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MILNOR’S INVARIANTS AND SELF Ck-EQUIVALENCE

THOMAS FLEMING AND AKIRA YASUHARA

(Communicated by Daniel Ruberman)

Abstract. It has long been known that a Milnor invariant with no repeated
index is an invariant of link homotopy. We show that Milnor’s invariants
with repeated indices are invariants not only of isotopy, but also of self Ck-
equivalence. Here self Ck-equivalence is a natural generalization of link homo-
topy based on certain degree k clasper surgeries, which provides a filtration of
link homotopy classes.

1. Introduction

In his landmark 1954 paper [8], Milnor introduced his eponymous higher order
linking numbers. For an n-component link, Milnor numbers are specified by a
multi-index I, where the entries of I are chosen from {1, . . . , n}. In the paper [8],
Milnor proved that when the multi-index I has no repeated entries, the numbers
µ(I) are invariants of link homotopy. In a follow-up paper [9], Milnor explored
some of the properties of the other numbers and showed they are invariant under
isotopy, but not link homotopy.

Milnor’s invariants have been connected with finite-type invariants, and the con-
nection between them is increasingly well understood. For string links, these in-
variants are known to be of finite-type [1, 6], and in fact related to (the tree part
of) the Kontsevich integral in a natural and beautiful way [4].

By work of Habiro [5], the finite-type invariants of knots are intimately related
to clasper surgery. Taking the view that link homotopy is generated by degree one
clasper surgery on the link, where both disk-leaves of the clasper intersect the same
component, is it possible that Milnor’s isotopy invariants have some relation with
clasper surgery?

The answer is yes. Let us consider the generalization of link homotopy known
as self Ck-equivalence, introduced by Shibuya and the second author in [16]. These
moves are defined for k ∈ N where self C1-equivalence is link homotopy, and self
C2-equivalence is the self delta-equivalence of Shibuya [14]. Define a self Ck-move
on a link L to be a degree k simple tree clasper surgery on L where all disk-leaves
of the clasper intersect the same component. If L′ is obtained from L by a sequence
of self Ck-moves and ambient isotopies, we call L and L′ self Ck-equivalent.
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Let r(I) denote the maximum number of times that any index appears in I. Our
main result is the following.

Theorem 1.1. If r(I) ≤ k, then µ(I) is an invariant of self Ck-equivalence.

Notice also that a self Ck-equivalence can be realized by self Ck′-moves when
k′ < k, and thus self Ck-equivalence classes form a filtration of link homotopy
classes. Moving to larger and larger k provides more and more information about
the structure of ambient isotopy classes of links.

The classification of links up to link homotopy has been completed by Habegger
and Lin [3]. However, the structure of links under the higher order self Ck-moves
remains mysterious. Nakanishi and Ohyama have classified two component links
up to self C2-equivalence [11, 12, 13], and Shibuya and the second author have
shown that boundary links are self C2-equivalent to trivial links [15]. Much of the
work on self C2-equivalence relies on invariants that are based on the coefficients
of the Conway polynomial. In Example 1, we demonstrate a link that has trivial
Conway polynomial, but a nontrivial Milnor invariant with r(I) = 2. Hence self
C2-invariants based on the Conway polynomial vanish, but the link is not self C2-
equivalent to the unlink.

We say L and L′ are Ck
m-equivalent if L can be transformed into L′ by ambient

isotopy and degree m simple tree clasper surgery, where at least k disk-leaves of
the clasper intersect the same component.

Lemma 1.2. For m ≥ k, if L is Ck+1
m -equivalent to L′, then L is self Ck-equivalent

to L′.

More surprisingly, there is a partial converse to Lemma 1.2. A link L = L1 ∪
L2 ∪ · · · ∪ Ln is called Brunnian if L \ Li is trivial for all i = 1, 2, . . . , n.

Proposition 1.3. Let L be an n-component Brunnian link, and U the n-component
unlink. Then L is self Ck-equivalent to U if and only if L is Ck+1

n+k−1-equivalent to
U .

