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ON THE ANALYTIC SOLUTION OF THE CAUCHY PROBLEM

XIANG-DONG HOU

(Communicated by Jim Haglund)

ABSTRACT. Derivatives of a solution of an ODE Cauchy problem can be com-
puted inductively using the Faa di Bruno formula. In this paper, we exhibit
a noninductive formula for these derivatives. At the heart of this formula is
a combinatorial problem, which is solved in this paper. We also give a more
tractable form of the Magnus expansion for the solution of a homogeneous
linear ODE.

1. INTRODUCTION

Consider the Cauchy problem

g filyr,- o yn) y1(0) 0
1.1 — || = : : =|:
( ) dt : . ’ . -1
where f1,..., f, have continuous partial derivatives of total order up to v in a

neighborhood of (0,...,0). The (v + 1)st order derivatives of the unique solution
of (LI) in a neighborhood of (0,...,0) are given by

iy
dtvtt  dev
The right side of ([2)) is given by the multivariate Faa di Bruno formula [2] [12].

(For more about the Faa di Bruno formula, see [T}, [3, [6], [T0].) Altogether, we have
for v > 0 that

(12) fl(yh?yn)a UZO

(1.3)
Ty S oAy 3 11 1 (idjyk)“jk
dtv+1 =V ayA1 e 8y)\71, L 'k! ,]' dti )
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1< 4 A, <v Zj S g Zj,k P

where N = {0,1,2,...}. Equation (L3)) allows us to compute the derivatives %
inductively on v. If fy,..., f, are analytic in a neighborhood of (0, . . ., 0), then (L3)
also allows us to compute the coefficients of the power series solution inductively.
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The derivatives of the solution of (LI]) can also be expressed in terms of the
linear differential operator

i 0
D= (s ) ——.
;f](yl y)ayj

We have
dvy;
dt?

see [Bl, [, [7]. However, the right side of (L4)) is not explicit in terms of the partial
derivatives of f1,..., fn.

The purpose of the present paper is to point out that there is a formula for the
derivatives of the solution of (1)) which is noninductive and is explicit in terms
of the partial derivatives of fi,..., f,. The formula is stated in Section 2. At
the heart of the formula is a combinatorial problem, which is solved in Section 3.
Section 4 discusses a connection between a byproduct of Section 3 and the Magnus
expansion for the solution of a homogeneous linear ODE.

(1.4)

= D"y, v > 0;

2. THE MAIN RESULT

For (j1,...,jv—1) € N*"Yand (iy,...,i,) € NY, we say that (ji,...,Ju_1) <
(i1, yiy) i (1, y80) = (J1y -+ o5 Ju—15Ju + 1,0, Jut1, - - -, Ju—1) for some 1 < u <
v—1or (i1,...,iy) = (j1,---,Jv_1,1). Define N = {}} and define () < (1) € N*.

Using transitivity, we extend < to a partial order in (J,~, N".

Let
Iv:{(il,...,iv)GN”:i1+~~~+iuZufor1§u§vandi1+~~~+iv:v}.

Also define Ty = {@} If (jl, R 7jv—1) < (’il, . ,’iv), then (jl; - ajv—l) € I, if
and only if (i1,...,4,) € Z,.

Let f1(y1,---sYn)s--s fn(y1s--.,yn) be functions of y1,...,y, which are differ-
entiable enough times. Write

fl(y1a~'~7yn)

fayrs - yn)
(Bry---,08:) €{1,...,n} fez(icographically and whose (a, (B, .- ,ﬁi))-entry is
O fa
Oyp, -+~ Oy,

Moreover, for ¢ > 0, let be an n x n’ matrix whose columns are indexed by

For example, if f = [f1(y1,y2), f2(y1,92)]", then

>’ fi O fi O fi > fi
Pf | 0y10y1 O0y10y2  Oyady1  yadyo

oy: | 92f, 02 f 9% fa D% fo
0y10y1  0y10y2  O0y20y1  Oy20y2
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Theorem 2.1. The derivatives of the solution of (L)) are given by

(2.1)
dv+1 n
praal I
Yn

Z a(il, ce ,iv)% (Inz‘l—l (9 g:i) e (InilerJriv,l—(u—l) ® %)fa
(21 4eenyin ) ETy

where a(iy,...,iy,) € ZT, (i1,...,1y) € Ly, is defined inductively by

a’(ih'"?i’v): Z a(jla"'7jv71)7
(2.2) (tseesfom1) = (15eemsin)
a(®) = 1.

