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A METRIC SPACE WITH THE HAVER PROPERTY
WHOSE SQUARE FAILS THIS PROPERTY

ELŻBIETA POL AND ROMAN POL

(Communicated by Alexander N. Dranishnikov)

Abstract. Haver introduced the following property of metric spaces (X, d):
for each sequence ε1, ε2, . . . of positive numbers there exist collections V1,V2, . . .
of open subsets of X, the union

⋃
i Vi of which covers X, such that the members

of Vi are pairwise disjoint and every member of Vi has diameter less than εi.
We construct two separable complete metric spaces (X0, d0), (X1, d1) with the
Haver property such that d0, d1 generate the same topology on X0 ∩ X1 �= ∅,
but (X0 ∩ X1, max(d0, d1)) fails this property. In particular, the square of a
separable complete metric space with the Haver property may fail this prop-

erty. Our results answer some questions posed by Babinkostova in 2007.

1. Introduction

A metric space (X, d) has the Haver property if for each sequence ε1, ε2, . . . of
positive numbers there exists a sequence V1,V2, . . . of collections of open subsets of
X, the union

⋃
i Vi of which covers X, such that, for i = 1, 2, . . ., the members of

Vi are pairwise disjoint and each member of Vi has diameter less than εi; see [6].
The property C of a space X means that for any sequence U1,U2, . . . of open

covers of X there exists a sequence V1,V2, . . . of collections of open subsets of X,
the union

⋃
i Vi of which covers X, such that, for i = 1, 2, . . ., the members of Vi

are pairwise disjoint and each member of Vi is contained in a member of Ui; see [1]
and [5].

A metrizable space X has the property C if and only if for any metric d on X
generating the topology, (X, d) has the Haver property (see sec. 4 (D) and [2] for
more information).

The aim of this note is the following theorem, where ∨ stands for the maximum
of two functions considered on their common domain.

Theorem 1.1. There are separable complete metric spaces (X0, d0), (X1, d1) with
the property C such that d0, d1 generate the same topology on X0 ∩ X1 �= ∅ and
(X0 ∩ X1, d0 ∨ d1) fails the Haver property.

This readily yields the following:

Corollary 1.2. There is a separable complete metric space with the property C
whose square fails the Haver property.
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Indeed, the free union (X, d) of the metric spaces (X0, d0) and (X1, d1) from
Theorem 1.1 has these properties, since the metric space (X0 ∩ X1, d0 ∨ d1) em-
beds isometrically into the square of (X, d) with the metric ρ((x1, y1), (x2, y2)) =
max(d(x1, x2), d(y1, y2)).

A completely metrizable separable space with the property C whose square fails
this property was constructed by Jan van Mill and R. Pol [10], and this construction
is a key element in our proof of Theorem 1.1.

Corollary 1.2 answers some questions asked by Liljana Babinkostova [2, Problems
1 and 2]; see also sec.4 (A).

Let us notice that by [2, Theorem 15], the product of a metric space with the
Haver property and a countable-dimensional metric space (i.e., a countable union
of zero-dimensional sets; see [5]) always has the Haver property, while the property
C may be lost upon multiplication by a zero-dimensional space; see [11].

2. A construction by Jan van Mill and R. Pol

Our proof of Theorem 1.1 is based on a construction from [10], which we shall
use to the following effect.

Proposition 2.1. There exist a compact metrizable space E, a subspace S ⊂ E,
σ-compact sets H0, H1 in E \ S and a sequence (An, Bn), n = 1, 2, . . ., of pairs of
disjoint closed sets in E such that

(1) H0 ∩ H1 = ∅ and E \ S = H0 ∪ H1,
(2) if T ⊂ S is uncountable-dimensional, then its closure T in E intersects both

H0 and H1,
(3) the sequence (An ∩ S, Bn ∩ S), n = 1, 2, . . ., is essential in S.

The condition (3) means that whenever Li is a partition in S between Ai ∩ S
and Bi ∩ S, then

⋂
i Li �= ∅; see [5, Definition 6.1.1].

