ON THE LIMIT POINTS OF $\left(a_{n} \xi\right)_{n=1}^{\infty}$ MOD 1 FOR SLOWLY INCREASING INTEGER SEQUENCES $\left(a_{n}\right)_{n=1}^{\infty}$

ARTŪRAS DUBICKAS

(Communicated by Ken Ono)

Abstract

In this paper, we are interested in sequences of positive integers $\left(a_{n}\right)_{n=1}^{\infty}$ such that the sequence of fractional parts $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$ has only finitely many limit points for at least one real irrational number ξ. We prove that, for any sequence of positive numbers $\left(g_{n}\right)_{n=1}^{\infty}$ satisfying $g_{n} \geqslant 1$ and $\lim _{n \rightarrow \infty} g_{n}=\infty$ and any real quadratic algebraic number α, there is an increasing sequence of positive integers $\left(a_{n}\right)_{n=1}^{\infty}$ such that $a_{n} \leqslant n g_{n}$ for every $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty}\left\{a_{n} \alpha\right\}=0$. The above bound on a_{n} is best possible in the sense that the condition $\lim _{n \rightarrow \infty} g_{n}=\infty$ cannot be replaced by a weaker condition. More precisely, we show that if $\left(a_{n}\right)_{n=1}^{\infty}$ is an increasing sequence of positive integers satisfying $\lim \inf _{n \rightarrow \infty} a_{n} / n<\infty$ and ξ is a real irrational number, then the sequence of fractional parts $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$ has infinitely many limit points.

1. Introduction

By an old result of Weyl [16, for every increasing sequence of positive integers $\left(a_{n}\right)_{n=1}^{\infty}$, the set of real numbers ξ for which the sequence of fractional parts $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$ is not uniformly distributed in $[0,1)$ is of Lebesgue measure zero. In particular, for almost all real ξ, the set $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$ is everywhere dense in $[0,1)$. Of course, all rational numbers ξ are trivial exceptions, because the set of limit points of $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$ is finite if $\xi \in \mathbb{Q}$. Another exception is related to the so-called PVnumbers, named after Pisot and Vijayaraghavan (see [11] and [15]). For instance, taking the PV-number $\sqrt{2}+1$ and setting $S_{n}=(\sqrt{2}+1)^{n}-(\sqrt{2}-1)^{n} \in \mathbb{N}$, we have $\lim _{n \rightarrow \infty}\left(\sqrt{2} S_{n}+S_{n}-S_{n+1}\right)=0$. More precisely, $\left\{S_{n} \sqrt{2}\right\} \rightarrow 1$ as $n \rightarrow \infty$. So there is a geometrically growing sequence $\left(a_{n}\right)_{n=1}^{\infty}$ and a quadratic number ξ such that $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$ has a unique limit point. Erdös asked whether, for every sufficiently fast growing sequence of integers $\left(a_{n}\right)_{n=1}^{\infty}$, there are some non-trivial exceptional $\xi \notin \mathbb{Q}$ for which $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$ is not dense in $[0,1)$. For every lacunary sequence $\left(a_{n}\right)_{n=1}^{\infty}$, namely, the sequence satisfying $a_{n+1} \geqslant \tau a_{n}$ for some $\tau>1$ and each $n \in \mathbb{N}$, the question of Erdös was answered in the affirmative by de Mathan [5] and Pollington [12], independently. See also Hilfssatz III in Khintchine's paper [8].

However, if $\left(a_{n}\right)_{n=1}^{\infty}$ is a slowly increasing sequence of positive integers, then it can be no exceptional ξ in the sense that the sequence $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$ is everywhere

[^0]dense in $[0,1)$ for every real irrational number ξ. In this direction, Furstenberg [6] proved a remarkable result which implies that if an increasing sequence of positive integers $a_{1}<a_{2}<a_{3}<\ldots$ is a multiplicative semigroup which is not generated by powers of a single integer, then the sequence of fractional parts $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$ is everywhere dense in $[0,1)$ for each irrational real number ξ. The set A is said to be a multiplicative semigroup if it is closed under multiplication, namely, if $a a^{\prime} \in A$ for any $a, a^{\prime} \in A$. For example, the set of integers of the form $p^{k} q^{m}$, where $p<q$ are two fixed primes and k, m run over all non-negative integers, is a multiplicative semigroup. It is easy to see that a semigroup with at least two generators must satisfy the condition $\lim _{n \rightarrow \infty} a_{n+1} / a_{n}=1$.

