only finitely many
limit points for some ξ /∈ Q, if and only if limn→∞ gn = ∞, no matter how slowly
gn tends to infinity. Moreover, it turns out that it is possible to construct an
‘extreme’ sequence (an)∞n=1 for which the sequence {anξ}∞n=1, where ξ /∈ Q, has
not just finitely many, but only one limit point, say, 0. In fact, our construction of
an ‘extreme’ sequence of positive integers a1 < a2 < a3 < . . . of slowest possible
growth involves the properties of this exceptional ξ (which will be taken as an
arbitrary real quadratic algebraic number α) and the properties of some recurrence
sequences related to some algebraic integer in the field Q(α).

Theorem 1. Let α be a real quadratic algebraic number, and let g1, g2, g3, . . . be
a sequence of real numbers such that gn � 1 for each n � 1 and limn→∞ gn = ∞.
Then there exists an increasing sequence of positive integers a1 < a2 < a3 < . . .
satisfying an � ngn for each n ∈ N such that limn→∞{anα} = 0.

The bound an � ngn for n ∈ N on the growth of (an)∞n=1 in Theorem 1 is the
best possible in the sense that the condition limn→∞ gn = ∞ cannot be weak-
ened. Indeed, suppose that there is a constant g � 1 and an increasing sequence
of positive integers (an)∞n=1 satisfying an � gn for infinitely many n ∈ N. Then
lim infn→∞ an/n � g < ∞, so the sequence A = (an)∞n=1 has a positive upper
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density d(A) = lim supn→∞ n/an � 1/g (see [7]). For such sequences (an)∞n=1, we
prove the following:

Theorem 2. Let (an)∞n=1 be an increasing sequence of positive integers with positive
upper density, i.e., lim infn→∞ an/n < ∞, and let ξ be an irrational real number.
Then the sequence of fractional parts {anξ}∞n=1 has infinitely many limit points.

In this respect we recall the paper of Vijayaraghavan [15] once again. He proved
that, for any rational non-integer number p/q > 1 and any real number ξ �= 0, the
sequence of fractional parts {(p/q)nξ}∞n=1 has infinitely many limit points.

In the next section, we shall prove two auxiliary results necessary for the proof of
Theorem 1. Section 3 contains the proof of Theorem 1. We do not know whether a
similar construction of the slowly increasing sequence (an)∞n=1 is possible for other
real numbers α (see the end of Section 3). In Section 4, we prove Theorem 2. The
proofs of both theorems are completely self contained.

2. Auxiliary results

Lemma 3. Let α be a real quadratic algebraic number. Then there exist p ∈ N and
q ∈ Z such that the number β = pα + q is a positive quadratic reciprocal unit with
minimal polynomial x2 − tx + 1, where t � 4 is an even integer.

Proof. Suppose that the minimal polynomial of α is

ax2 + bx + c = a(x − α)(x − α′),

where a ∈ N, b, c ∈ Z, c �= 0. Since α is a real quadratic number, the discriminant
∆ = b2 − 4ac is a positive integer which is not a perfect square. Hence the Pell
equation X2 − ∆Y 2 = 1 has a solution X, Y ∈ N with X � 2. Set p = 2aY and
q = bY + X, so that

β = 2aY α + bY + X.

Then β′ = 2aY α′ + bY + X. From α + α′ = −b/a it follows that

β + β′ = 2aY (α + α′) + 2bY + 2X = 2aY (−b/a) + 2bY + 2X = 2X.

Similarly, using αα′ = c/a, α + α′ = −b/a and X2 − (b2 − 4ac)Y 2 = 1, we obtain

ββ′ = 4a2Y 2αα′ + 2aY (bY + X)(α + α′) + (bY + X)2

= 4acY 2 − 2bY (bY + X) + b2Y 2 + 2bXY + X2 = (4ac − b2)Y 2 + X2 = 1.