It is well known that Milnor’s link homotopy invariants vanish if and only if
the link is link homotopic to the unlink [8]. However, in Example 4.1 we make
use of Proposition 1.3 to produce a boundary link that is not self C3-equivalent
to the unlink. As all Milnor numbers vanish for boundary links, this example
demonstrates that self Ck-equivalence behaves very differently than we are used to
when k > 1. Much work remains to be done before we have a clear understanding
of self Ck-equivalence for higher k.

The authors would like to thank the referee for helpful comments.

2. Background

Given an n-component link L, we may compute Milnor’s numbers, denoted µL(I)
in the following way. Let G be the fundamental group of S3 \ L, and let Gq be
the qth subgroup of the lower central series of G. We have a presentation of G/Gq

with n generators, given by the meridians mi, 1 ≤ i ≤ n, of the components of
L. So for 1 ≤ j ≤ n, a longitude lj of the jth component of L is expressed
modulo Gq as a word in the mi’s. The Magnus expansion E(lj) of lj is the formal
power series in noncommuting variables X1, ..., Xn obtained by substituting 1+Xi

for mi and 1 − Xi + X2
i − X3

i + · · · for m−1
i , 1 ≤ i ≤ n. Milnor’s numbers
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are the coefficients of the monomials in the Magnus expansions of the longitudes
lj . Specifically, given a multi-index I with entries from {1, . . . , n}, the number
µL(i1 . . . irj) is the coefficient of Xi1 . . .Xir

in the Magnus expansion of lj . That
is,

E(lj) = 1 +
∑

µL(i1 . . . irj)Xi1 . . .Xir
.

These Milnor numbers are only defined up to an indeterminacy that depends on
the values of the lower order invariants. For example, the Milnor “triple linking
number” µ(123) is only well defined modulo gcd(µ(12), µ(23), µ(13)). Generally,
one is interested in link invariants and so wants to study Milnor numbers mod-
ulo the indeterminacy, but unfortunately, determining the precise indeterminacy
is difficult. Thus, one often works with the Milnor numbers modulo the greatest
common divisor of all lower order invariants, and these numbers are denoted µ(I).
Note that for string links the indeterminacy does not arise and the µ(I) are well
defined integral invariants of string link isotopy [3].

Two links L and L′ are said to be link homotopic if L can be transformed to L′

by a series of self-crossing changes and ambient isotopies. That is, we allow crossing
changes in L as long as both strands of the crossing belong to the same component
of L. If no index is repeated in the multi-index I, then µL(I) is an invariant of link
homotopy [9].

Clasper surgery was developed by Habiro in [5] for the study of finite-type invari-
ants. We introduce some basic notions here, but the reader is advised to consult
[5] for details. A clasper c is a trivalent graph denoting a surgery on a certain
zero framed link Lc. Figure 1 demonstrates the conversion from the clasper to the
link. Surgery on Lc does not change the ambient manifold, so the surgery may be
considered a local move on the knot or link. This move is equivalent to a band sum
of the original link with a link that is obtained from the Hopf link by iterated Bing
doubling.

Figure 1. Converting from a clasper to the underlying link.

Loops in a clasper formed by a single edge are called leaves. For the purposes of
this work, we will only consider claspers where each leaf forms an unknot. The disk
bounded by a leaf is called a disk-leaf. We call a clasper simple if each disk-leaf
intersects the link (or another clasper) exactly once. A clasper is said to be tree-like
if the graph represented by the clasper (without its leaves) is a tree. A clasper c has
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degree k, where k is half the number of trivalent vertices in c. If c is tree-like, then
its degree is also equal to the number of leaves, minus one. Claspers may contain
boxes, which denote several disk-leaves intersecting each other. See Figure 2.

Figure 2. On the left, (1) depicts the meaning of a clasper with
boxes. On the right, (2) shows Move 6 of [5].

It is possible to convert a tree-like clasper with boxes to a set of simple tree-like
claspers by use of the zip construction. See Figure 3. Twists in the edges of a
clasper are denoted by a small circle containing an s (positive half twist) or s−1

(negative half twist).