Later, a simpler proof of Furstenberg's theorem was given by Boshernitzan 4], whereas the papers of Berend [1], [2], 3], Kra [9] and Urban [14] contain various generalizations of Furstenberg's result. See also [13] for a collection of many slowly increasing sequences $\left(a_{n}\right)_{n=1}^{\infty}$ such that, for each $\xi \notin \mathbb{Q}$, the sequence $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$ is everywhere dense in $[0,1)$. Such are, for instance, the sequences $a_{n}=n, a_{n}=$ $P(n)$, where $P(x) \in \mathbb{Z}[x]$ has degree $\geqslant 1, a_{n}=P\left(p_{n}\right)$, where p_{n} is the nth prime. Nevertheless, a similar question on whether, for the sequence of positive integers $\left(a_{n}\right)_{n=1}^{\infty}$ of the form $p^{k}+q^{m}$, where $p<q$ are two fixed primes and k, m run over all non-negative integers, the sequence $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$ is everywhere dense in $[0,1)$ remains open [10].

In this paper, we investigate whether, for a given increasing sequence of positive integers $\left(a_{n}\right)_{n=1}^{\infty}$, there is an exceptional real irrational number ξ in the sense that the sequence of fractional parts $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$ has only finitely many limit points. Then no Furstenberg type theorem holds. How slowly can such a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ for which at least one exceptional $\xi \notin \mathbb{Q}$ exists increase? The above examples show that for each rapidly increasing sequence, e.g., a lacunary sequence $\left(a_{n}\right)_{n=1}^{\infty}$, such exceptional ξ exist, but for most 'natural' slowly increasing sequences such exceptional ξ do not exist.

We shall prove that there is a sequence of positive integers $a_{1}<a_{2}<a_{3}<\ldots$ satisfying $a_{n} \leqslant n g_{n}$ for each $n \in \mathbb{N}$ such that $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$ has only finitely many limit points for some $\xi \notin \mathbb{Q}$, if and only if $\lim _{n \rightarrow \infty} g_{n}=\infty$, no matter how slowly g_{n} tends to infinity. Moreover, it turns out that it is possible to construct an 'extreme' sequence $\left(a_{n}\right)_{n=1}^{\infty}$ for which the sequence $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$, where $\xi \notin \mathbb{Q}$, has not just finitely many, but only one limit point, say, 0 . In fact, our construction of an 'extreme' sequence of positive integers $a_{1}<a_{2}<a_{3}<\ldots$ of slowest possible growth involves the properties of this exceptional ξ (which will be taken as an arbitrary real quadratic algebraic number α) and the properties of some recurrence sequences related to some algebraic integer in the field $\mathbb{Q}(\alpha)$.

Theorem 1. Let α be a real quadratic algebraic number, and let $g_{1}, g_{2}, g_{3}, \ldots$ be a sequence of real numbers such that $g_{n} \geqslant 1$ for each $n \geqslant 1$ and $\lim _{n \rightarrow \infty} g_{n}=\infty$. Then there exists an increasing sequence of positive integers $a_{1}<a_{2}<a_{3}<\ldots$ satisfying $a_{n} \leqslant n g_{n}$ for each $n \in \mathbb{N}$ such that $\lim _{n \rightarrow \infty}\left\{a_{n} \alpha\right\}=0$.

The bound $a_{n} \leqslant n g_{n}$ for $n \in \mathbb{N}$ on the growth of $\left(a_{n}\right)_{n=1}^{\infty}$ in Theorem 1 is the best possible in the sense that the condition $\lim _{n \rightarrow \infty} g_{n}=\infty$ cannot be weakened. Indeed, suppose that there is a constant $g \geqslant 1$ and an increasing sequence of positive integers $\left(a_{n}\right)_{n=1}^{\infty}$ satisfying $a_{n} \leqslant g n$ for infinitely many $n \in \mathbb{N}$. Then $\liminf _{n \rightarrow \infty} a_{n} / n \leqslant g<\infty$, so the sequence $A=\left(a_{n}\right)_{n=1}^{\infty}$ has a positive upper
density $\bar{d}(A)=\lim \sup _{n \rightarrow \infty} n / a_{n} \geqslant 1 / g$ (see [7]). For such sequences $\left(a_{n}\right)_{n=1}^{\infty}$, we prove the following:
Theorem 2. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be an increasing sequence of positive integers with positive upper density, i.e., $\liminf _{n \rightarrow \infty} a_{n} / n<\infty$, and let ξ be an irrational real number. Then the sequence of fractional parts $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$ has infinitely many limit points.

In this respect we recall the paper of Vijayaraghavan (15] once again. He proved that, for any rational non-integer number $p / q>1$ and any real number $\xi \neq 0$, the sequence of fractional parts $\left\{(p / q)^{n} \xi\right\}_{n=1}^{\infty}$ has infinitely many limit points.

In the next section, we shall prove two auxiliary results necessary for the proof of Theorem 回 Section 3 contains the proof of Theorem We do not know whether a similar construction of the slowly increasing sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is possible for other real numbers α (see the end of Section 3). In Section 4, we prove Theorem 2 The proofs of both theorems are completely self contained.