This proves that β is a reciprocal real quadratic unit with minimal polynomial
x2 − 2Xx + 1. From β = (β2 + 1)/(2X), we conclude that β is positive. �

Lemma 4. Let β > 1 be a reciprocal quadratic unit with minimal polynomial x2 −
tx + 1, where t � 4 is an even integer. Set Tm = βm + β−m and Um = (βm −
β−m)/

√
(t/2)2 − 1. Then Tm, Um ∈ N,

Tmβ − Tm+1 = β−m+1(1 − β−2)

and
Umβ−1 − Um−1 = β−m+1(1 − β−2)/

√
(t/2)2 − 1

for each m ∈ N. Furthermore, gcd(Tm, Tm+1)=gcd(Um, Um+1) = 2 for each m � 1.
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Proof. Clearly, T0 = 2, T1 = t and Tm+1 = tTm − Tm−1 for each m � 1. Similarly,
U0 = 0, U1 = 2 and Um+1 = tUm−Um−1 for each m � 1. This proves that Tm, Um ∈
N for each m ∈ N. The numbers T1, T2, . . . are all even, hence gcd(Tm, Tm+1) � 2.
If, however, some d > 2 divides Tm and Tm+1, then from the recurrence relation on
Tm+1, Tm, Tm−1 we see that d also divides Tm−1, and so on up to d|T0, i.e., d|2, which
is impossible. This proves that gcd(Tm, Tm+1) = 2. The proof of gcd(Um, Um+1) =
2 is the same.

From the representation Tm = βm + β−m, we have

Tmβ − Tm+1 = β(βm + β−m) − (βm+1 + β−m−1) = β−m+1(1 − β−2).

Likewise,
√

(t/2)2 − 1(Umβ−1−Um−1)=β−1(βm−β−m)−(βm−1−β−m+1)=β−m+1(1−β−2).

This finishes the proof. �

3. Proof of Theorem 1

Suppose that α is a real quadratic algebraic number and α′ is its reciprocal over
Q. There are two cases, α > α′ and α < α′. In the first case, take β = pα + q
with p, q as in Lemma 3. Then β > 1 > β′ = β−1. In the second case, the
role of α belongs to α′. So we take β = pα′ + q with p, q as in Lemma 3. Then
β > 1 > β′ = pα + q = β−1. Note that, in both cases, we have β > 1, so Lemma 4
can be applied. Below, we shall construct the sequence a1 < a2 < a3 < . . . using
Tm, m = 1, 2, . . . (in the first case) and Um, m = 1, 2, . . . (in the second case).

Note that by replacing each gn with gn = infj�n gj , we can assume that the
sequence g1, g2, g3, . . . is non-decreasing. By replacing each gn with its integer part
[gn], we can assume that each gn is a positive integer. Finally, by reducing each
positive gap k = gn+1 − gn, where k � 2, to the gap with k = 1, we can assume
without loss of generality that gn+1 − gn � 1.

Take β > 1 as above (namely, β = pα + q or β = pα′ + q),

c = 8pβ5 and km = [cβm/gm] = [8pβm+5/gm].

Let

Am = {pkTm+1 + p�Tm | k = 1, . . . , km+1, � = 1, . . . , km},

A
′

m = {pkUm+1 + p�Um | k = 1, . . . , km+1, � = 1, . . . , km}.

Consider the sets B =
⋃∞

m=1 Am and B′ =
⋃∞

m=1 A
′

m. Denote their distinct ele-
ments by b1 < b2 < b3 < . . . and b

′

1 < b
′

2 < b
′

3 < . . . , respectively. The required
sequence A = {a1 < a2 < a3 < . . . } will be obtained from B in the first case and
from B′ in the second case. In both cases, we just replace several first elements of
B (resp. B′) by smaller positive integers.

Let us first show that, in the first case,

lim
n→∞

{bnα} = 0.

Suppose that bn ∈ Am. Such m ∈ N is not necessarily unique, but m → ∞ provided
that n → ∞, and, vice versa, n → ∞ as m → ∞. By the above, bn = pkTm+1+p�Tm

with some k, � ∈ N satisfying 1 � k, � � max{km, km+1} � cβm+1/gm. From
β = pα + q it follows that

{bnα} = {(kTm+1 + �Tm)pα} = {(kTm+1 + �Tm)β}.
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Using the upper bound for k and �, the formulae c = 8pβ5 and Lemma 4, we deduce
that

{bnα} = {(kTm+1 + �Tm)β} = k(Tm+1β − Tm+2) + �(Tmβ − Tm+1)

= β−m(1 − β−2)(k + �β) � β−m(1 − β−2)(1 + β)cβm+1/gm

= (β + β2)(1 − β−2)c/gm < 16pβ7/gm

for each sufficiently large m. (Certainly, this holds for those m for which gm >
16pβ7.) If n → ∞, then m → ∞ and gm → ∞. Hence limn→∞{bnα} = 0, as
claimed.

