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FIXED POINT PROPERTIES OF NILPOTENT GROUP ACTIONS
ON 1-ARCWISE CONNECTED CONTINUA

ENHUI SHI AND BINYONG SUN

(Communicated by Alexander N. Dranishnikov)

Abstract. We show that every continuous action of a nilpotent group on a
1-arcwise connected continuum has at least one fixed point.

1. Introduction

Let X be a topological space, G a topological group, and φ : G × X −→ X a
continuous action of G on X. We call x ∈ X a fixed point of G if

φ(g, x) = x, for all g ∈ G.

Denote by FixX(G) (or simply Fix(G)) all fixed points of G, which is a closed subset
of X. The following question has wide interest.

Under which conditions on G and X is the set FixX(G) nonempty regardless of
φ?

By a continuum, we mean a nonempty, connected, compact and metrizable topo-
logical space. A continuum is said to be 1-arcwise connected (or uniquely arcwise
connected) if for any two different points x, y of it, there is a unique arc in it with
endpoints x and y. This is equivalent to saying that the continuum is arcwise
connected and contains no circle.

In 1957, Isbell proved in [3] that FixX(G) is nonempty if G is commutative, and
X is a dendrite, i.e., a locally connected, 1-arcwise connected continuum. In 1975,
Mohler answered a question raised by Bing in [1], by proving in [6] that FixX(G)
is nonempty if G is the discrete cyclic group Z, and X is a 1-arcwise connected
continuum. For further studies of fixed point theory of 1-arcwise connected spaces,
one may consult [2, 4, 5].

The purpose of this paper is to prove the following common generalization of the
above results of Isbell and Mohler.

Theorem 1.1. If X is a 1-arcwise connected continuum and G is nilpotent as an
abstract group, then FixX(G) is nonempty.
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If X is an arc and G is the solvable group (Z/2Z) � Z, then there is a contin-
uous action of G on X such that FixX(G) is empty (See Remark 2.5). Therefore
nilpotency of G is also necessary. Young constructed a 1-arcwise connected con-
tinuum and a continuous self map of it without fixed points (see [8]). Therefore in
Theorem 1.1, we cannot replace G by the semigroup N = {0, 1, 2, · · · }.

2. The proof

Let G be a group. Recall that the commutator of two elements a, b of G is by
definition

[a, b] = a−1b−1ab.

For any two subsets A and B of G, define [A, B] to be the subgroup generated by
the set {[a, b] : a ∈ A, b ∈ B}. Set G0 = G and Gi+1 = [Gi, G], for i = 0, 1, 2, · · · .
Then we get a sequence

G0 = G � G1 � G2 � · · ·
of normal subgroups of G. If there is some n ∈ N such that Gn = {e}, then G is
called nilpotent and

G0 = G � G1 � G2 � · · · � Gn = {e}

is called the lower center sequence of G, where e is the identity of G.
When X is a 1-arcwise connected continuum and x, y ∈ X, we use the symbol

[x, y] to denote the unique arc in X from x to y (if x = y, then [x, y] is defined to
be the point set {x}).

We should note that, though the symbol [ , ] has two different meanings as
above, it is easy to distinguish them in context. For simplicity, we write

gx = φ(g, x), for all g ∈ G, x ∈ X.

Lemma 2.1. Let G be a nilpotent group, X the unit closed interval [0, 1] and let
φ : G × X −→ X be a continuous action. Then FixX(G) is nonempty.

Proof. If for every g ∈ G we have g(0) = 0 and g(1) = 1, then 0 and 1 are both fixed
points of G. Otherwise there is some g0 ∈ G such that g0(0) = 1 and g0(1) = 0.
Then g0 has a unique fixed point x0 ∈ I, and clearly g0 is not the identity e. In the
following, we will show that x0 is also a fixed point of G.

Define inductively a sequence of subsets Ni ⊂ G as follows. Let N0 = {e}, where
e is the identity of G. Suppose that Ni has been defined; then define Ni+1 = {g ∈
G : [g, g0] = g−1g−1

0 gg0 ∈ Ni}. Since G is a nilpotent group, there is a natural
number m such that Nm = G. Thus we get a sequence of subsets: {e} = N0 ⊂
N1 ⊂ · · · ⊂ Nm = G. If g(x0) = x0 for all g ∈ Ni, then for g ∈ Ni+1 we have

g−1
0 gx0 = g(g−1g−1

0 gg0)x0 = g[g, g0]x0 = gx0.

