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ON FOURIER RESTRICTION AND THE NEWTON POLYGON

ÁKOS MAGYAR

(Communicated by Andreas Seeger)

Abstract. Local Lp → L2 bounds are proved for the restriction of the Fourier
transform to analytic surfaces of the form S = (x, f(x)) in R3. It is found that
the range of exponents is determined by the so-called distance of the Newton
polygon, associated to f , except when the principal quasi-homogeneous part
of f(x) contains a factor of high multiplicity. The proofs are based on the
method of Phong-Stein and Rychkov, adapted to scalar oscillatory integrals.

1. Introduction

If S ⊂ Rn+1 is a compact piece of a smooth hypersurface, a central question
of harmonic analysis is to determine the pair of exponents p, q ≥ 1 for which the
Fourier restriction operator φ → φ̂|S maps Lp(Rn+1) → Lq(S).

This problem is still open even in the case of the unit sphere S2 ⊂ R3. However
the case q = 2 for surfaces of everywhere nonvanishing curvature was answered by
the classic works of Stein and Tomas; see [S], [T].

Note that the restriction property is local by nature, and is invariant under affine
maps x → Ax+b (where det A �= 0). Thus for real analytic S, it is enough to study
the local problem, where S = {(x, f(x)) : x ∈ V }, V ⊆ Rn is an open neighborhood
of the origin and f : V → R is a real analytic function such that f(0) = ∇f(0) = 0.
We say that the Fourier restriction property RS(p → q) holds at the origin if there
exists a neighborhood U of 0 so that for all C∞-functions ψ with compact support
in U , the inequality

(1.1)
(∫

U

|φ̂(ξ, f(ξ))|q ψ(ξ) dξ

)1/q

≤ Cp,q,f,ψ ‖φ‖Lp(Rn+1)

holds. The aim of this paper is to draw attention to the relation between the range
of exponents p, q for which the restriction property RS(p → q) holds and a numeric
invariant, the so-called distance of the Newton polygon of the function f .

If f(x) =
∑

k∈Z
n
+

akxk is the Taylor expansion of f(x), then its Newton polyhe-
dron is defined by

Nf = Conv

( ⋃
k∈A

k + Rn
+

)
,

Received by the editors August 20, 2007, and, in revised form, January 25, 2008.
2000 Mathematics Subject Classification. Primary 42B10; Secondary 43A32.
Key words and phrases. Fourier transform, oscillatory integrals, Newton polygon.
This research was supported in part by NSF Grant DMS-0456490.

c©2008 American Mathematical Society

615



616 ÁKOS MAGYAR

where A = {k : ak �= 0} is the support of the sequence {ak}. The smallest
positive number d = df such that the point d = (d, . . . , d) is in Nf is called the
distance of Nf and its reciprocal δf = 1/df the Newton decay rate. If the point
df = (df , . . . , df ) lies on a compact edge α, then α is called the principal edge of
Nf .

First we give the following necessary condition.

Theorem 1. Let S = (x, f(x)) where f : V → R is an analytic function such that
f(0) = ∇f(0) = 0, and let dσ = ψ dx be a measure on S in local coordinates x
where ψ is a smooth function of small support.

If the local RS(p → q) restriction property holds at the origin, then one has

(1.2) p′ ≥ q(1 + df ) where
1
p

+
1
p′

= 1

and df is the distance of the Newton polyhedron Nf .

The idea of the proof of (1.2) is doing the well-known Knapp example, in the
general case of an analytic hypersurface, in other words, to test the restriction
property (1.1) on functions φδ whose Fourier transform φ̂δ is supported on a box
Bδ best fitted to the surface S.