Let us explain how to derive this proposition from the results in [10]. We shall
call a compact space L a Bing compactum if for any continua L1, L2 in L with
L1 ∩ L2 �= ∅, either L1 ⊂ L2 or L2 ⊂ L1; see [9].

Let K be the Cantor set in I = [0, 1], let IN be the Hilbert cube and let Ci =
{(x0, x1, . . .) : xi = 0}, Di = {(x0, x1, . . .) : xi = 1} be the opposite faces in IN. Let
us fix a partition L between C0 and D0 in IN which is a Bing compactum (cf. [3]
or [9, sec. 3.8]), and let us set E = K×L, C∗

n = E ∩ (K×Cn), D∗
n = E ∩ (K×Dn).

Let p : E → K be the projection onto the first coordinate. Recall that for any
sequence L1, L2, . . ., where Ln is a partition in I × IN between the faces I ×Cn and
I ×Dn, for n = 1, 2, . . ., there is a continuum in (I ×L)∩

⋂∞
n=1 Ln joining the faces

{0} × IN and {1} × IN. Therefore, by Rubin, Schori and Walsh [13] (see also [9,
Theorem 3.9.3]), there is a first Baire class function f : K → E with p ◦ f(t) = t,
for t ∈ K, such that for any sequence of partitions Ln in E between C∗

n and D∗
n,

the intersection
⋂∞

n=1 Ln hits S = f(K). Enlarging C∗
n and D∗

n to open sets Vn

and Wn with disjoint closures, and taking An = Vn, Bn = Wn, we get (3), cf. [5,
Lemma 1.2.9]. Now, the construction in [10, sec. 3], applied to p : E → K and
f : K → E (K = F , in the notation of [10]), provides Gδ-sets Sj , j = 1, 2, . . . , in
E such that Sj \ S are pairwise disjoint, S ∪

⋃
j≥n Sj is a Gδ-set for n = 1, 2, . . . ,

and for any uncountable-dimensional T ⊂ S, the closure T in E intersects all but
finitely many Sj .
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The set E \ S is σ-compact and Si \ S are pairwise disjoint Gδ-sets in E \ S
such that each union

⋃
j≥n(Sj \ S) is also Gδ in E \ S. Using the separation

theorem [7, §30, VII], one can find pairwise disjoint σ-compact sets Fi ⊃ Si \ S
with

⋃
i Fi = E \ S, and we define Hτ =

⋃
{F2j+τ : j = 0, 1, . . .}, τ = 0, 1. This

gives (1) and (2).

3. Proof of Theorem 1.1

We shall use the notation introduced in Proposition 2.1. Let us fix a metric ρ
on E generating the topology, with the ρ-diameter of E not greater than 1, and let
δ1 ≥ δ2 ≥ . . . be a sequence of positive numbers such that the ρ-distance between
An and Bn is not less than δn. Let us write, for τ = 0, 1,

(4) Hτ =
⋃

i Hτ,i with Hτ,1 ⊂ Hτ,2 ⊂ . . . compact.
We define continuous maps pτ : Hτ → IN such that pτ (Hτ ) is countable-dimensional
and for any i and y ∈ pτ (Hτ,i \Hτ,i−1), where Hτ,0 = ∅, the fiber p−1

τ (y) is disjoint
from Hτ,i−1 and has ρ-diameter not greater than δi ·2−i; cf. [7, §28, IX], [8] and [5,
Lemma 5.3.1]. Then the decomposition of E into fibers p−1

τ (pτ (x)), for x ∈ Hτ , and
singletons {x}, for x ∈ S, is upper-semicontinuous, and let us denote the quotient
map by

(5) π : E → E∗, A∗ = π(A), for A ⊂ E.
Since π embeds S homeomorphically into E∗, we shall identify S with its image S∗

(notice also that S = π−1(S∗)). We have
(6) H∗

0 ∩ H∗
1 = ∅ and E∗ \ S = H∗

0 ∪ H∗
1 .