2. Auxiliary results

Lemma 3. Let α be a real quadratic algebraic number. Then there exist $p \in \mathbb{N}$ and $q \in \mathbb{Z}$ such that the number $\beta=p \alpha+q$ is a positive quadratic reciprocal unit with minimal polynomial $x^{2}-t x+1$, where $t \geqslant 4$ is an even integer.

Proof. Suppose that the minimal polynomial of α is

$$
a x^{2}+b x+c=a(x-\alpha)\left(x-\alpha^{\prime}\right)
$$

where $a \in \mathbb{N}, b, c \in \mathbb{Z}, c \neq 0$. Since α is a real quadratic number, the discriminant $\Delta=b^{2}-4 a c$ is a positive integer which is not a perfect square. Hence the Pell equation $X^{2}-\Delta Y^{2}=1$ has a solution $X, Y \in \mathbb{N}$ with $X \geqslant 2$. Set $p=2 a Y$ and $q=b Y+X$, so that

$$
\beta=2 a Y \alpha+b Y+X
$$

Then $\beta^{\prime}=2 a Y \alpha^{\prime}+b Y+X$. From $\alpha+\alpha^{\prime}=-b / a$ it follows that

$$
\beta+\beta^{\prime}=2 a Y\left(\alpha+\alpha^{\prime}\right)+2 b Y+2 X=2 a Y(-b / a)+2 b Y+2 X=2 X .
$$

Similarly, using $\alpha \alpha^{\prime}=c / a, \alpha+\alpha^{\prime}=-b / a$ and $X^{2}-\left(b^{2}-4 a c\right) Y^{2}=1$, we obtain

$$
\begin{gathered}
\beta \beta^{\prime}=4 a^{2} Y^{2} \alpha \alpha^{\prime}+2 a Y(b Y+X)\left(\alpha+\alpha^{\prime}\right)+(b Y+X)^{2} \\
=4 a c Y^{2}-2 b Y(b Y+X)+b^{2} Y^{2}+2 b X Y+X^{2}=\left(4 a c-b^{2}\right) Y^{2}+X^{2}=1 .
\end{gathered}
$$

This proves that β is a reciprocal real quadratic unit with minimal polynomial $x^{2}-2 X x+1$. From $\beta=\left(\beta^{2}+1\right) /(2 X)$, we conclude that β is positive.

Lemma 4. Let $\beta>1$ be a reciprocal quadratic unit with minimal polynomial $x^{2}-$ $t x+1$, where $t \geqslant 4$ is an even integer. Set $T_{m}=\beta^{m}+\beta^{-m}$ and $U_{m}=\left(\beta^{m}-\right.$ $\left.\beta^{-m}\right) / \sqrt{(t / 2)^{2}-1}$. Then $T_{m}, U_{m} \in \mathbb{N}$,

$$
T_{m} \beta-T_{m+1}=\beta^{-m+1}\left(1-\beta^{-2}\right)
$$

and

$$
U_{m} \beta^{-1}-U_{m-1}=\beta^{-m+1}\left(1-\beta^{-2}\right) / \sqrt{(t / 2)^{2}-1}
$$

for each $m \in \mathbb{N}$. Furthermore, $\operatorname{gcd}\left(T_{m}, T_{m+1}\right)=\operatorname{gcd}\left(U_{m}, U_{m+1}\right)=2$ for each $m \geqslant 1$.

Proof. Clearly, $T_{0}=2, T_{1}=t$ and $T_{m+1}=t T_{m}-T_{m-1}$ for each $m \geqslant 1$. Similarly, $U_{0}=0, U_{1}=2$ and $U_{m+1}=t U_{m}-U_{m-1}$ for each $m \geqslant 1$. This proves that $T_{m}, U_{m} \in$ \mathbb{N} for each $m \in \mathbb{N}$. The numbers T_{1}, T_{2}, \ldots are all even, hence $\operatorname{gcd}\left(T_{m}, T_{m+1}\right) \geqslant 2$. If, however, some $d>2$ divides T_{m} and T_{m+1}, then from the recurrence relation on T_{m+1}, T_{m}, T_{m-1} we see that d also divides T_{m-1}, and so on up to $d \mid T_{0}$, i.e., $d \mid 2$, which is impossible. This proves that $\operatorname{gcd}\left(T_{m}, T_{m+1}\right)=2$. The proof of $\operatorname{gcd}\left(U_{m}, U_{m+1}\right)=$ 2 is the same.