However the Knapp example is not always sharp; a simple example is the graph
of the function: f(x, y) = (y − x2)m for m > 3 (another example is described in
[Sh]). Indeed, if one tests the restriction property RS(p → q) on the function φδ

whose Fourier transform φ̂δ is the characteristic function of the box Bδ = {|x| ≤
1, |y| ≤ 1, |z| ≤ δm}, then it is easy to see that(∫

U

|φ̂δ(x, y, f(x, y))|q ψ(x, y) dx dy

)1/q

≥ Cq,ψ δ
1
q ,

while ‖φδ‖Lp(R3) ≤ Cp δ
m
p′ for all 0 < δ < 1. Thus the restriction property only

holds for exponents p, q satisfying: p′ ≥ qm, which is more restrictive than the one
obtained from the Knapp example: p′ ≥ q(1 + 2m/3), given in (1.2), as df = 2m/3
for the function f(x, y) = (y − x2)m.

Thus one needs additional conditions on the function f . One such condition is
the so-called R-nondegeneracy of Varchenko; see [AV]. However, as we shall see,
that may be too restrictive, especially when the surface has curvatures vanishing
to a high order, that is, when df is large. Our partial result of sufficiency is taking
this into consideration.

Let n = 2 and let α be a compact edge of the boundary of the Newton polygon
Nf . Define the quasi-homogeneous part of f by corresponding to α by

(1.3) fα(x, y) = x−A′
y−B

∑
(k,l)∈α

akl x
kyl

if α is connecting the points (A, B) and (A′, B′) where A′ < A and B < B′. We
define a number rα, called the multiplicity of fα.

Definition 1. If α is a compact edge, then the multiplicity rα of fα is defined to
be the minimum of the highest multiplicity of a real root of ∂yfα (1, y) and of the
highest multiplicity of a real root of ∂xfα (x, 1). If α is an infinite edge, then we set
rα = 0.
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If α is the principal edge of Nf , then fα is called the principal part of f and we
write rf for rα. By the above definition, if the point df is on an infinite edge, then
rf = 0.

Theorem 2. Let S = (x, y, f(x, y)), where f : R2 → R is an analytic function such
that f(0, 0) = ∇f(0, 0) = 0. Then the local RS(p → 2) restriction property holds at
(0, 0) for

(1.4) p′ > 2(1 + max(df , rf + 1)).

Note that in case rf < df , (1.2) and (1.4) give the sharp range of exponents
p (up to the endpoint) for which the local RS(p → 2) restriction property holds.
This includes functions with factors of high multiplicity, which are R-degenerate in
the sense of Varchenko (which means that the principal part of f has distinct real
factors; see below). For example take f(x, y) = (y − a x2)m(y − b x2)m (0 < a < b)
for any m ≥ 2; indeed in this case rf = m − 1 and df = 4

3m.
The proof of (1.4) is based on an oscillatory integral estimate.

Theorem 3. Let the function f(x, y) be an analytic function such that f(0, 0) =
∇f(0, 0) = 0. Then for a smooth cut-off function ψ(x, y) of sufficiently small
support, one has the bound for the associated oscillatory integral

(1.5) |I(λ)| = |
∫

R2
eiλf(x,y)ψ(x, y) dx dy| ≤ Cε(1 + |λ|)−min(δf , 1

rf +1 )+ε ∀ ε > 0.

This compares to the result of Varchenko in dimension 2, which shows |I(λ)| ≤
Cε(1 + λ)−δf+ε under the so-called R-nondegeneracy condition. The function f is
called R-nondegenerate if

∂xfα(x, y) = ∂yfα(x, y) = 0 implies x = 0 or y = 0,

where fα is the principal part of f defined in (1.3). This condition however only
holds when neither ∂xfα(x, 1) nor ∂yfα(1, y) has multiple real roots, and in par-
ticular only when rf = 1. Indeed, assuming that there is a nonzero x0 ∈ R such
that

fα(x0, 1) = ∂xfα(x0, 1) = 0

and using the Euler relations

fα(x0, 1) =
1
m

∂xfα(x0, 1) +
1
n

∂yfα(x0, 1), where m = A − A′, n = B′ − B,

we see that ∂yfα(x0, 1) = 0 and hence f is R-degenerate.
The proof of (1.5) exploits a factorization, called the Puiseux product, as was

