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NEW EQUIVALENCES
FOR PATTERN AVOIDING INVOLUTIONS

W. M. B. DUKES, VÍT JELÍNEK, TOUFIK MANSOUR, AND ASTRID REIFEGERSTE

(Communicated by Jim Haglund)

Abstract. We complete the Wilf classification of signed patterns of length 5
for both signed permutations and signed involutions. New general equivalences
of patterns are given which prove Jaggard’s conjectures concerning involutions
in the symmetric group avoiding certain patterns of length 5 and 6. In this
way, we also complete the Wilf classification of S5, S6, and S7 for involutions.

1. Introduction

Pattern avoidance has proved to be a useful concept in a variety of seemingly un-
related problems, including Kazhdan-Lusztig polynomials [2], singularities of Schu-
bert varieties [3, 4, 5, 6, 7, 16], Chebyshev polynomials [19], rook polynomials for a
rectangular board [18] and various sorting algorithms, sorting stacks and sortable
permutations [8, 9, 10, 20, 21, 22].

In this paper, we deal with pattern avoidance in the symmetric group Sn and
the hyperoctahedral group Bn. The group Bn, which is isomorphic to the auto-
morphism group of the n-dimensional hypercube, can be represented as the group
of all bijections ω of the set X = {−n, . . . ,−1, 1, . . . , n} onto itself such that
ω(−i) = −ω(i) for all i ∈ X, with composition as the group operation. However,
for our purposes it is more convenient to represent the elements of Sn as permu-
tation matrices, and the elements of Bn as signed permutation matrices, where
a signed permutation matrix is a 0, 1,−1-matrix with exactly one nonzero entry
in every row and every column. We may also write the elements of Bn as words
π = π1π2 . . . πn in which each of the letters 1, 2, . . . , n appears, possibly barred to
signify negative letters; a matrix p corresponds to the word π such that pij = 1 if
πi = j, pij = −1 if πi = −j, and pij = 0 otherwise. In our paper, we will make
no explicit distinction between these two representations of a signed permutation.
Let In and SIn be the set of involutions in Sn and Bn, respectively. Note that
involutions correspond precisely to symmetric matrices.

A signed permutation π ∈ Bn is said to contain the pattern τ ∈ Bk if there
exists a sequence 1 ≤ i1 < i2 < . . . < ik ≤ n such that |πia

| < |πib
| if and only if
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|τa| < |τb| and πia
> 0 if and only if τa > 0 for all 1 ≤ a, b ≤ k. Otherwise, π is

called a τ -avoiding permutation. Note that π contains τ if and only if the matrix
representing π contains the matrix representing τ as a submatrix. By M(τ ) we
denote the set of all elements of M which avoid the pattern τ .

Two signed patterns σ and τ are called Wilf equivalent, in symbols σ ∼ τ , if they
are avoided by the same number of signed n-permutations, i.e., if |Bn(σ)| = |Bn(τ )|
for each n ≥ 1. Similarly, σ and τ are called I-Wilf equivalent, denoted by σ

I∼ τ , if
|SIn(σ)| = |SIn(τ )| for each n. Note that two unsigned permutations σ, τ ∈ Sk are
Wilf-equivalent if and only if they satisfy the identity |Sn(σ)| = |Sn(τ )| for each n,
and they are I-Wilf equivalent if and only if they satisfy |In(σ)| = |In(τ )| for each
n. The classification given by the Wilf equivalence is slightly coarser than that
which is based on the symmetries of permutations, that is, the mappings generated
by the reversal, transpose, and barring operation. The same is true for the I-Wilf
equivalence, where the available symmetries are generated by the two diagonal
reflections and the barring operation.

The question of whether two patterns are Wilf equivalent or not is difficult to
answer in many cases. By the few generic equivalences known so far, it has been
possible to completely determine the Wilf classes of Sn up to level n = 7. The
decomposition of Sn into I-Wilf classes has been completely determined for n = 4
and almost solved for n = 5 as well. Jaggard [14] conjectured the last case of a
possible equivalence for patterns of length 5: 12345 (or equivalently, 54321) and
45312 are equally restrictive for In up to n = 11.