Proof. For (i1,...,4y) € I, let 4,41 = 0 and let

v+1 8Z“f
(23) F(i],...,iv,()) = H (Inz‘1+---+iu,1—(u—1) ® %T)’
u=1

where the factors in the product appear from left to right in the order of u =
1,2,...,v4+ 1. Then 7)) can be written as

Y1
dvtt . .
(2.4) pITES] = § a(i, ... ,ZU)F(il,...,imO)'
Un (31,10 ) ETy

To prove ([24) and (2.2), we use induction on v. The initial case v = 0 needs no
proof. Since

d aifa ai+1 fa dyﬁi . ai+1fa
E(a 0 ):Za Oy, 0 D D PR VA VR L
Y, Yp; Bt Yp, YB:OYBita1 1 Yp, YB:OYBita
we have
d azf 8i+1f
— ) = — (1, .
dt(ayz) gyt n @ F)
Thus
d ot f
% |:Ini1+"'+iu—1_(“_l) ® %}
ai'“+1f
(25) :Inz‘1+-~-+ri“,_17(u71) ® {W(Iniu ® -f)}

aiu+1f

— [Inil+...+iu,1—(u—1) X W

] [Ini1+---+iu,1+u“,+1>—u ® ,ﬂ.
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By 23) and 231), we have

d
27 F1,i00)
v+1 u—1 . .
o= f d o f
== I i ceedrig 1 —(s—1 —):| |:— (I i ceedrdg, 1 —(u—1 —):|
uz_:l[sli[l(nﬁ +ig_1—( )®3y15 gr it i = )®ay’u
v+1

By (—

s=u+1

v+1
=) Flir a1 it 100wt sesin 0)-

u=1

Therefore, assuming (2.4)), we have

dvt2 h v+1
dtv+2 = Z G/(Z]_, Tt ZU) Z F(i1,‘..,iu_l,iu+1,0,iu+1,,.‘,iv,O)
Yn (i15-,50) €Ly u=1
= Z a(‘j17..'7jv+1)F(j11”-7jv+170)’
(J1s--sJot1)ELp41
where
a(j17”~7j7j+1): Z a(il,...,iv).
(150 580) = (G155 dv41)
So the induction is complete. (I

Remark. Let R be a commutative ring of characteristic 0 and R[[Y1,...,Y,]] be the
ring of formal power series in Yi,...,Y,, over R. Let fi,...,f, € R[[Y1,...,Y4]]
and y1,...,yn € R[[X]] be the unique solution of (II). Then (L3) and ([Z2)) also
hold. Both formulas give the coefficients of y1, ..., y, in terms of the coefficients of

fis--os fn, @C3) inductively and ([Z2) explicitly.

3. DETERMINATION OF a(iy, .. .,iy)

For each (i1,...,1,) € Z,, we define a walk w(iy,...,4,) to be a sequence of
points

(0,0), (0,41), (1,41), (1,41 +i2), ..., (v—=1,i1 4+ -+ 1), (v,0)

in N2. It helps to think of the walk w(iy,...,i,) as line segments connecting the
points in the above sequence. Therefore, the walk w(iy,...,4,) starts from (0,0)
and moves 47 units up, 1 unit right, s units up, 1 unit right and so on until it reaches
(v,v). For example, w(2,0,3,2,0,2,0,0,1,0) is shown in Figure[[l Note that since
(i1y...,1y) € Ly, the walk w(iy,...,4,) is above the line y = x. Let R denote the
closed region of [0, v] x [0, v] below the walk w(é1,...,4,). Foreach 0 <i <wlet L;
denote the line y = x +i. Then L; N R consists of line segments; each line segment
is further divided into subsegments by certain vertices of the walk. In Figure [I]
L; N R consists of two segments (from lower left to upper right): (0,1) (1,2) and
(2,3)(9,10). The segment (2,3)(9,10) consists of two subsegments: (2,3) (8,9)
and (8,9)(9,10). If a segment consists of subsegments of length 11v/2,15v/2, ...
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(from lower left to upper right), we say that the segment is of type (I1,l2,...). In
Figure ]

10 7

e L has 1 segment of type (2,8);

e L; has 2 segments of type (1), (6,1);
e L5 has 1 segment of type (1,2,2);

[ ]

L3 has 2 segments of type (1), (1).

Theorem 3.1. Let (i1,...,9y) € I, and let R be the closed region of [0,v] x [0, v]
below the walk w(iy,...,i,). Assume that Ly N R consists of segments of type
st ), (192152, .), . ... Then

(3.1)
1+ (L
ain; oo HH[( —1 45 >< —1 4+ }
ZS'LL lsu .. ls,uls,u”_
1 "2
_HH< ZS“ Yo )(li’u+l§’u+...)(l§’u+l§’u+...)....