done similarly for oscillatory integral operators in [PS1] and [R].
The route from (1.5) to (1.4) is standard, but based on a highly nontrivial result

of Karpushkin (see [K], [PS3]), namely the local stability of the decay rate of
oscillatory integrals with analytic phase in 2 dimensions. In fact it implies that for
ξ = λ(−1, u, v) the estimate

|d̂σ(ξ)| = |
∫

R2
eiλ(f(x,y)−ux−vy)ψ(x, y) dx dy| ≤ Cε(1 + |λ|)−min(δf , 1

rf +1 )+ε

for all ε > 0 holds uniformly for (u, v) being in a small neighborhood of (0, 0), and
then also for all (u, v), since outside the neighborhood the gradient of the phase
is large: |(∂xf − u, ∂yf − v)| ≥ C λ. Thus the integral is rapidly and uniformly
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decreasing. Let us remark that one of the main obstacles to proving similar results
in higher dimensions is the lack of the stability theorem.

Finally, by the classical argument of [T], a uniform bound of the form |d̂σ(ξ)| ≤
C (1 + |ξ|)−β implies that the local RS(p → 2) restriction property holds for p′ >
2(1 + β−1) (in fact, by Greenleaf’s theorem [G], the restriction property also holds
for p′ ≥ 2(1 + β−1)), which gives (1.4). Thus Theorem 2 follows from Theorem 3.

2. Necessary conditions

In this section we prove Theorem 1. Let f : Rn → R be an analytic function
such that f(0, 0) = ∇f(0, 0) = 0, and let Γf be the boundary and Vf be the set of
vertices of its Newton polyhedron. We use the notation |x|a = |x1|a1 |x2|a2 . . . |xn|an

for x ∈ Rn and a = (a1, a2, . . . , an) ∈ Zn.

Lemma 1. One has for x being in a sufficiently small neighborhood of the origin:

(2.1) |f(x)| ≤ C max
b∈Vf

|x|b.

Proof. Let us introduce the ordering on Zn
+: a ≺ b if b ∈ a + Zn

+ , b �= a; and set
of minimal elements: A′ = {a ∈ A : � b ∈ A, b ≺ a}. It is easy to see by an
induction on n that A′ is finite; thus Vf is finite as well. Since the Taylor series of
f(x) converges, one has for every a ∈ A′,∑

k∈A, a�k

|ak| |x|k ≤ Ca|x|a.

It follows that

(2.2) |f(x)| ≤ C max
a∈A′

|x|a.

Moreover for every a ∈ A′ there are vertices b1, . . . , bn (not necessarily distinct)
such that for a convex combination of them: b =

∑
i λibi � a. Indeed every point

on the boundary Γf is of this form. Thus

|x|a ≤
∏

i

|x|λibi ≤ max
i

|x|bi .

The lemma follows from (2.2). �

Definition 2. We say that a ∈ Rn
+ is admissible if

(2.3) k · a ≥ 1 for every k ∈ Γf .

Lemma 2. Let

δ = min{
n∑

j=1

aj : a = (a1, . . . , an) is admissible}.

Then δ = δf = 1/df .

Proof. If a is admissible, then a · df = df

∑
j aj ≥ 1; hence δ ≥ δf . On the other

hand, let α be the face of Nf containing df and let a ∈ Rn be defined such that
a·k = 1 for every k ∈ α. Then by the convexity of Nf the plane through α separates
0 and Nf ; thus a · l ≥ 1 for every l ∈ Nf . In particular a ∈ Rn

+ and a is admissible.
Also a · df = df

∑
j aj = 1 and thus δ ≤ δf . �



ON FOURIER RESTRICTION AND THE NEWTON POLYGON 619

Proof of Theorem 1. Let ψ(x) be a smooth cut-off function of small support and
let a = (a1, . . . , an) be admissible. For 0 ≤ τ < 1 define the function φa,τ such that

φ̂a,τ (x1, . . . , xn+1) = ψ(τ−a1x1, . . . , τ
−anxn, τ−1xn+1).