Continuing the I-Wilf classification of signed patterns that began in [13], we
will first prove a general equivalence result which confirms Jaggard’s conjecture
mentioned above, as well as another conjecture he made about the equivalence
of certain patterns of length 6. The correspondence behind this result is based
on a bijection between pattern avoiding transversals of Young diagrams given by
Backelin, West and Xin [1]. In this way, we complete the classification of S5 with
respect to I∼, which is fundamental for the analogous classification of B5. The result
even covers all missing I-Wilf equivalences in S6 and S7.

Furthermore, we will show that barring some blocks of a signed block diagonal
pattern preserves the Wilf class of the pattern, and it also (under some additional
assumptions) preserves the I-Wilf class. These results not only allow us to determine
the Wilf as well as the I-Wilf classes in B5, but they also have consequences for
longer signed patterns.

2. Jaggard’s conjectures

In 2003, Jaggard [14] proved the equivalences 12τ I∼ 21τ and 123τ I∼ 321τ , and
completed the classification of S4 according to pattern avoidance by involutions in
this way. Furthermore, he conjectured that

(1) 12 . . . kτ
I∼ k(k − 1) . . . 1τ for any k ≥ 1,

(2) 12345 I∼ 45312 (or equivalently, 54321 I∼ 45312),
(3) 123456 I∼ 456123 I∼ 564312 (or equivalently, 654321 I∼ 456123).

In [1], Backelin, West and Xin defined a transformation to prove 12 . . . kτ ∼
k(k − 1) . . . 1τ . (As already mentioned in [13], their proof also works for a signed
pattern τ .) This map acts not only on permutation matrices, but more generally
on transversals of Young diagrams. Bousquet-Mélou and Steingŕımsson [11] showed
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that this map commutes with the diagonal reflection of the diagram, which proves
the first of the three conjectures above. From this result, it follows that(

αk 0 0
0 χ 0
0 0 αl

)
I∼

(
βk 0 0
0 χ 0
0 0 βl

)

for every signed permutation matrix χ and any k, l ≥ 0, where αn and βn denote
the n×n diagonal and antidiagonal permutation matrices corresponding to 12 . . . n
and n(n − 1) . . . 1, respectively. In this section, we will show that(

0 0 0 αk
0 0 χ 0

0 χt 0 0
αk 0 0 0

)
I∼

(
0 0 0 βk

0 0 χ 0

0 χt 0 0
βk 0 0 0

)
and

⎛
⎝ 0 0 0 0 αk

0 0 0 χ 0
0 0 1 0 0
0 χt 0 0 0

αk 0 0 0 0

⎞
⎠ I∼

⎛
⎝ 0 0 0 0 βk

0 0 0 χ 0
0 0 1 0 0
0 χt 0 0 0

βk 0 0 0 0

⎞
⎠ ,

where χt denotes the transpose of χ. Note that, different from the general case,
the reverse operation is not a symmetry for involutions, so these equivalences are
really new.

Our proof will also use the Backelin, West and Xin bijection [1]. Therefore,
let us first recall the extended notion of pattern avoidance they have used. A
Young diagram (or Young shape) is a top-justified and left-justified array of cells,
i.e., an array whose rows have nonincreasing lengths from top to bottom, and its
columns have nonincreasing lengths from left to right. A cell of a Young shape is
called a corner if the array obtained by removing the cell is still a Young shape.
Occasionally, it will be convenient to use top-right justified diagrams instead of the
top-left justified diagrams defined above. We will refer to the top-right justified
shapes as NE-shapes to avoid confusion with the ordinary Young shapes.

A (signed) transversal of a Young diagram λ is an assignment of 0’s and 1’s (of
0’s, 1’s and −1’s) to the cells of λ such that each row and column contains exactly
one nonzero entry. A sparse filling of λ is an arrangement of 0’s, 1’s and −1’s which
has at most one nonzero entry in every row and column.