From the representation $T_{m}=\beta^{m}+\beta^{-m}$, we have

$$
T_{m} \beta-T_{m+1}=\beta\left(\beta^{m}+\beta^{-m}\right)-\left(\beta^{m+1}+\beta^{-m-1}\right)=\beta^{-m+1}\left(1-\beta^{-2}\right)
$$

Likewise,
$\sqrt{(t / 2)^{2}-1}\left(U_{m} \beta^{-1}-U_{m-1}\right)=\beta^{-1}\left(\beta^{m}-\beta^{-m}\right)-\left(\beta^{m-1}-\beta^{-m+1}\right)=\beta^{-m+1}\left(1-\beta^{-2}\right)$.
This finishes the proof.

3. Proof of Theorem 1

Suppose that α is a real quadratic algebraic number and α^{\prime} is its reciprocal over \mathbb{Q}. There are two cases, $\alpha>\alpha^{\prime}$ and $\alpha<\alpha^{\prime}$. In the first case, take $\beta=p \alpha+q$ with p, q as in Lemma 3. Then $\beta>1>\beta^{\prime}=\beta^{-1}$. In the second case, the role of α belongs to α^{\prime}. So we take $\beta=p \alpha^{\prime}+q$ with p, q as in Lemma 3. Then $\beta>1>\beta^{\prime}=p \alpha+q=\beta^{-1}$. Note that, in both cases, we have $\beta>1$, so Lemma 4 can be applied. Below, we shall construct the sequence $a_{1}<a_{2}<a_{3}<\ldots$ using $T_{m}, m=1,2, \ldots$ (in the first case) and $U_{m}, m=1,2, \ldots$ (in the second case).

Note that by replacing each g_{n} with $g_{n}=\inf _{j \geqslant n} g_{j}$, we can assume that the sequence $g_{1}, g_{2}, g_{3}, \ldots$ is non-decreasing. By replacing each g_{n} with its integer part [g_{n}], we can assume that each g_{n} is a positive integer. Finally, by reducing each positive gap $k=g_{n+1}-g_{n}$, where $k \geqslant 2$, to the gap with $k=1$, we can assume without loss of generality that $g_{n+1}-g_{n} \leqslant 1$.

Take $\beta>1$ as above (namely, $\beta=p \alpha+q$ or $\beta=p \alpha^{\prime}+q$),

$$
c=8 p \beta^{5} \quad \text { and } \quad k_{m}=\left[c \beta^{m} / g_{m}\right]=\left[8 p \beta^{m+5} / g_{m}\right]
$$

Let

$$
\begin{aligned}
& A_{m}=\left\{p k T_{m+1}+p \ell T_{m} \mid k=1, \ldots, k_{m+1}, \ell=1, \ldots, k_{m}\right\} \\
& A_{m}^{\prime}=\left\{p k U_{m+1}+p \ell U_{m} \mid k=1, \ldots, k_{m+1}, \ell=1, \ldots, k_{m}\right\}
\end{aligned}
$$

Consider the sets $B=\bigcup_{m=1}^{\infty} A_{m}$ and $B^{\prime}=\bigcup_{m=1}^{\infty} A_{m}^{\prime}$. Denote their distinct elements by $b_{1}<b_{2}<b_{3}<\ldots$ and $b_{1}^{\prime}<b_{2}^{\prime}<b_{3}^{\prime}<\ldots$, respectively. The required sequence $A=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}$ will be obtained from B in the first case and from B^{\prime} in the second case. In both cases, we just replace several first elements of B (resp. B^{\prime}) by smaller positive integers.

Let us first show that, in the first case,

$$
\lim _{n \rightarrow \infty}\left\{b_{n} \alpha\right\}=0
$$

Suppose that $b_{n} \in A_{m}$. Such $m \in \mathbb{N}$ is not necessarily unique, but $m \rightarrow \infty$ provided that $n \rightarrow \infty$, and, vice versa, $n \rightarrow \infty$ as $m \rightarrow \infty$. By the above, $b_{n}=p k T_{m+1}+p \ell T_{m}$ with some $k, \ell \in \mathbb{N}$ satisfying $1 \leqslant k, \ell \leqslant \max \left\{k_{m}, k_{m+1}\right\} \leqslant c \beta^{m+1} / g_{m}$. From $\beta=p \alpha+q$ it follows that

$$
\left\{b_{n} \alpha\right\}=\left\{\left(k T_{m+1}+\ell T_{m}\right) p \alpha\right\}=\left\{\left(k T_{m+1}+\ell T_{m}\right) \beta\right\}
$$