Similarly, in the second case, the equality pα + q = β′ = β−1 combined with the
representation b

′

n = pkUm+1 + p�Um yields {b′

nα} = {(kUm+1 + �Um)β−1}. Using
the fact that Umβ−1 −Um−1 is ‘small’ (see Lemma 4), in exactly the same manner
as above we can prove that, in the second case, limn→∞{b′

nα} = 0.
Our next goal is to show that the elements of the set Am = {pkTm+1+p�Tm |k =

1, . . . , km+1, � = 1, . . . , km} are distinct for m � m1. Assume that pkTm+1+p�Tm =
pk′Tm+1 +p�′Tm, where � �= �′. Then (k−k′)Tm+1/2 = (�′− �)Tm/2. By Lemma 4,
the integers Tm+1/2 and Tm/2 are coprime. It follows that Tm+1/2 divides |�− �′|.
Therefore, βm+1 < Tm+1 � 2|�− �′| � 2km � 2cβm/gm. Setting m1 to be the least
integer for which gm1 � 2c, we derive that βm+1 < βm for m � m1, a contradiction.
Likewise, the elements of the set A

′

m = {pkUm+1 + p�Um | k = 1, . . . , km+1, � =
1, . . . , km} are distinct for m � m2.

Let us take an integer M � max{m1, m2}, where M is so large that

m � km < β2km−1 for m � M.

Such an M exists, because the quotient km/km−1 is ‘approximately’ βgm/gm−1,
which is less than or equal to β(1 + gm−1)/gm−1 < β(1 + ε) for m large enough.

For any integer n > kM−1kM , there is a unique integer m � M such that

km−1km < n � kmkm+1.

Since all km+1km elements of Am (resp. A
′

m) are distinct, the nth element of
B (resp. B′) does not exceed the nth element of Am (resp. A

′

m). The largest
element of Am is pkm+1Tm+1 + pkmTm. Hence, using the bounds km+1 < β4km−1,
Tm+1 < 2βm+1 and βm < 2gmkm/c, we obtain

bn � pkm+1Tm+1 + pkmTm < 2pkm+1Tm+1 < 4pβ4km−1β
m+1

= 4pβ5km−1β
m < 8pβ5km−1kmgm/c = km−1kmgm.

This is less than ngn, because m � km−1km, the sequence g1, g2, . . . is non-
decreasing, and km−1km < n. Consequently, bn < ngn for each n > kM−1kM .
Similarly, using Um+1 < βm+1, we obtain

b
′

n � pkm+1Um+1 + pkmUm < 2pkm+1Um+1 < 2pβ4km−1β
m+1

< 4pβ5km−1kmgm/c < km−1kmgm < ngn

for each n > kM−1kM . This proves the required upper bound for bn and b
′

n provided
that n is large enough.

Trivially, bn � n and b
′

n � n for each positive integer n. Thus, by the above,
there exists a positive integer n0, say n0 = kM−1kM , such that n � bn < ngn

and n � b
′

n < ngn for each n � n0 + 1. In the first case, α > α′, the required
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increasing sequence of positive integers A = {a1 < a2 < a3 < . . . } can be obtained
from B =

⋃∞
m=1 Am = {b1 < b2 < b3 < . . . } by setting an = n for n � n0

and an = bn for n � n0 + 1. In the second case, α′ > α, the required increasing
sequence of positive integers A = {a1 < a2 < a3 < . . . } can be obtained from
B′ =

⋃∞
m=1 A

′

m = {b′

1 < b
′

2 < b
′

3 < . . . } by setting an = n for n � n0 and an = b
′

n

for n � n0 +1. In both cases, we have an � ngn for each n � 1. This completes the
proof of the theorem. �

Suppose that ξ is either a real algebraic number of degree � 3 or a real transcen-
dental number. Is there is a slowly increasing sequence of positive integers a1 <
a2 < a3 < . . . satisfying, for instance, an � n[(log n)ε] for each n � 3, such that
limn→∞{anξ} = 0? (For example, limn→∞{an

3
√

2} = 0 or limn→∞{anπ} = 0?) We
conclude this section with the following construction of some special transcendental
numbers.

Theorem 5. For any sequence 1 � g1 � g2 � . . . satisfying limn→∞ gn = ∞,
there is a transcendental Liouville number γ for which there is a sequence of positive
integers (an)∞n=1 satisfying an � ngn for infinitely many n ∈ N such that {anγ} → 0
as n → ∞.

Proof. Take γ =
∑∞

k=1 2−dk , where (dk)∞k=1 is a sequence of positive integers in-
creasing so fast that dk+1 > 3dk and g�k

> 2dk , where �k = [2dk+1/2]. Then
0 < 2dmα − um < 2−dm+1+dm+1 with some um ∈ N. Therefore, 0 < {�2dmγ} <
�2−dm+1+dm+1 for every � ∈ N. Select

Am = {�2dm | � = 1, 2, . . . , �m}
and define A =

⋃∞
m=1 Am = {a1 < a2 < a3 < . . . }.