Figure 3. The zip construction. (Move 11 in [5].)

3. Self Ck-invariance of Milnor numbers

Proof of Theorem 1.1. Suppose that r(I) ≤ k and L is self Ck-equivalent to L′.
Since Milnor’s invariants are well known to be isotopy invariants [9], it suffices to
check that the invariant agrees on L and L′ when L′ is obtained from L by a single
self Ck-move on L represented by a clasper c.

The case k = 1 is that of link homotopy and was proven by Milnor in [8]. Thus,
we need only consider the case k ≥ 2.

To calculate µL(I) (resp. µL′(I)) where I has repeated indices, we may instead
study the invariants without repeated indices (link homotopy invariants) of L (L′),
where L (L′) is the link obtained by taking zero-framed parallels of the components
of L (L′) [9]. If component i of L is a parallel of component j of L, let h(i) = j.
Then µL(i1, i2, . . . , im) = µL(h(i1), h(i2), . . . , h(im)) [9]. If the index i appears ni

times in I, when forming L (L′) we will take ni parallels of component i.
Taking a zero-framed parallel of a component of L and performing the clasper

surgery c is the same as performing the clasper surgery and then taking a zero-
framed parallel of the corresponding component of L′, as for k ≥ 2 a Ck-move does
not affect linking numbers. More concisely, the clasper surgery carrying L to L′

carries L to L′.
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The self Ck-move is realized by surgery on c, that is, a simple tree clasper with
k + 1 leaves, where all of these disk-leaves intersect the same component of L.
Replace L with L.

As r(I) ≤ k, each index of I is repeated at most k times. Thus the link L has at
most k copies of each component of L, and each disk-leaf of the clasper c intersects
at most k components of L. Further, as each disk-leaf of c intersects the same
component of L, each disk-leaf of c intersects the same set of components of L.

Use the zip construction on c to produce simple claspers on L. That is, reduce
the clasper c to a set of simple claspers cj where each disk-leaf of each cj intersects
exactly one strand. Each disk-leaf of c intersects the same k components, so each
disk-leaf of cj intersects one of the strands that the corresponding disk-leaf of c
intersected. Thus we must label each of the k + 1 leaves of cj with the component
of the strand it intersects, but as there are only k components to choose from,
at least two of the disk-leaves intersect the same component of L. A surgery on
a simple clasper with two disk-leaves that intersect the same component can be
realized by a link homotopy. See Lemma 1.2.

We have shown that L is link homotopic to L′, so µL(J) = µL′(J) for all J with
r(J) = 1. Hence, when r(I) ≤ k, µL(I) = µL′(I). �
Remark 3.1. Milnor invariants with r(I) > k are not preserved by self Ck-equiva-
lence.

Suppose that r(I) > k. If µ(I) �= 0 for some link, by work of Cochran [2,
Theorem 7.2], there exists a link L where µL(I) �= 0, and all lower order Milnor
invariants of L vanish. Such a link can be obtained by Bing doubling a Hopf
link along a trivalent tree whose leaves are labeled by I, and then band summing
components with the same label.

A Hopf link may be thought of as a simple degree one surgery on the two com-
ponent unlink. Bing doubling a component of this link is the same as replacing
the corresponding component of the unlink with two components and replacing the
corresponding leaf of the clasper with a trivalent vertex and two new leaves. Each
of the new leaves intersects one of the new components. In this way, we can see
that Cochran’s process is the same as a simple tree clasper surgery on the unlink,
using the same tree, where disk-leaves labeled i intersect the ith component.

Since some index i in I is repeated at least k + 1 times, this clasper has at least
k + 1 disk-leaves that intersect component i, and so surgery on this clasper can be
realized by self Ck-moves. See Lemma 1.2. Thus, the link L we have constructed is
self Ck-equivalent to the unlink. As all Milnor invariants of the unlink vanish, we
have that µL(I) is not a self Ck-invariant when r(I) > k.