For a k × k permutation matrix τ , we say that a filling L of a shape λ contains
τ if there exists a k × k subshape within λ whose induced filling is equal to τ . The
set of all transversals (or signed transversals) of a shape λ which do not contain τ
is denoted by Sλ(τ ) (or Bλ(τ ), respectively). Two signed permutation matrices σ
and τ are called shape Wilf equivalent if |Bλ(σ)| = |Bλ(τ )| for all Young shapes λ.
Shape Wilf equivalence clearly implies Wilf equivalence. We will also say that σ and
τ are NE-shape Wilf equivalent if |Bλ(σ)| = |Bλ(τ )| for each NE-shape λ. Observe
that if σ and τ are permutation matrices, then they are shape Wilf equivalent if
and only if |Sλ(σ)| = |Sλ(τ )| for each Young diagram λ.

By [1, Proposition 2.2], αk and βk are shape Wilf equivalent for all k. The
following proposition, which is also largely based on [1], will allow us to extend this
equivalence to more general patterns.

Proposition 2.1. Let λ be a Young shape, and let χ, χ1, χ2 be signed permutations,
such that χ1 and χ2 are shape Wilf equivalent. We set

θ =
( χ1 0

0 χ

)
and ω =

( χ2 0
0 χ

)
.

There is a bijection between θ-avoiding and ω-avoiding sparse fillings of λ. This
bijection preserves the number of nonzero entries in each row and column; in par-
ticular, θ and ω are shape Wilf equivalent. Furthermore, if χ is nonempty, the
bijection preserves the values of the filling in the corners of λ.
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Proof. The proof is essentially the same as the proof given in [1, Proposition 2.3].
We briefly sketch the argument here. By assumption, there is a bijection ϕ between
the χ1-avoiding and χ2-avoiding signed transversals of an arbitrary Young shape.
Let L be an arbitrary θ-avoiding sparse filling of λ. Let us colour a cell of λ if there
is no occurrence of χ to the southeast of this cell. Also, if λ has a row or column
where all the uncoloured cells contain zeros, then we colour each cell of this row or
column. Note that if χ is nonempty, then all the corners of λ are coloured. The
uncoloured cells induce a χ1-avoiding signed transversal of a Young subdiagram of
λ. We apply the bijection ϕ to the subdiagram of uncoloured cells, and preserve
the filling of all the coloured cells. This transforms the original filling of λ into
a ω-avoiding sparse filling. This transformation is a bijection which has all the
claimed properties. �

Note that Proposition 2.1 yields some information even when χ is the empty
matrix. In such a situation, the proposition shows that a bijection between pat-
tern avoiding signed transversals can be extended to a bijection between pattern-
avoiding sparse fillings by simply ignoring the rows and columns with no nonzero
entries.

We will now show how the results on shape Wilf equivalence may be applied
to obtain new classes of I-Wilf equivalent patterns. Let us first give the necessary
definitions. For an n × n matrix π let π+ denote the subfilling of π formed by
the cells of π which are strictly above the main diagonal, and let π+

0 denote the
subfilling formed by the cells on the main diagonal and above it. For example, for
π = 24̄31 we have

π+ =
1

−1 and π+
0 =

1

−1

1

.

The coordinates of the entries in π are used for the cells of π+ as well. Thus, for
instance, the cell (1, 2) is the top-left corner of π+. Analogously, we define π− to
be the filled shape corresponding to the entries strictly below the main diagonal
of π. Clearly, a symmetric matrix π is completely determined by π+

0 . Observe
that a symmetric 0, 1,−1-matrix π is a signed involution if and only if, for every
i = 1, . . . , n, the filling π+

0 has exactly one nonzero entry in the union of all cells of
the i-th row and i-th column.