By the choice of �m, it is easy to see that {anγ} → 0 as n → ∞. Furthermore,
for each n = �m, we have an = a�m

� �m2dm < �mg�m
= ngn, because the elements

of Am are distinct. So the inequality an � ngn holds for infinitely many n ∈ N.
The number γ is a transcendental Liouville number if lim supk→∞ dk+1/dk = ∞.
From g�k

> 2dk , where �k = [2dk+1/2], we see that this is the case when the sequence
(gn)∞n=1 is increasing slowly, for example, gn � log n. This can be assumed without
loss of generality, by replacing the initial sequence g1, g2, g3, . . . by the sequence
g∗1 = g∗2 = 1 and g∗n = min{gn, log n} for n � 3. �

This result is, of course, weaker than the same inequality an � ngn of Theorem 1,
which holds for all n ∈ N.

4. Proof of Theorem 2

Set g = lim infn→∞ an/n < ∞. Suppose that the sequence {anξ}∞n=1 has only t
limit points for some ξ /∈ Q. Let us denote the number of elements of A lying in
[1, x] by A(x). The condition g = lim infn→∞ an/n < ∞ implies that A(n) > n/(2g)
for infinitely many n ∈ N.

Put L = �3gt�. We claim that the sequence A = (an)∞n=1 contains at least t + 1
elements in infinitely many intervals [N +1, N +L], where N ∈ N. Indeed, if at most
t elements of A lie in each of the intervals [kL + 1, kL + L], k = 0, 1, 2, . . . , except
for, say, l intervals, then the number of elements of A up to kL is � lL + (k − l)t,
i.e., A(kL) � lL + (k − l)t � kt + lL. For a given n ∈ N, take k ∈ N such that
(k − 1)L < n � kL. Then, using L � 3gt, we find that

A(n) � A(kL) � kt + lL < (n/L + 1)t + lL � n/(3g) + t + lL.
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So the inequality A(n) > n/(2g) cannot hold for infinitely many n ∈ N, a contra-
diction. This proves our assertion.

Note that ||qξ|| > 0 for every q ∈ N, because ξ /∈ Q. Here an below ||x|| stands
for the distance from a real number x to the nearest integer. Fix any ε satisfying

0 < 2ε < min{||ξ||, ||2ξ||, . . . , ||(L − 1)ξ||}.

By our assumption, the sequence {anξ}∞n=1 has only t limit points. Hence, for
n � n0(ε), the fractional part {anξ} must lie in an ε-neighborhood of at least one
of those t points. Take an interval [N +1, N +L], where N � n0(ε), which contains
at least t + 1 elements of A. (We already proved that this happens for infinitely
many N ∈ N, so such an interval exists.) By Dirichlet’s box principle, at least
two fractional parts, say, {aN+uξ} and {aN+vξ}, where 1 � u < v � L, lie in an
ε-neighborhood of the same limit point, say, w. Putting r = aN+v − aN+u, where
r ∈ {1, . . . , L − 1}, and using ||aN+uξ − w||, ||aN+vξ − w|| � ε, we deduce that

2ε < ||rξ|| = ||(aN+v − aN+u)ξ|| � ||aN+vξ − w|| + ||w − aN+uξ|| � ε + ε = 2ε,

a contradiction. This completes the proof of the theorem. �
By the same argument as above one can prove that if (an)∞n=1 is an increasing

sequence of positive integers satisfying lim infn→∞(an+1 − an) < ∞ and ξ is an
irrational real number, then the sequence of fractional parts {anξ}∞n=1 has at least
two limit points.

Indeed, the condition lim infn→∞(an+1 − an) < ∞ implies that there exists a
positive integer r such that an+1 −an = r for infinitely many n’s. Suppose that for
some real irrational number ξ we have limn→∞{anξ} = w, where 0 � w � 1. Then,
for any ε > 0 there exists n0(ε) such that ||anξ − w|| � ε for each n � n0(ε). Fix
ε > 0 satisfying 0 < 2ε < ||rξ||. Take any n � n0(ε) for which an+1 − an = r. Then

2ε< ||rξ||= ||(an+1−an)ξ||= ||an+1ξ−w+w−anξ|| � ||an+1ξ−w||+||anξ−w||�2ε,

a contradiction.
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