Using the upper bound for k and ℓ, the formulae $c=8 p \beta^{5}$ and Lemma we deduce that

$$
\begin{gathered}
\left\{b_{n} \alpha\right\}=\left\{\left(k T_{m+1}+\ell T_{m}\right) \beta\right\}=k\left(T_{m+1} \beta-T_{m+2}\right)+\ell\left(T_{m} \beta-T_{m+1}\right) \\
=\beta^{-m}\left(1-\beta^{-2}\right)(k+\ell \beta) \leqslant \beta^{-m}\left(1-\beta^{-2}\right)(1+\beta) c \beta^{m+1} / g_{m} \\
=\left(\beta+\beta^{2}\right)\left(1-\beta^{-2}\right) c / g_{m}<16 p \beta^{7} / g_{m}
\end{gathered}
$$

for each sufficiently large m. (Certainly, this holds for those m for which $g_{m}>$ $16 p \beta^{7}$.) If $n \rightarrow \infty$, then $m \rightarrow \infty$ and $g_{m} \rightarrow \infty$. Hence $\lim _{n \rightarrow \infty}\left\{b_{n} \alpha\right\}=0$, as claimed.

Similarly, in the second case, the equality $p \alpha+q=\beta^{\prime}=\beta^{-1}$ combined with the representation $b_{n}^{\prime}=p k U_{m+1}+p \ell U_{m}$ yields $\left\{b_{n}^{\prime} \alpha\right\}=\left\{\left(k U_{m+1}+\ell U_{m}\right) \beta^{-1}\right\}$. Using the fact that $U_{m} \beta^{-1}-U_{m-1}$ is 'small' (see Lemma 4), in exactly the same manner as above we can prove that, in the second case, $\lim _{n \rightarrow \infty}\left\{b_{n}^{\prime} \alpha\right\}=0$.

Our next goal is to show that the elements of the set $A_{m}=\left\{p k T_{m+1}+p \ell T_{m} \mid k=\right.$ $\left.1, \ldots, k_{m+1}, \ell=1, \ldots, k_{m}\right\}$ are distinct for $m \geqslant m_{1}$. Assume that $p k T_{m+1}+p \ell T_{m}=$ $p k^{\prime} T_{m+1}+p \ell^{\prime} T_{m}$, where $\ell \neq \ell^{\prime}$. Then $\left(k-k^{\prime}\right) T_{m+1} / 2=\left(\ell^{\prime}-\ell\right) T_{m} / 2$. By Lemma 4 the integers $T_{m+1} / 2$ and $T_{m} / 2$ are coprime. It follows that $T_{m+1} / 2$ divides $\left|\ell-\ell^{\prime}\right|$. Therefore, $\beta^{m+1}<T_{m+1} \leqslant 2\left|\ell-\ell^{\prime}\right| \leqslant 2 k_{m} \leqslant 2 c \beta^{m} / g_{m}$. Setting m_{1} to be the least integer for which $g_{m_{1}} \geqslant 2 c$, we derive that $\beta^{m+1}<\beta^{m}$ for $m \geqslant m_{1}$, a contradiction. Likewise, the elements of the set $A_{m}^{\prime}=\left\{p k U_{m+1}+p \ell U_{m} \mid k=1, \ldots, k_{m+1}, \ell=\right.$ $\left.1, \ldots, k_{m}\right\}$ are distinct for $m \geqslant m_{2}$.

Let us take an integer $M \geqslant \max \left\{m_{1}, m_{2}\right\}$, where M is so large that

$$
m \leqslant k_{m}<\beta^{2} k_{m-1} \quad \text { for } \quad m \geqslant M
$$

Such an M exists, because the quotient k_{m} / k_{m-1} is 'approximately' $\beta g_{m} / g_{m-1}$, which is less than or equal to $\beta\left(1+g_{m-1}\right) / g_{m-1}<\beta(1+\varepsilon)$ for m large enough.

For any integer $n>k_{M-1} k_{M}$, there is a unique integer $m \geqslant M$ such that

$$
k_{m-1} k_{m}<n \leqslant k_{m} k_{m+1}
$$

Since all $k_{m+1} k_{m}$ elements of A_{m} (resp. A_{m}^{\prime}) are distinct, the nth element of B (resp. B^{\prime}) does not exceed the nth element of A_{m} (resp. A_{m}^{\prime}). The largest element of A_{m} is $p k_{m+1} T_{m+1}+p k_{m} T_{m}$. Hence, using the bounds $k_{m+1}<\beta^{4} k_{m-1}$, $T_{m+1}<2 \beta^{m+1}$ and $\beta^{m}<2 g_{m} k_{m} / c$, we obtain

$$
\begin{aligned}
b_{n} \leqslant & p k_{m+1} T_{m+1}+p k_{m} T_{m}<2 p k_{m+1} T_{m+1}<4 p \beta^{4} k_{m-1} \beta^{m+1} \\
& =4 p \beta^{5} k_{m-1} \beta^{m}<8 p \beta^{5} k_{m-1} k_{m} g_{m} / c=k_{m-1} k_{m} g_{m}
\end{aligned}
$$