If |xj | ≤ τaj for 1 ≤ j ≤ n, then since a is admissible, one has by (2.1),

|f(x)| ≤ C max
k∈Vf

τk·a ≤ Cτ,

and thus (choosing ψ appropriately), |φ̂a,τ (x, f(x))| ≥ c > 0. Hence

(2.4)
∫

S

|φ̂a,τ |q dσ =
∫

Rn

|φ̂a,τ (x, f(x))|q ψ(x) dx ≥ c τνa ,

where νa =
∑

j aj . On the other hand, by scaling, one has that ‖φa,τ‖p ≈ τ (1+νa)/p′
.

If the RS(p → q) restriction property holds, then one must have

τνa/q ≤ C τ (1+νa)/p′

for every 0 < τ < 1 and admissible a. Thus by Proposition 2,

p′ ≥ max
a admissible

q(1 + ν−1
a ) = q(1 + df ).

This proves Theorem 1. �

3. Sufficient conditions

We will need the following standard Van der Corput type lemma for oscillatory
integrals with polynomial-type phases, proved in [PS2]; see (3), p. 42 in the proof
of Theorem 1 there.

Lemma 3. Let I = [a, b] be an interval of length at most 1, χ ∈ C1(R) be a smooth
function and let f be a real and C2(R). Assume that |f ′(y)| ≥ δ > 0 for all y ∈ I
and f ′′(y) has at most d roots in I. Then one has for λ > 0,

(3.1) |
∫

I

eiλf(y)χ(y) dy| ≤ λ−1δ−1(2d + 1)(sup
I

|χ| + sup
I

|χ′|).

We remark that inequality (3.1) remains true, with d = 0, when f ′′(y) is constant
0 on the interval I, which is easy to see by performing an integration by parts and
using that f ′(y) is constant on I.

To apply the above lemma for a function of two variables F (x, y), we invoke an
immediate corollary of the Weierstrass Preparation Theorem.

Lemma 4. Let U ⊆ R2 be an open neighborhood of (0, 0), and let F : U → R be
a nonzero analytic function. Then there is an η > 0 and a positive integer d such
that for every 0 < |x| < η, the function y → F (x, y) has at most d roots in [−η, η].

Proof. Let K = min{k : akl �= 0}, where F (x, y) =
∑

k,l aklx
kyl and write F (x, y)

= xKG(x, y). The function G(0, y) is not identically zero. Thus by the Weierstrass
Preparation Theorem (see [H] Sec. 7.5)

G(x, y) = U(x, y)(cdy
d + cd−1(x)yd−1 + . . . + c0(x)),

where cd �= 0, and U(x, y) �= 0 for |x| ≤ η, |y| ≤ η, η > 0 being sufficiently small.
Thus for any |x| ≤ η, the function y → F (x, y) can have at most d roots. �
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We describe the Newton polygon NF associated to an analytic function F in
more detail. If α runs through the compact edges of the boundary ΓF , connecting
the vertices (Aα, Bα) and (A′

α, B′
α) where Aα > A′

α, then put nα = B′
α − Bα and

γα = Aα−A′
α

B′
α−Bα

. Also let A be the x and B be the y coordinate of the vertical and
horizontal infinite edges of ΓF . The intersection of the bisector and line of the edge
α is the point (dα, dα), where dα = (Aα + γαBα)/(1 + γα). By convexity, df ≥ dα

for all compact edges α. Thus writing δα = 1/dα = (1 + γα)/(Aα + γαBα), one
finds that

(3.2) δf = min
α

(1/A, 1/B, δα).

We introduce the ordering α ≺ β if γα < γβ and note that

(3.3) Aα = A +
∑
β�α

nβγβ and Bα = B +
∑
β�α

nβ.