Note that i is a fixed point of a signed involution π, that is |πi| = i, if and only if
the i-th row and the i-th column of π+ have all entries equal to zero. In general, a
signed involution π need not be completely determined by the filling π+; however,
if we have two signed involutions π, ρ with π+ = ρ+, then π and ρ only differ by the
signs of their fixed points. If π is a signed involution, then, for each i = 1, . . . , n,
the filling π+ has at most one nonzero entry in the union of the i-th row and i-th
column; conversely, any filling π+ of an appropriate shape with these properties
can be extended into a signed involution π, which is determined uniquely up to the
sign of its fixed points.

For a signed permutation σ, let σ′ denote the involution
(

0 σ
σt 0

)
, where σt is the

transpose of σ. We are now ready to state our first result on I-Wilf equivalence.
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Theorem 2.2. If σ and τ are two NE-shape Wilf equivalent signed permutation
matrices, then σ′ I∼ τ ′. Moreover, the bijection between SIn(σ′) and SIn(τ ′) pre-
serves fixed points.

Proof. Let π ∈ SIn be an involution. We claim that π avoids σ′ if and only if π+

avoids σ. To see this, notice that any occurrence of σ′ in π can be restricted either
to an occurrence of σ in π+ or an occurrence of σt in π−. However, since π+ is the
transpose of π−, we know that π− contains σt if and only if π+ contains σ. The
converse is even easier to see.

Let us choose π ∈ SIn(σ′). Since π+ is a sparse σ-avoiding filling, we may
apply the bijection from Proposition 2.1 (adapted for NE-shapes) to π+ to obtain
a τ -avoiding sparse filling of the same shape, which has a nonzero entry in a row
i (or column i) whenever π+ has a nonzero entry in the same row (or column,
respectively). Hence this filling also corresponds to an involution, more exactly,
to ρ+ for an involution ρ ∈ SIn. Furthermore, the fixed points of ρ are in the
same position as the fixed points of π, because the position of the fixed points is
determined by the zero rows and columns, which are preserved by the bijection from
Proposition 2.1. By defining the signs of the fixed points of ρ to be the same as
the signs of the fixed points of π, the involution ρ is determined uniquely. Clearly,
since ρ+ avoids τ , we know that ρ avoids τ ′. Each step of this construction can be
inverted, which proves the bijectivity. Furthermore, the bijection preserves fixed
points by construction. �

By a similar reasoning, we obtain an analogous result for patterns of odd size.
For a signed permutation σ, let σ′′ denote the involution matrix(

0 0 σ
0 1 0
σt 0 0

)
,

and let σ∗ denote the signed permutation ( 0 σ
1 0 ).

Theorem 2.3. If σ and τ are NE-shape Wilf equivalent, then σ′′ I∼ τ ′′. Moreover,
the bijection between SIn(σ′′) and SIn(τ ′′) preserves fixed points.

Proof. By an argument analogous to the proof of Theorem 2.2, we may observe that
an involution π avoids σ′′ if and only if π+

0 avoids the pattern σ∗. By Proposition 2.1
(adapted for NE-shapes), the two patterns σ∗ and τ∗ are NE-shape Wilf equivalent,
and furthermore, the bijection realizing this equivalence preserves the corners of the
shape. Note that in our situation, the corners correspond exactly to the diagonal
cells of the original signed permutation matrix.

Now we consider π+
0 for an involution π ∈ SIn(σ′′). By Proposition 2.1, π+

0 is in
bijection with a τ∗-avoiding filling ρ+

0 . Since the bijection preserves the number of
nonzero entries in each row and each column of π+

0 , and it also preserves the entries
on the intersection of the i-th row and the i-th column (these are precisely the
corners), we know that the bijection preserves, for each i, the number of nonzero
entries in the union of the i-th row and the i-th column. In particular, ρ+

0 has
exactly one nonzero entry in the union of the i-th row and the i-th column, which
guarantees that ρ+

0 can be (uniquely) extended into an involution ρ.
Because the bijection preserves the entries in the diagonal cells (i, i), i = 1, . . . , n,

the permutations π and ρ have the same fixed points. This provides the required
bijection. �
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Let us apply these two theorems to some special cases of shape Wilf equivalent
patterns. For an integer k ≥ 0 and a signed permutation χ, let us define

θ =
(

0 αk
χ 0

)
and ω =

(
0 βk

χ 0

)
.