This is less than $n g_{n}$, because $m \leqslant k_{m-1} k_{m}$, the sequence g_{1}, g_{2}, \ldots is nondecreasing, and $k_{m-1} k_{m}<n$. Consequently, $b_{n}<n g_{n}$ for each $n>k_{M-1} k_{M}$. Similarly, using $U_{m+1}<\beta^{m+1}$, we obtain

$$
\begin{gathered}
b_{n}^{\prime} \leqslant p k_{m+1} U_{m+1}+p k_{m} U_{m}<2 p k_{m+1} U_{m+1}<2 p \beta^{4} k_{m-1} \beta^{m+1} \\
<4 p \beta^{5} k_{m-1} k_{m} g_{m} / c<k_{m-1} k_{m} g_{m}<n g_{n}
\end{gathered}
$$

for each $n>k_{M-1} k_{M}$. This proves the required upper bound for b_{n} and b_{n}^{\prime} provided that n is large enough.

Trivially, $b_{n} \geqslant n$ and $b_{n}^{\prime} \geqslant n$ for each positive integer n. Thus, by the above, there exists a positive integer n_{0}, say $n_{0}=k_{M-1} k_{M}$, such that $n \leqslant b_{n}<n g_{n}$ and $n \leqslant b_{n}^{\prime}<n g_{n}$ for each $n \geqslant n_{0}+1$. In the first case, $\alpha>\alpha^{\prime}$, the required
increasing sequence of positive integers $A=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}$ can be obtained from $B=\bigcup_{m=1}^{\infty} A_{m}=\left\{b_{1}<b_{2}<b_{3}<\ldots\right\}$ by setting $a_{n}=n$ for $n \leqslant n_{0}$ and $a_{n}=b_{n}$ for $n \geqslant n_{0}+1$. In the second case, $\alpha^{\prime}>\alpha$, the required increasing sequence of positive integers $A=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}$ can be obtained from $B^{\prime}=\bigcup_{m=1}^{\infty} A_{m}^{\prime}=\left\{b_{1}^{\prime}<b_{2}^{\prime}<b_{3}^{\prime}<\ldots\right\}$ by setting $a_{n}=n$ for $n \leqslant n_{0}$ and $a_{n}=b_{n}^{\prime}$ for $n \geqslant n_{0}+1$. In both cases, we have $a_{n} \leqslant n g_{n}$ for each $n \geqslant 1$. This completes the proof of the theorem.

Suppose that ξ is either a real algebraic number of degree $\geqslant 3$ or a real transcendental number. Is there is a slowly increasing sequence of positive integers $a_{1}<$ $a_{2}<a_{3}<\ldots$ satisfying, for instance, $a_{n} \leqslant n\left[(\log n)^{\varepsilon}\right]$ for each $n \geqslant 3$, such that $\lim _{n \rightarrow \infty}\left\{a_{n} \xi\right\}=0$? (For example, $\lim _{n \rightarrow \infty}\left\{a_{n} \sqrt[3]{2}\right\}=0$ or $\lim _{n \rightarrow \infty}\left\{a_{n} \pi\right\}=0$?) We conclude this section with the following construction of some special transcendental numbers.

Theorem 5. For any sequence $1 \leqslant g_{1} \leqslant g_{2} \leqslant \ldots$ satisfying $\lim _{n \rightarrow \infty} g_{n}=\infty$, there is a transcendental Liouville number γ for which there is a sequence of positive integers $\left(a_{n}\right)_{n=1}^{\infty}$ satisfying $a_{n} \leqslant n g_{n}$ for infinitely many $n \in \mathbb{N}$ such that $\left\{a_{n} \gamma\right\} \rightarrow 0$ as $n \rightarrow \infty$.
Proof. Take $\gamma=\sum_{k=1}^{\infty} 2^{-d_{k}}$, where $\left(d_{k}\right)_{k=1}^{\infty}$ is a sequence of positive integers increasing so fast that $d_{k+1}>3 d_{k}$ and $g_{\ell_{k}}>2^{d_{k}}$, where $\ell_{k}=\left[2^{d_{k+1} / 2}\right]$. Then $0<2^{d_{m}} \alpha-u_{m}<2^{-d_{m+1}+d_{m}+1}$ with some $u_{m} \in \mathbb{N}$. Therefore, $0<\left\{\ell 2^{d_{m}} \gamma\right\}<$ $\ell 2^{-d_{m+1}+d_{m}+1}$ for every $\ell \in \mathbb{N}$. Select