We end this section with an example that demonstrates the power of our meth-
ods. Self C2-equivalence of links is the same as self delta-equivalence, a relation
that has been extensively studied. Much of this work relies on invariants of self C2-
(self-delta)-equivalence that are based on the coefficients of the Conway polynomial
[13].

Example 3.2. Let L be a Bing double of the Whitehead link. See Figure 4. The
Alexander polynomial of this link is trivial, but µL(123123) = 1. Thus, L has trivial
Conway polynomial1 but is not self C2-equivalent to the unlink.

1J. Hillman has pointed out that the three-variable Alexander polynomial of L is also 0.
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Figure 4. The Bing double of the Whitehead link.

4. Relations to Ck-equivalence

In the proof of Theorem 1.1 we used the fact that simple clasper surgery with
k + 1 disk-leaves that intersect a single component could be converted to a self
Ck-equivalence. We will find a partial converse to that fact and demonstrate its
usefulness in the study of self Ck-equivalence.

Proof of Lemma 1.2. Fix k and work by induction on m − k. The base case is
m = k, and as the definition of Ck+1

k -equivalence is the same as that of self Ck-
equivalence, it is trivial.

Suppose now that c is a clasper representing a Ck+1
m+1-move, where k + 1 of the

disk-leaves intersect component i. We will show that c is Ck+1
m -equivalent to a

clasper representing a Ck+1
m -move. Let c′ be a Ck+1

m -clasper obtained from a copy
of c by deleting a disk-leaf that does not intersect component i; see Figure 5 (2).
We choose c′ so that by reversing the zip construction, we obtain the clasper with
boxes shown in Figure 5 (3). By Move 12 of [5], we obtain the clasper c′′, which
is degree m and has k + 1 disk-leaves intersecting component i. One may find it
easier to read this figure from right to left.

That is, we have removed a leaf from c without reducing the number of disk-
leaves that intersect component i, so it now represents a Ck+1

m -move, and so by
induction, it can be realized by a self Ck-equivalence. We introduced a new clasper
c′ in the reduction, but for the zip construction to work, c′ must have its leaves
parallel to those of c (except for the leaf we are removing). Thus, c′ represents a
Ck+1

m -move and so can also be realized by self Ck-moves. �

Since we are giving up degrees, Lemma 1.2 is an elementary, though useful,
application of the properties of claspers. Less obvious, however, is that in certain
circumstances we have a converse.

Proof of Proposition 1.3. The ‘if’ direction follows from Lemma 1.2. We will now
show the ‘only if’ direction. The idea of this proof is similar to that of Theorem 1.2
in [10]. While the ‘band description’ defined in [17] is used in [10], we will use
clasper techniques. Band description and clasper surgery are simply different sets
of terminology used to describe the same process of altering links.
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Figure 5. Reducing a Ck+1
m+1-clasper to Ck+1

m -claspers. The sym-
bol s (s−1) represents a positive (negative) half twist.

Assume that L and U are self Ck-equivalent. We can describe L as the unlink
U1∪· · ·∪Un with claspers c{i},j representing the self Ck-moves on the ith component.

Let ∆1 be the disk bounded by U1 such that ∆1 ∩ Ui = ∅ (i �= 1).
If for some i �= 1 a clasper c{i},j intersects ∆1, we may remove this intersection

point by a crossing change between that c{i},j and U1. Passing a clasper of degree
k through U1 results in two new claspers, one of degree k + 1 which has a new leaf
that intersects ∆1, and one of degree k which does not. Call the former c{1i},j ,
and the latter c′{i},j . See Figure 6. Repeat this process until ∆1 intersects only the
leaves of claspers c{1i},j and c{1},j .

Figure 6. Altering the clasper c{i}j to reflect a crossing change
between that clasper and U1.

If a clasper c{i},j does not intersect ∆1, relabel it c′{i},j .
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We can now express L as the unlink U1 ∪ · · · ∪ Un with claspers c{1},j of degree
k, claspers c′{i},j (i ≥ 2) and claspers c{1i},j (i ≥ 2) of degree at least k + 1.