As we know, the two patterns θ and ω are NE-shape Wilf equivalent. From our
results, we then obtain the following classes of I-Wilf equivalent patterns.

Corollary 2.4. We have(
0 0 0 αk
0 0 χ 0

0 χt 0 0
αk 0 0 0

)
I∼

(
0 0 0 βk

0 0 χ 0

0 χt 0 0
βk 0 0 0

)
and

⎛
⎝ 0 0 0 0 αk

0 0 0 χ 0
0 0 1 0 0
0 χt 0 0 0

αk 0 0 0 0

⎞
⎠ I∼

⎛
⎝ 0 0 0 0 βk

0 0 0 χ 0
0 0 1 0 0
0 χt 0 0 0

βk 0 0 0 0

⎞
⎠ .

The special cases χ = ∅ and χ = (1) show both of Jaggard’s conjectures to be
correct.

Corollary 2.5. We have 54321 I∼ 45312 and 654321 I∼ 456123 I∼ 564312.

3. Barring of blocks

In [13] it was shown that the barring of τ in 12 . . . kτ and k(k−1) . . . 1τ preserves
both the Wilf class and the I-Wilf class. Furthermore it was proved that(

αk 0 0
0 χ 0
0 0 αk

)
I∼

(
αk 0 0
0 −χ 0
0 0 αk

)
for every signed permutation matrix χ and k ≥ 0. Basically, the assertion follows
from 123 I∼ 12̄3. By a similar reasoning, we can show the I-Wilf equivalence of the
reversed patterns because 321 I∼ 32̄1 as well. Now we turn our attention to the
general block pattern (

χ1 0 0
0 χ2 0
0 0 χ3

)
where the χi are signed permutation matrices. First we prove the following crucial
statement.

Theorem 3.1. Let χ1 and χ2 be signed permutation matrices and set

θ =
( χ1 0

0 χ2

)
and ω =

( χ1 0
0 −χ2

)
.

For any Young shape λ, there is a bijection between θ-avoiding and ω-avoiding
sparse fillings of λ. The bijection preserves the position of all nonzero entries,
i.e., it transforms the filling only by changing the signs of some of the entries.
In particular, the patterns θ and ω are shape Wilf equivalent. Moreover, if λ is
self-conjugate and at least one of the matrices χ1 and χ2 is symmetric, then the
bijection maps symmetric fillings to symmetric fillings.

Proof. Given a θ-avoiding sparse filling of λ, we construct the corresponding ω-
avoiding filling as follows: Colour each cell of λ for which there is an occurrence
of χ1 to the northwest of the cell. Note that the cells left uncoloured then form
a Young subdiagram of λ. By assumption, the coloured part does not contain χ2.
Switching the signs of all entries of this part consequently yields a signed transversal
of λ which avoids ω. Note that even after the transformation has been performed, it
is still true that the coloured cells are precisely those cells that have an occurrence
of χ1 to their northwest. The transformation may have created new copies of χ1 in
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the diagram, but it may easily be seen that these copies do not alter the colouring
of the cells. This shows that the transformation is indeed a bijection.

Let λ now be self-conjugate with a symmetric θ-avoiding filling. Obviously, if
χ1 is symmetric, then a cell is coloured if and only if its reflection (along the main
diagonal) is coloured. Hence the signs of both entries must have been changed, so
the resulting filling is symmetric again. If χ2 is symmetric but χ1 is not, then we
slightly modify the definition of the bijection. Colour a cell if there is an occurrence
of χ2 to the southeast. The restriction to these cells is a symmetric filling of a
self-conjugate subshape which avoids χ1. Now change the signs of all nonzeros in
uncoloured cells. The resulting filling avoids ω and is still symmetric. It is again
easy to see that this provides the required symmetry-preserving bijection. �

An immediate consequence of the previous theorem is the following:

Corollary 3.2. For any signed permutation matrices χ1, χ2, χ3, we have(
χ1 0 0
0 χ2 0
0 0 χ3

)
∼

(
χ1 0 0
0 −χ2 0
0 0 χ3

)
.