$$
A_{m}=\left\{\ell 2^{d_{m}} \mid \ell=1,2, \ldots, \ell_{m}\right\}
$$

and define $A=\bigcup_{m=1}^{\infty} A_{m}=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}$.
By the choice of ℓ_{m}, it is easy to see that $\left\{a_{n} \gamma\right\} \rightarrow 0$ as $n \rightarrow \infty$. Furthermore, for each $n=\ell_{m}$, we have $a_{n}=a_{\ell_{m}} \leqslant \ell_{m} 2^{d_{m}}<\ell_{m} g_{\ell_{m}}=n g_{n}$, because the elements of A_{m} are distinct. So the inequality $a_{n} \leqslant n g_{n}$ holds for infinitely many $n \in \mathbb{N}$. The number γ is a transcendental Liouville number if $\lim \sup _{k \rightarrow \infty} d_{k+1} / d_{k}=\infty$. From $g_{\ell_{k}}>2^{d_{k}}$, where $\ell_{k}=\left[2^{d_{k+1} / 2}\right]$, we see that this is the case when the sequence $\left(g_{n}\right)_{n=1}^{\infty}$ is increasing slowly, for example, $g_{n} \leqslant \log n$. This can be assumed without loss of generality, by replacing the initial sequence $g_{1}, g_{2}, g_{3}, \ldots$ by the sequence $g_{1}^{*}=g_{2}^{*}=1$ and $g_{n}^{*}=\min \left\{g_{n}, \log n\right\}$ for $n \geqslant 3$.

This result is, of course, weaker than the same inequality $a_{n} \leqslant n g_{n}$ of Theorem【 which holds for all $n \in \mathbb{N}$.

4. Proof of Theorem 2$]$

Set $g=\liminf \operatorname{in}_{n \rightarrow \infty} a_{n} / n<\infty$. Suppose that the sequence $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$ has only t limit points for some $\xi \notin \mathbb{Q}$. Let us denote the number of elements of A lying in $[1, x]$ by $A(x)$. The condition $g=\liminf _{n \rightarrow \infty} a_{n} / n<\infty$ implies that $A(n)>n /(2 g)$ for infinitely many $n \in \mathbb{N}$.

Put $L=\lceil 3 g t\rceil$. We claim that the sequence $A=\left(a_{n}\right)_{n=1}^{\infty}$ contains at least $t+1$ elements in infinitely many intervals $[N+1, N+L]$, where $N \in \mathbb{N}$. Indeed, if at most t elements of A lie in each of the intervals $[k L+1, k L+L], k=0,1,2, \ldots$, except for, say, l intervals, then the number of elements of A up to $k L$ is $\leqslant l L+(k-l) t$, i.e., $A(k L) \leqslant l L+(k-l) t \leqslant k t+l L$. For a given $n \in \mathbb{N}$, take $k \in \mathbb{N}$ such that $(k-1) L<n \leqslant k L$. Then, using $L \geqslant 3 g t$, we find that

$$
A(n) \leqslant A(k L) \leqslant k t+l L<(n / L+1) t+l L \leqslant n /(3 g)+t+l L .
$$

So the inequality $A(n)>n /(2 g)$ cannot hold for infinitely many $n \in \mathbb{N}$, a contradiction. This proves our assertion.

Note that $\|q \xi\|>0$ for every $q \in \mathbb{N}$, because $\xi \notin \mathbb{Q}$. Here an below $\|x\|$ stands for the distance from a real number x to the nearest integer. Fix any ε satisfying

$$
0<2 \varepsilon<\min \{\|\xi\|,\|2 \xi\|, \ldots,\|(L-1) \xi\|\}
$$

By our assumption, the sequence $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$ has only t limit points. Hence, for $n \geqslant n_{0}(\varepsilon)$, the fractional part $\left\{a_{n} \xi\right\}$ must lie in an ε-neighborhood of at least one of those t points. Take an interval $[N+1, N+L]$, where $N \geqslant n_{0}(\varepsilon)$, which contains at least $t+1$ elements of A. (We already proved that this happens for infinitely many $N \in \mathbb{N}$, so such an interval exists.) By Dirichlet's box principle, at least two fractional parts, say, $\left\{a_{N+u} \xi\right\}$ and $\left\{a_{N+v} \xi\right\}$, where $1 \leqslant u<v \leqslant L$, lie in an ε-neighborhood of the same limit point, say, w. Putting $r=a_{N+v}-a_{N+u}$, where $r \in\{1, \ldots, L-1\}$, and using $\left\|a_{N+u} \xi-w\right\|,\left\|a_{N+v} \xi-w\right\| \leqslant \varepsilon$, we deduce that

$$
2 \varepsilon<\|r \xi\|=\left\|\left(a_{N+v}-a_{N+u}\right) \xi\right\| \leqslant\left\|a_{N+v} \xi-w\right\|+\left\|w-a_{N+u} \xi\right\| \leqslant \varepsilon+\varepsilon=2 \varepsilon
$$

a contradiction. This completes the proof of the theorem.
By the same argument as above one can prove that if $\left(a_{n}\right)_{n=1}^{\infty}$ is an increasing sequence of positive integers satisfying $\liminf _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)<\infty$ and ξ is an irrational real number, then the sequence of fractional parts $\left\{a_{n} \xi\right\}_{n=1}^{\infty}$ has at least two limit points.