For example, Theorem [B.1I] applied to the walk in Figure [I] gives

a(2,0,3,2,0,2,0,0,1,0) = (?) (g) (é) (?) = 162.

Proof of Theorem Bl From (22), it is clear that a(iy,...,4.) is the number of
sequences ) = ag < a1 < -+ < a, = (41,...,%y), where a,, € Z,,, 0 < u < v.
The sequence (i1, ...,%,,0) can be reduced to 0 through v reduction steps; each
step is a replacement of a string (¢,0) in (41,...,4,,0) by i — 1, where ¢ > 0.
Therefore, a(iy,...,i,) is the number of sequences of reduction steps which reduce
(i1, .., iv,0) to 0.
The sequence (i1,...,4,,0) consists of strings of maximal length of the form
(j1,---,7s,0,...,0), where ji --- js # 0 and t > 0. Each such string can be reduced
——
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in a unique way through min{t, j; + --- + js} reduction steps to
——
t—(j1t i)+
(*a"'7*) 1ft<]1++]5,
where the *’s are positive and sum to j; + - + js — t. (See Figure 21)

t
—

| 1 - js00 --- 0 |

|j1 ---js—10-~-0|
e
t—1

[0 --- 0] or [ - x|

FIGURE 2. Reduction of (j1,...,7s,0,...,0)

Before the reduction of (j1,...,7s,0,...,0) reaches (0,...,0) or (x,...,%), the
result of each intermediate step is a string of the form (x, ..., 0), * # 0, which cannot
be combined with neighboring strings for further reduction. After (ji,...,Js,0,

..,0) is reduced to (0,...,0) or (*,...,x), for further reduction, (0,...,0) must
be combined with a left neighboring string and (x, ..., *) must be combined with a
right neighboring string. Therefore, the reduction steps that reduce (i1, ...,i,,0)
to 0 are unique although these steps may be performed in different orders. (See
Figure @)

(2 0] [320] [200] [100]

FIGURE 3. Reduction of (2,0,3,2,0,2,0,0,1,0,0)
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Let Ry and Ry be two reduction steps of (i1, ...,4,,0). We say Ry < Ry if Ry
needs to be performed before Ry can be performed. Therefore, a(iq,...,4,) is the
number of ways to order the v reduction steps of (i1,...,4,,0) so that the partial
order < is preserved.

We prove ([B]) by induction on v. The case v = 0 is obvious. Assume v > 0.

Case 1. Assume that i; = 1. In this case, (i2,...,%y) € Zp—1. In the reduction
of (i1,42,...,1y,0), the string (ia,...,4,,0) must be reduced to 0 before it can be
combined with i; for the final reduction step. So, a(iy,ia,...,i,) = a(iz, ..., iy)
and ([BJ) holds by the induction hypothesis.

FIGURE 4. A walk w(i1,...,04—1,0,9u41,.-,%)

Case 2. Assume that i; > 1 but the walk w(iy,...,4,) contains a point (u,u) with
0 < u < v. We assume u is the smallest value with this property; see Figure [l
Then i, = 0, so

(i1y e yi0,0) = (G150 oy iu—1,0,0041, . - ., 1y, 0),

where (i1,...,%u—1,0) € T, and (iyy1,--.,%) € Zy—y. The string (i1,...,%,—1,0)
is reduced to 1 in u — 1 steps before it can be combined with a right neighboring
string for further reduction; the string (iy41,. - ., %y, 0) is reduced to 0 in v — u steps
before it can be combined with a left neighboring string for further reduction. (See
Figure Bl) Therefore,

. ) v—1Y . ) . .
(3.2) a(iyy ... iy) = <u B 1) aliy, ..y iu—1,0)a(lysgt, - iy).

|¢1 iu710| |iu+1 iv0|

v—u steps

FIGURE 5. Reduction of (i1,...,%u—1,0,%u+1,- -, %y, 0)
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The walk w(i1,...,%u—1,0) is the part of w(iy,...,i,) from (0,0) to (u,u); the
walk w(iy41,...,%,) is a translate of the part of w(iy,...,i,) from (u,u) to (v,v).
Since (B holds for a(iy,...,iy—1,0) and a(iy+1,-- -,y (induction hypothesis), it
follows from (B2 that (BI)) also holds for a(iy,...,iy).