Because of the symmetry property of the bijection we can prove an analogous
result for pattern avoiding involutions.

Corollary 3.3. Let χ1, χ2, χ3 be signed permutation matrices, at least two of which
are symmetric. Then we have(

χ1 0 0
0 χ2 0
0 0 χ3

)
I∼

(
χ1 0 0
0 −χ2 0
0 0 χ3

)
.

Proof. By Theorem 3.1, the signed pattern diag(χ1, χ2, χ3) is I-Wilf equivalent
with the signed pattern diag(χ1, χ2,−χ3) (note that at least one of the two ma-
trices diag(χ1, χ2) and χ3 is symmetric). By the same argument, the pattern
diag(χ1, χ2, χ3) is I-Wilf equivalent with diag(χ1,−χ2,−χ3). Combining these facts
with the observation that changing the signs of all three blocks clearly preserves
the I-Wilf class, we may even conclude that any matrix obtained by changing the
signs of any of the three blocks is I-Wilf equivalent to the original matrix. �

Combining Theorem 3.1 with Theorems 2.2 and 2.3, we obtain more classes of
I-Wilf equivalent patterns. The following corollary gives an example.

Corollary 3.4. Let χ1 and χ2 be signed permutation matrices. Then we have⎛
⎝

0 0 0 0 χ1
0 0 0 χ2 0
0 0 ε 0 0
0 χt

2 0 0 0

χt
1 0 0 0 0

⎞
⎠ I∼

⎛
⎝

0 0 0 0 χ1
0 0 0 −χ2 0
0 0 ε 0 0
0 −χt

2 0 0 0

χt
1 0 0 0 0

⎞
⎠ ,

where ε is empty or ε = (1).

4. Classification

The proof of Jaggard’s conjecture provides the complete classification of the
I-Wilf equivalences among the patterns from S5. It turns out that there are 36
different classes (in comparison with 45 symmetry classes). By the results of [13],
it is known that B5 has at most 405 I-Wilf equivalence classes. Applying the new
equivalences, we obtain 402 classes which are definitively different. (By the symme-
tries of an involutive permutation, the patterns are divided into 566 classes.) [12,
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Table 1] shows representatives of all classes, each with the number of involutions in
SI9, . . . , SI12 avoiding the patterns of this class. The enumeration is done for n = 9
in any case; higher levels are only computed up to the final distinction. Classes
containing patterns of S5 are in bold; hence the classification of S5 according to
the I-Wilf equivalence can be obtained from the table as well.

The classification of the patterns of B5 by Wilf equivalence becomes complete by
Corollary 3.2. The relations given in [13] did not cover seven pairs of patterns whose
Wilf equivalence was indicated by numerical results. All these cases are proved now
by the corollary. Consequently, B5 falls into 130 Wilf classes (in comparison with
284 symmetry classes). See [13, Table 7] for the complete list.

The bijections of Theorem 2.2 and Theorem 2.3 also provide the complete clas-
sification of S6 and S7 with respect to the I-Wilf equivalence. [12, Table 2] lists all
classes of S6 obtained by all equivalences, already known (see [13] and the refer-
ences therein) or proven here. As the enumeration of involutions in I12 avoiding
the patterns shows, they are different. In a similar way, we obtain 1291 Wilf classes
for S7, whose table is available from [17].

It is very possible that the results given here and in [13] suffice to solve the
I-Wilf classification of signed patterns up to length 7. However, the numerical
proof that two classes are really different for a rapidly increasing number of classes
is the challenge we (and computers) have to master.

Remark 4.1. After publishing this paper on the arXiv, Aaron Jaggard mentioned
that he and Joseph Marincel had shown that the patterns (k − 1)k(k − 2) . . . 312
and k(k − 1) . . . 21 are I-Wilf equivalent for any k ≥ 5 by using generating tree
techniques [15].
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