Let L′ be the link obtained by surgering the unlink U1∪· · ·∪Un only on the c′{i},j .
Note that L′ \L′

1 = L\L1. The c′{i},j do not intersect ∆1. Thus, L′ = (L\L1)�U1.
Since L is Brunnian, L′ is the unlink. Thus we can express L as the unlink L′ with
claspers c{1},j of degree k and claspers c{1i},j (i ≥ 2) of degree at least k + 1 that
have disk-leaves intersecting U1 ∪ Ui.

Since L\L2 is the unlink, repeating the argument above shows that L is expressed
as an unlink L′′ with claspers c{12},j of degree at least k + 1 that have disk-leaves
intersecting U1 ∪ U2 and claspers c{12i},j (i ≥ 3) of degree at least k + 2 that have
disk-leaves intersecting U1 ∪ U2 ∪ Ui.

Repeating this process for each Li, we can express L as the unlink with claspers
c{12,...,n},j of degree at least k + n − 1 that have disk-leaves intersecting U1 ∪ U2 ∪
· · · ∪ Un. Hence L is Ck+1

k+n−1-equivalent to the unlink.
�

Figure 7 illustrates the argument of Proposition 1.3 for the Whitehead link. The
Whitehead link is Brunnian and link homotopic to the unlink. The center image
of Figure 7 shows it as the unlink with one self C1-clasper. The right-hand image
shows the Whitehead link as the unlink with one C2

2 -clasper.

Figure 7. Proposition 1.3 for the Whitehead link.

Example 4.1. The link in Figure 8 is obtained from Whitehead doubling both
components of the Hopf link and is a boundary link, so all Milnor invariants vanish.
However, examine the Jones polynomial

J(L) = q−
9
2 − 2q−

7
2 + q−

5
2 − q−

3
2 − q

3
2 + q

5
2 − 2q

7
2 + q

9
2 .

We obtained the Jones polynomial from the Knot Atlas2 and by a calculation using
Knot.3 Evaluating the fourth derivative of J(L) at 1, we obtain a value distinct from
that of the fourth derivative of the Jones polynomial of the unlink at 1. Since this is
a finite-type invariant of degree four, L is not C5-equivalent to the trivial link and

2http://www.math.toronto.edu/∼drorbn/KAtlas, link L11n247
3http://www.math.kobe-u.ac.jp/∼kodama/knot.html
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hence by Lemma 6.1 of [7], not C4
4 -equivalent to the unlink. Using Proposition 1.3

we see that it is not self C3-equivalent to the trivial link.
In fact, since L is Brunnian, if L is self Ck-equivalent to a split link, it is self Ck-

equivalent to the trivial link. In order to see this, note that the components of L are
unknots, so suppose L is self Ck-equivalent to a split link L′ where some component
L′

i of L′ is a nontrivial knot. The knot L′
i is obtained from Li by self Ck-moves,

and so is self Ck-equivalent to the unknot. Thus, once we have transformed L to a
split link L′, it is possible to unknot any knotted component of L′ by further self
Ck-moves.

Thus, L is not self C3-equivalent to a split link, even though all Milnor numbers
of L vanish.

Figure 8. The Hopf link with both components Whitehead doubled.

Example 4.1 is interesting for other reasons. Let Milnor’s self Ck-invariants
denote Milnor’s invariants µ(I) with r(I) ≤ k. Recall that Milnor’s link homotopy
invariants vanish if and only if L is link homotopic to the unlink. The example
above shows that a similar statement is not true for Milnor’s self C3-invariants.
While the link in Example 4.1 is a boundary link, it is not self C3-equivalent to the
trivial link or even a split link. It would be interesting to know what the vanishing
of Milnor’s self Ck-invariants implies about the self Ck-equivalence class of L.

For two-component links, vanishing µL(12) and µL(1122) imply that the link is
self C2-equivalent to the unlink [13]. Shibuya and the second author have recently
shown that all boundary links are self C2-equivalent to the unlink [15]. This leads
one to ask whether the vanishing of Milnor’s self C2-invariants is sufficient to show
that a link is self C2-equivalent to the unlink.
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