v

FIGURE 6. A walk w(iy,...,1%,) not touching L

Case 3. Assume that w(iy, . ..,4,) does not contain any point (u,u) with 0 < u < v;
see Figure[6l Then iy > 1,4, =0, and (i1 — 1,4a,...,9y—1) € Z,—1. When reducing
(i1,...,1y—1,0,0) to 0, the last step is always (1,0) — 0. However, it is easy to see
that the number of ways to reduce (i1, ...,4,—1,0,0) to (1,0) equals the number of
ways to reduce (i; — 1,49,...,4,-1,0) to 0. So

(33) a(il,...,iv_l,O):a(il—l,ig,...,iv_l).
The walk w(i; — 1,49,...,4,-1) is a translate of the part of w(i,...,%,) from (0,1)

to (v —1,v); see Figure[dl So by ([B3) and the induction hypothesis, (3.]) holds for
a(il,...,iv). U

Since a(i1, ..., 1,) is the number of chains ) = ap < a1 < -+ < @y = (i1, .., 1y),
where o, € Z,, 0 < u < v, and since for each a, € Z,, there are exactly u
Qyt1 € Ty41 such that a,, < 41, we have

Z a(il,...,iv):v!.

(215000y80 ) ELy

4. THE SET Z, AND THE MAGNUS EXPANSION

The set 7, has an interesting combinatorial interpretation. Let Z) ={(j1, ..., juv):
(Juy---571) € Z,}. Let - be a nonassociative multiplication defined on a set .A. For
(a1, s apy1) € AV (in, 0o yiy), (J1, - -5 0w) € NV, Jet (a0 apy1)577% be the

expression ap - - - ay41 with i, “(” before a, and j, “)” after a,41. For example,

(a1,a2, a3, a4,a5)5'50's = (a1 a2 (as))(as as)).

Note that (a1, ..., a1,+1)§11”"'.:’3‘; may not be a well-defined product as in the above ex-
ample. However, if (a1,...,a,41);"} is a well-defined product, then (ji, ..., j.)

”

is determined by (i1, ...,4,) and vice versa. Assume that the rightmost “(” occurs
before a,. Then its matching “)” must occur after a,41, turning (a, a,+1) into
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a group. The matching “)” of the remaining “(” are determined the same way.

By this argument and induction on v, one can easily see that (aj,...,a,1)% %
(an expression with “(” at indicated places) can be completed to a well-defined
product (aq,... 7av+1);-11”:'_’;-’3’ if and only if (i1,...,4,) € Z,. In the same way,
(@1,...,Qu+1)4,...5, (an expression with “)” at indicated places) can be gompleted
to a well-defined product if and only if (j1,...,j,) € Zp. If (a1, ..., ap41)5 % is a
well-defined product, it will also be denoted by (ai,...,a,11)% % or
(@1, ., Qug1)j1,....5o- Lherefore, (i1,...,%) — (a1,...,Gu1)" " ((J1,. s Ju) —
(@1,...,au+41)jy,....5,, respectively) is a bijection from Z, (Z, respectively) to the

set of all well-defined products a; - - - a,11 with suitable associations. By [9] 3],

(2v)!

I, =1 = 2
Lol =1l = (1)

The set 7 has an application in the Magnus expansion for the solution of a
homogeneous linear ODE. Let M, (R) denote the set of all n x n matrices over R.
Consider the Cauchy problem of the homogeneous linear ODE

dY
ARy,  Y(0) = I,
=AW, Y(0)

where A(t) and Y (t) are M,,(R)-valued functions of t. Assume that A(t) is contin-
uous in a neighborhood of 0. Then in a (possibly smaller) neighborhood of 0, the
unique solution of ([&I]) can be expressed as

(4.1)

Y (t) = e

for some M, (R)-valued function Q(t). The Magnus expansion expresses {2(¢) as an
infinite series involving A(t); see Magnus [I1] and Iserles and Ngrsett [8]. For any
two continuous M, (R)-valued functions B(t) and C(t), define

B)-c = [ B(rdr, C(1)].

where [ | is the Lie bracket. Then using the notation of the last paragraph, the
Magnus expansion can be written as

(4.2) Q(t)zz Z fjl"'fjv/o (A(m)--- A7) Fryeesdo T

v=0 (J1se-J0) €T, v+1

where f; is given by

oo >
J_

E fiz) = .

; J e —1

j=0

Equation (£2) can be easily derived from the Magnus expansion in [8, Eq. (2.6)].
One only has to note that using the notation of the present paper, the inductive
formula for the coefficients of the Magnus expansion in [8, Eq. (2.14)] can be made
explicit. In the Magnus expansion in [8], the terms are indexed by certain binary
trees and the coefficients are given inductively. In ([@2]), the terms are indexed by
7., which is more tractable, and the coefficients are explicit.
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