Indeed, the condition $\liminf _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)<\infty$ implies that there exists a positive integer r such that $a_{n+1}-a_{n}=r$ for infinitely many n 's. Suppose that for some real irrational number ξ we have $\lim _{n \rightarrow \infty}\left\{a_{n} \xi\right\}=w$, where $0 \leqslant w \leqslant 1$. Then, for any $\varepsilon>0$ there exists $n_{0}(\varepsilon)$ such that $\left\|a_{n} \xi-w\right\| \leqslant \varepsilon$ for each $n \geqslant n_{0}(\varepsilon)$. Fix $\varepsilon>0$ satisfying $0<2 \varepsilon<\|r \xi\|$. Take any $n \geqslant n_{0}(\varepsilon)$ for which $a_{n+1}-a_{n}=r$. Then
$2 \varepsilon<\|r \xi\|=\left\|\left(a_{n+1}-a_{n}\right) \xi\right\|=\left\|a_{n+1} \xi-w+w-a_{n} \xi\right\| \leqslant\left\|a_{n+1} \xi-w\right\|+\left\|a_{n} \xi-w\right\| \leqslant 2 \varepsilon$, a contradiction.

Acknowledgements

I thank the referee, whose useful remarks made this paper more readable. This research was supported in part by the Lithuanian State Studies and Science Foundation.

References

[1] D. Berend, Multi-invariant sets on tori, Trans. Amer. Math. Soc., 280 (1983), 509-532. MR716835 (85b:11064)
[2] D. Berend, Multi-invariant sets on compact abelian groups, Trans. Amer. Math. Soc., 286 (1984), 505-535. MR760973 (86e:22009)
[3] D. Berend, Actions of sets of integers on irrationals, Acta Arith., 48 (1987), 275-306. MR921090 (89a:11077)
[4] M.D. Boshernitzan, Elementary proof of Furstenberg's Diophantine result, Proc. Amer. Math. Soc., 122 (1994), 67-70. MR1195714 (94k:11085)
[5] B. de Mathan, Numbers contravening a condition in density modulo 1, Acta Math. Acad. Sci. Hung., 36 (1980), 237-241. MR612195 (82e:10088)
[6] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation, Math. Systems Theory, 1 (1967), 1-49. MR0213508 (35:4369)
[7] H. Halberstam and K.F. Roth, Sequences, Vol. I, Clarendon Press, Oxford, 1966. MR0210679 (35:1565)
[8] A. Khintchine, Über eine Klasse linearer diophantischer Approximationen, Rend. Circ. Mat. Palermo, 50 (1926), 170-195.
[9] B. Kra, A generalization of Furstenberg's Diophantine theorem, Proc. Amer. Math. Soc., 127 (1999), 1951-1956. MR1487320 (99j:11079)
[10] D. Meiri, Entropy and uniform distribution of orbits in \mathbb{T}^{n}, Israel J. Math., 105 (1998), 155-183. MR1639747(99f:58129)
[11] C. Pisot, La répartition modulo 1 et les nombres algébriques, Ann. Scuola Norm. Sup. Pisa, 7 (1938), 204-248.
[12] A.D. Pollington, On the density of the sequence $\left\{n_{k} \xi\right\}$, Illinois J. Math., 23 (1979), 511-515. MR 540398 (80i:10066)
[13] O. Strauch and S. Porubský, Distribution of sequences: A sampler, Schriftenreihe der Slowakischen Akademie der Wissenschaften 1, Peter Lang, Frankfurt, 2005. MR 2290224 (2008b:11001)
[14] R. Urban, Sequences of algebraic numbers and density modulo 1, Publ. Math. Debrecen, 72 (2008), 141-154. MR2376865
[15] T. Vijayaraghavan, On the fractional parts of the powers of a number. I, J. London Math. Soc., 15 (1940), 159-160. MR0002326 (2:33e)
[16] H. Weyl, Über die Gleichverteilung von Zahlen modulo Eins, Math. Ann., 77 (1916), 313-352. MR1511862

Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania

E-mail address: arturas.dubickas@mif.vu.lt

[^0]: Received by the editors December 17, 2007, and, in revised form, January 19, 2008.
 2000 Mathematics Subject Classification. Primary 11B05, 11B37, 11J71, 11R11.
 Key words and phrases. Distribution modulo 1, recurrence sequence, quadratic algebraic number.