Also, NF has some symmetry properties: if G(x, y) = F (±x,±y), then NF = NG;
if G(x, y) = F (y, x), then NG is obtained by reflecting NF to the bisector y = x.
The germ of an analytic function F (x, y) admits a factorization called the Puiseux
product (see [R]) of the form

(3.4) F (x, y) = U(x, y)xAyB
∏
α

nα∏
i=1

(y − yαi(x)),

where U(x, y) and cαi are nonzero, and yαi(x)) is asymptotic to a fractional power
series of the form cαix

γα + cα′ix
γα+γ + . . . , as x → 0. In particular, for any given

τ > 0 one has

(3.5) |yαi(x) − cαix
γα | ≤ τxγα

for |x| < cτ1/γ , c > 0 being a small constant depending only on F . Moreover there
is a fixed large constant D > 0 such that if 2−j−1 ≤ x < 2−j and 2−k−1 ≤ y < 2−k

for j, k ≥ J large enough, then

(3.6) |y − yαi(x)| ∼
{

2−jγα if k ≥ jγα + D
2−k if k ≤ jγα − D

where x ∼ y means that C−1x ≤ y ≤ Cx for some constant C > 0 whose value
depends only on F and can change from place to place. By the notation k � jγα

it is meant that k − jγα ≥ D. We remark that both conditions can be achieved by
choosing the support of ψ(x, y) small enough.

One may use the Puiseux product to estimate the size of F (x, y) on the dyadic
rectangles Rjk = [2−j−1, 2−j ]× [2−k−1, 2−k] which are “away” from the zero set of
F .

Lemma 5. Let F (x, y) be an analytic function, such that F (0, 0) = 0. Then one
has the following size estimates:

(i) Let α ≺ α′ be two consecutive compact edges of the Newton polygon NF , and
let (Aα, Bα) denote the common vertex of the edges α and α′. If jγα � k � γα′ ,
then for (x, y) ∈ Rjk,

(3.7) |F (x, y)| ∼ 2−jAα−kBα .

(ii) Let α0 denote the minimal edge of NF (i.e. γα0 ≤ γα ∀ α), and let (A0, B0)
denote the common vertex of the edge α0 and the infinite vertical edge. If k � jγα0 ,
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then for (x, y) ∈ Rjk,

(3.8) |F (x, y)| ∼ 2−jA0−kB0 .

(iii) Let αs denote the maximal edge of NF (i.e. γαs
≥ γα ∀ α), and let (As, Bs)

denote the common vertex of the edges αs and the infinite horizontal edge. If
k � jγαs

, then for (x, y) ∈ Rjk,

(3.9) |F (x, y)| ∼ 2−jAs−kBs .

Proof. Assume first jγα � k � γα′ . Then by (3.6) for (x, y) ∈ Rjk one has
|y − yβi(x)| ∼ 2−jγβ for β � α and |y − yβi(x)| ∼ 2−k for β � α. Thus by (3.3)
and (3.4),

|F (x, y)| ∼ 2−j(A+
∑

β�α nβγβ) 2−k(B+
∑

β�α nβ) = 2−jAα−kBα .

The proof of estimates (3.7) and (3.8) proceeds the same way, noting that A0 = A
and Bs = B. �

In the proof of Theorem 3, we will apply the above size estimates to either
F = ∂xf or F = ∂yf . Thus we will need some information on the Newton polygons
associated to ∂xf and ∂yf , which we will denote by Nx and Ny. Note that Nx is
obtained from Nf by shifting it to the left by 1 and maybe replacing the minimal
edge α0 by an edge α′

0, a series of edges α′
0 � . . . � α′

−r, or an infinite edge. These
replacements can only happen when the infinite vertical edge of Nf is the y-axis.
An important observation here is that, by convexity, γα′

0
≥ γα0 . The analysis of Ny

is similar: here Nf is shifted down by 1, and the maximal edge αs may be replaced
by edges α′

s ≺ . . . ≺ α′
t such that γαs

≤ γα′
s
, or the horizontal infinite edge.

Proof of Theorem 3. Following [R], one decomposes the support of the integral in
(1.5) into the four quadrants of R2 and notes that each of the resulting integrals
are treated in exactly the same way because the Newton polygon is invariant w.r.t.
coordinate changes: x ↔ −x, y ↔ −y. Thus we assume that the integration is
taking place for x > 0, y > 0 and define

(3.10) Ijk(λ) =
∫

Rjk

eiλfψ.