Let us define
(7) Xτ = S ∪ H∗

τ , for τ = 0, 1.
Since, by (6), E∗ \ Xτ = H∗

1−τ , we infer that
(8) Xτ is a Gδ-set in E∗.

Claim A. Xτ has the property C.

To see this, let us first notice that
(9) if T ⊂ S is closed in Xτ , then T is countable-dimensional.

Indeed, the closure of T in E∗ is disjoint from H∗
τ , and therefore the closure of T

in E is disjoint from Hτ . By (2) in Proposition 2.1, this shows that T is countable-
dimensional.

Now, let us consider a sequence U1,U2, . . . of open covers of Xτ . Since Xτ \ S is
countable-dimensional, we have Xτ \S =

⋃∞
n=1 Zn, where Zn is 0-dimensional. For

n = 1, 2, . . ., choose a family V2n of pairwise disjoint open subsets of Xτ refining
U2n and covering Zn (cf. [5, hint to Problem 6.3.D(a)]). Then L = Xτ \

⋃∞
n=1

⋃
V2n

is a subset of S which is closed in Xτ , hence by (9), it is countable-dimensional. By
the same argument, for every n = 1, 2, . . . there is a disjoint family V2n+1 of open
sets in Xτ refining U2n+1 such that L ⊂

⋃∞
n=1

⋃
V2n+1.

Claim B. For τ = 0, 1, there is a complete metric dτ on Xτ generating the topology
such that for the metric d0 ∨ d1 on S = X0 ∩ X1, the (d0 ∨ d1)-distance between
A∗

n ∩ S, B∗
n ∩ S is positive, for n = 1, 2, . . . .

To check this claim we begin with the observation that, from (4) and (5),
(10) A∗

m ∩ B∗
m ⊂ H∗

0,m ∪ H∗
1,m.
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Indeed, if i > m, the ρ-distance between Am and Bm is not less than δm ≥ δi and
the fibers p−1

τ (pτ (x)) with x ∈ Hτ,i \Hτ,i−1 have diameters not greater than δi ·2−i.
In effect, no fiber π−1(y) with y �∈ H∗

0,m ∪ H∗
1,m intersects both Am and Bm.

For each m, fix open sets V0(m), V1(m) in E∗ such that

(11) H∗
τ,m ⊂ Vτ (m) for τ = 0, 1, and V0(m) ∩ V1(m) = ∅,

where the closures are considered in E∗. From (10) and (11) it follows that A∗
m ∩

V1−τ (m) ∩ Xτ and B∗
m ∩ V1−τ (m) ∩ Xτ have disjoint closures in Xτ ; hence there

exist continuous maps ϕτ
m : Xτ → [0, 1] such that

(12) ϕτ
m(a) = 0, ϕτ

m(b) = 1, whenever a ∈ A∗
m ∩ V1−τ (m), b ∈ B∗

m ∩ V1−τ (m).

Let ρ∗ be any metric on E∗ generating the topology and let στ be a complete metric
on Xτ generating the topology, cf. (8). We set, for τ = 0, 1 and x, y ∈ Xτ ,

(13) dτ (x, y) = ρ∗(x, y) + στ (x, y) +
∑∞

m=1 2−m | ϕτ
m(x) − ϕτ

m(y) |.
Then dτ is a complete metric generating the topology on Xτ . We will show that
d0 and d1 satisfy the conditions of Claim B.

Let us fix m. For τ = 0, 1 take an open set Wτ (m) in E∗ such that

(14) H∗
τ,m ⊂ Wτ (m) ⊂ Wτ (m) ⊂ Vτ (m),

cf. (11). Let ητ be the ρ∗-distance between the sets Wτ (m) and E∗ \ Vτ (m) in
E∗ and let η > 0 be the ρ∗-distance between the sets A∗

m \ (W0(m) ∪ W1(m)) and
B∗

m\(W0(m)∪W1(m)) in E∗. We shall check that setting εm = min{η0, η1, η, 2−m},
we have

(15) (d0 ∨ d1)(a, b) ≥ εm, whenever a ∈ A∗
m ∩ S, b ∈ B∗

m ∩ S.