Since only those rectangles Rjk intersecting the support of ψ contribute to the
integral, one may assume j, k ≥ J for a sufficiently large J .

We start with the (rather) special case when Nf has no compact edges. Then
the Puiseux product takes the form

f(x, y) = U(x, y)xAyB ,

where A > 0 or B > 0 by our assumption on f . Assume B > 0 and let F = ∂yf .
For (x, y) ∈ Rjk one has

(3.11) |F (x, y)| ∼ xAyB−1 ∼ 2−jA−k(B−1).

Thus applying Lemma 3 for fixed 2−j−1 ≤ x ≤ 2−j and integrating in x, one obtains

(3.12) |Ijk(λ)| ≤ Cλ−12j(A−1)+k(B−1).

Taking the geometric mean of this and the size estimate |Ijk| ≤ 2−j−k−2 gives

(3.13) |Ijk(λ)| ≤ Cλ−δ 2j(δA−1)+k(δB−1)
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for any 0 ≤ δ ≤ 1. Choosing δ = δf − ε, where δf = min( 1
A , 1

B ) and ε > 0, one has

|I(λ)| ≤
∑

j,k≥J

|Ijk(λ)| ≤ Cελ
−δf +ε

for any ε > 0. The case A > 0 is handled analogously, choosing F = ∂xf .
Now assume that Nf has at least one compact edge, and for a fixed compact

edge α define

(3.14) Iα(λ) =
∑

jγα�k�jγα′

Ijk(λ) and Iα(λ) =
∑

|jγα−k|<D

Ijk(λ),

where α ≺ α′ are consecutive edges. Moreover let

(3.15) I−(λ) =
∑

k�jγα0

Ijk(λ) and I+(λ) =
∑

k�jγαs

Ijk(λ).

Next, we estimate the quantities I±(λ). Let α0 be the minimal edge of Nf

connecting the points (A0, B0) and (A′, B′) with B0 > B′. Then (A0, B0−1) is the
highest vertex point of the Newton polygon Ny. We argue that γα0 ≤ γα′

0
, where

α′
0 denotes the minimal edge of Ny. Indeed, if B′ > 0, then α′

0 is parallel to α0.
Hence γα0 ≤ γα′

0
; otherwise Nf has only one compact edge. Hence α0 = αs and

the estimate follows from our previous analysis of Ny. Thus k � jγα0 ≤ jγα′
0

and
(3.7) applies for F (x, y) = ∂yf(x, y) giving

(3.16) |F (x, y)| ∼ 2−jA0−k(B0−1),

similarly as in (3.10). Proceeding as in (3.11)-(3.13) one obtains for 0 ≤ δ ≤ 1,

(3.17) |Ijk(λ)| ≤ Cλ−δ 2j(δA0−1)+k(δB0−1) = 2k(δB0+A0/γα0 )−(1+1/γα0) 2r(δA0−1),

where the last equality was obtained by writing j = k/γα0 + r. By our assumption
r ≥ D′ > 0, j ≥ J ; thus choosing δ = min(δα0 , 1/A0) − ε ≥ δf − ε, one gets

(3.18) |I−(λ)| ≤
∑

j≥J, r≥D′

|Ijk(λ)| ≤ Cελ
−δf +ε.

The quantity I+(λ) is estimated analogously by choosing F = ∂xf and δ =
min(δαs

, 1/Bs) − ε.
To estimate Iα(λ) let α ≺ α′ be consecutive edges of Nf with common vertex

(Aα, Bα) and let jγα � k � jγα′ . First assume that Aα ≥ Bα > 0 and note that
df ≥ Bα by the convexity of Nf . The point (Aα, Bα − 1) is the common vertex
of two edges β ≺ β′ of the Newton polygon Ny (where β′ may be infinite), and by
our previous analysis, γβ = γα and γα′ ≤ γβ′ (taking γβ′ = +∞ if β′ is infinite).
Thus jγβ � k � jγβ′ , and estimate (3.7) (or (3.9)) applies to F (x, y) = ∂yf(x, y)
when (x, y) ∈ Rjk, which gives |F (x, y)| ∼ 2−jAα−k(Bα−1). Proceeding as before
and substituting k = jγα + r, one has

(3.19) |Ijk(λ)| ≤ C λ−δ 2j(δ(Aα+γαBα)−(1+γα)) 2r(δBα−1).

Choosing δ = min(δα, 1/Bα) − ε ≥ δf − ε and summing in j ≥ J, r ≥ D, one
gets

(3.20) |Iα(λ)| ≤ Cελ
−δf +ε.

The case Bα ≥ Aα is handled analogously, choosing F = ∂xf , δ = min(δα′ , 1/Aα)−
ε ≥ δf − ε and substituting j = k/γα′ + r.
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The multiplicity condition enters in the estimates for Iα(λ), that is, when
|k − jγα| ≤ D. Consider first a nonprincipal edge α of Nf . Then α lies com-
pletely below or above the bisector y = x. Assume the first case, that is, when
A′

α > B′
α > 0. Then the point (A′

α, B′
α − 1) is a vertex of Ny. Let α′ be the edge

of Ny with upper vertex (A′
α, B′

α − 1); then γα′ ≥ γα. If γα′ > γα, then k � jγα′ ,
and our analysis reduces to the cases (Iα(λ) or I−(λ)) considered earlier. In fact,
it is easier here as one needs to sum only for j ≥ J using the fact that k − jγα is
bounded. One obtains

(3.21) |Iα(λ)| ≤ C
∑
j≥J

|Ijk(λ)| ≤ Cελ
−δα+ε.

So we will assume that γα′ = γα from now on.
Let F (x, y) = ∂yf(x, y) and consider its Puiseux product defined in (3.4). It is

clear that the product

(3.22) Fα′(x, y) := xA′
α′ yBα′

nα′∏
i=1

(y − cα′i xγα)

is a quasi-homogenous polynomial whose support lies on the edge α′. It is well-
known, and is not hard to see, that Fα′(x, y) is in fact the quasi-homogeneous part of
F (x, y) corresponding to α′ defined in (1.3). Moreover, since γα′ = γα, a point (k, l)
is on α′ if and only if the point (k, l+1) is on α and hence Fα′ = (∂yf)α′ = ∂y(fα).

Let {c1, . . . , ct} be the set of the real coefficients cα′i, and write
(3.23)

∂y fα (x, y) = Fα′(x, y) = xA′
α′ yBα′

t∏
l=1

(y − clx
γα)rl

∏
i: cα′i complex

(y − cα′i xγα)

and let rα = maxl rl. By the above remarks it is easy to see that rα is the highest
multiplicity of a real root of ∂y fα (1, y).

For each 1 ≤ l ≤ t and for each x, define the clusters: Cx,l = {Re yαi(x) : cαi =
cl}, where Re z denotes the real part of z. Observe that by (3.5) the diameter of
each cluster is at most τ2−jγα , while the distance between them is at least C 2−jγα ,
where τ > 0 can be chosen sufficiently small.

For a fixed x we make use of the Whitney decomposition of the set [2−k−1, 2−k]/
Cx, where Cx = {Re yαi(x) : cα′i is real}. It is a collection of intervals Im of length
∼ 2−m such that the distance of a point y ∈ Im from the set Cx is again ∼ 2−m.
Clearly, one can assume m ≥ jγα and for a given m there are at most 2nα′ of the
intervals Im. If Cl is the closest cluster to Im, then for y ∈ Im one has

(3.24) |y − yα′i(x)| ≥
{

C 2−m if cα′i is real, and yα′i(x) ∈ Cl,
C 2−jγα otherwise.

Note that the intervals Im may depend on x but the above estimates are uniform
in x ∈ [2−j−1, 2−j ].