To prove (15), take a ∈ A∗
m ∩ S, b ∈ B∗

m ∩ S. If both a, b are outside of W0(m) ∪
W1(m), then (d0 ∨ d1)(a, b) > ρ∗(a, b) ≥ η. Suppose now that a ∈ W0(m). If
b �∈ V0(m), then (d0 ∨ d1)(a, b) ≥ ρ∗(a, b) ≥ η0. If a, b ∈ V0(m), then by (12),
ϕ1

m(a) = 0, ϕ1
m(b) = 1, and hence (d0 ∨ d1)(a, b) ≥ 2−m, cf. (13). If a ∈ W1(m), we

proceed similarly, with the index 0 replaced by 1, and we can also replace a by b in
this reasoning. In any case, (d0 ∨ d1)(a, b) ≥ εm, which justifies (15) and completes
the proof of Claim B.

Claim C. The space (X0∩X2, d0 ∨d1) fails the Haver property, where dτ , τ = 0, 1,
are as in Claim B.

Indeed, let εm > 0 be the (d0 ∨ d1)-distance in S = X0 ∩ X1 between the sets
A∗

m∩S and B∗
m∩S, for m = 1, 2, . . .. Since A∗

m∩S = Am∩S and B∗
m∩S = Bm∩S,

the sequence (A∗
m∩S, B∗

m∩S) is essential in S, by Proposition 2.1 (3), and it follows
that there are no disjoint open collections V1,V2, . . . in S such that the union

⋃
m Vm

covers S and every member of Vm has (d0 ∨ d1)-diameter less than εm; cf. sec. 4
(C).

4. Comments

(A) There are two classical covering counterparts to σ-compactness: the Hure-
wicz property and the weaker Menger property; see [2]. Babinkostova [2] showed
that the Hurewicz property of a metric space with the Haver property yields the
property C of this space and guarantees the Haver property of its square.
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One can show that under Martin’s Axiom, if the Hurewicz property is replaced
here by the Menger property, the first statement is no longer true, and the second
one fails even if we assume that the space has property C and its square has the
Menger property; see [12] (this answers Problem 4 from [2] and shows that the
answers to Problems 1 and 2 in [2] are negative, even if we assume the Menger
property of the space).

(B) Corollary 1.2 shows that the statement of Theorem 16 in [2] is incorrect.

(C) The Haver property of (X, d) yields the following: for any sequence (An, Bn),
n = 1, 2, . . ., of pairs of closed sets such that the d-distance between An and Bn is
not less than εn for some εn > 0, there are partitions Ln between An and Bn in X
with

⋂
n Ln = ∅, cf. [1]. Indeed, let Vn, n = 1, 2, . . . , be the collections given by the

Haver property for the sequence ε1, ε2, . . . . There are closed sets Fn ⊂
⋃
Vn with⋃

n Fn = X, and the traces of the members of Vn on Fn form a discrete collection
Fn of closed sets with diameters less than εn. Consider A∗

n = An ∪
⋃
{F ∈ Fn :

F ∩An �= ∅} and B∗
n = Bn ∪

⋃
{F ∈ Fn : F ∩An = ∅}, and let Ln be any partition

in X between the closed disjoint sets A∗
n and B∗

n. Then
⋂

n Ln = ∅.

(D) Let X be a metrizable space without property C and let U1,U2, . . . be a
sequence of open covers of X witnessing the failure of this property. Let d be
a metric generating the topology of X such that for each n, the family of balls
Wn = {Bd(x, 1/n) : x ∈ X} refines Un, cf. [4, IX.9.4]. Then (X, d) fails the Haver
property. Indeed, there are no disjoint open collections V1,V2, . . . such that the
union

⋃
n Vn covers X and every member of Vn has d-diameter less than 1

n , as each
such Vn would refine Wn, and hence also Un.
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