Thus one estimates the size of F (x, y) for y ∈ Im:

(3.25) |F (x, y)| ≥ C 2−(jA+kB)
∏

β≺α′

2−jnβγβ

∏
β�α′

2−knβ 2−mrl2−(nα′−rl)jγα

≥ C 2−j(A′
α+γα(B′

α−1))2rα(m−jγα)
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using the facts that 2−k ∼ 2−jγα , rα ≥ rl, m ≥ jγα and that (A′
α, B′

α − 1) is the
upper vertex of α′. Next, one uses Lemma 3, which yields

(3.26) |Ijk,m(x, λ)| := |
∫

Im

eiλf(x,y)ψ(x, y) dy | ≤ C λ−12jA′
α+k(B′

α−1)2rα(m−jγα)

uniformly for x ∈ [2−j−1, 2−j ].
As in the previous case, this can be balanced against the trivial estimate |Ijk,m| ≤

C 2−m to obtain that for any ε > 0,
(3.27)

|Ijk,m(x, λ)| ≤ C λ− 1
rα+1+ε2−mε2j

A′
α+γα(B′

α−1)−rαγα
rα+1 2−εj(A′

α+γα(B′
α−1)−rαγα).

Summing in m and integrating in x give

(3.28) |Ijk(λ)| ≤ Cε λ− 1
rα+1+ε 2j(

A′
α+γα(B′

α−1)−rαγα
rα+1 −1) 2−εj(A′

α+γα(B′
α−1)−rαγα).

Notice that the exponent A′
α+γα(B′

α−1)−rαγα

rα+1 − 1 is nonnegative if and only if

(3.29) rα + 1 ≤ (A′
α + γαB′

α)/(1 + γα) = dα.

In this case, choosing δ = (rα + 1)δα − 2ε to balance against the trivial estimate
|Ijk(λ)| ≤ C 2−j(1+γα) to kill the j factors, a straightforward computation shows

(3.30) |Iα(λ)| ≤
∑

|k−jγα|≤D

|Ijk(λ)| ≤ Cε

∑
|k−jγα|≤D

2−jελ−δα+ε ≤ Cε λ−δα+ε.

We argue that the multiplicity condition (3.29) holds when α is a nonprincipal
edge lying under the bisector y = x. Indeed, then rα + 1 ≤ nα′ + 1 ≤ B′

α′ + 1 =
B′

α < dα .
If α is a nonprincipal edge lying above the bisector, then one has to repeat the

above analysis by reversing the roles of x and y. More formally, let f̃(x, y) :=
f(y, x). Note that Ijk(λ, f) = Ikj(λ, f̃) and Nf̃ is obtained by reflecting Nf to
the bisector. If α̃ is the edge of Nf̃ obtained by reflecting the edge α to the
bisector, then δα̃ = δα, γα = 1/γα̃ and estimate (3.30) applies to the quantity
Iα̃(λ) :=

∑
|j−kγα̃|≤D̃ Ikj(λ, f̃) . This gives (choosing D̃ large enough)

|Iα(λ)| ≤ |Iα̃(λ)| ≤ Cελ
−δα̃+ε = Cελ

−δα+ε.

Finally, if α is the principal edge of Nf , then estimate (3.29) holds assuming
the multiplicity condition (3.29). Otherwise the exponent A′

α+γα(B′
α−1)−rαγα

rα+1 − 1 is
negative, and choosing ε > 0 small enough, one can sum estimate (3.28) in j (also
trivially in k) to obtain

(3.31) |Iα(λ)| ≤ Cε λ− 1
rα+1+ε.

In this case one can do the analysis both for f(x, y) and f̃(x, y). In the latter case
rα̃ will be the highest multiplicity of a real root of the function ∂xfα(x, 1). Thus
estimate (3.31) holds for rα defined to be the minimum of the highest multiplicity
of a nonzero real root of ∂yfα(1, y) and the highest multiplicity of a nonzero real
root of ∂xfα(x, 1). This finishes the proof of Theorem 3. �
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