So gx0 is also a fixed point of g0. But x0 is the unique fixed point of g0, so gx0 = x0.
Thus x0 is also a common fixed point of elements in Ni+1. Inductively, we get at
last that for any g ∈ G = Nm, gx0 = x0. That is, x0 is a fixed point of G. �

Lemma 2.2. Let G be a nilpotent group, H a normal subgroup of G and suppose
that G/H is a cyclic group. Let X be a 1-arcwise connected space, and let φ :
G × X −→ X be a group action. If Fix(H) �= ∅, then Fix(G) �= ∅.
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Proof. Let G/H =< g0 >, where g0 ∈ G and g0 denotes the coset class of g0 in
G/H. Let Y = Fix(H). For each y ∈ Y and h ∈ H, since g−1

0 hg0 ∈ H, we have
that hg0y = g0(g−1

0 hg0)y = g0y. Thus g0(Y ) ⊆ Y . Replacing g0 by g−1
0 , we get

g−1
0 (Y ) ⊆ Y similarly. Hence g0(Y ) = Y . Let A = {[x, g0(x)] : x ∈ Y }. Define a

partial order “ ≺ ” in A: [x, g0(x)] ≺ [x′, g0(x′)] if and only if [x, g0(x)] ⊇ [x′, g0(x′)].
It is easy to see that if B = {[xλ, g0(xλ)] : λ ∈ Λ} is a totally ordered subset of A,
then

⋂
λ∈Λ[xλ, g0(xλ)] is an upper bound of B. So, by Zorn’s Lemma, there is a

maximal element [y0, g0(y0)] ∈ A. Now we discuss this in three cases.

Case 1. g0(y0) = y0. Then y0 is a fixed point of g0, and thus is a fixed point of G.

Case 2. g2
0(y0) = y0. Then by the uniquely arcwise connected property we see

that g0([y0, g0y0]) = [y0, g0y0], and then [y0, g0y0] is a G-invariant interval. From
Lemma 2.1, there is a fixed point of G in [y0, g0y0].

Case 3. g0(y0) �= y0 and g2
0(y0) �= y0. We will show that [y0, g0y0] ∩ [g0y0, g

2
0y0] =

{g0y0}. First by the uniquely arcwise connected property, [y0, g0y0]∩ [g0y0, g
2
0y0] =

[x, g0y0] for some x ∈ X. Then for each h ∈ H, we have [h(x), g0y0] = h([x, g0y0]) =
h([y0, g0y0]) ∩ h([g0y0, g

2
0y0]) = [x, g0y0]. Thus h(x) = x, and hence x ∈ Fix(H).

Since x ∈ [g0y0, g
2
0y0], there exists some x′ ∈ [y0, g0y0] such that g0(x′) = x.

Then [x′, x] = [x′, g0(x′)] ∈ A. On the other hand, since [x′, x] ⊆ [y0, g0y0] and
[y0, g0y0] is maximal in A, it can only be that [x′, x] = [y0, g0y0]. This implies that
x′ = y0, x = g0y0 (Since g2

0(y0) �= y0, the case x′ = g0(y0) and x = y0 will not
occur.) This completes the proof of the claim. It follows that

(2.1) [gn−1
0 y0, g

n
0 y0] ∩ [gn

0 y0, g
n+1
0 y0] = {gn

0 y0}, for all n ∈ Z.

Denote L =
⋃+∞

n=−∞[gn
0 y0, g

n+1
0 y0], L+ =

⋃+∞
n=0[g

n
0 y0, g

n+1
0 y0], and L− =

⋃−1
n=−∞

[gn
0 y0, g

n+1
0 y0]. Then L = L+ ∪ L−. Noting that there is no circle in X, from (2.1)

we see that L is an image of an injective continuous map defined over the real line
R. Now we discuss this in three cases.

Case 3.1. If there exists an arc [a, b] ⊆ X such that L+ ⊆ [a, b], then y =
lim

n→∞
gn+1
0 y0 ∈ Y exists. Clearly, y is a fixed point of g0, and moreover is a fixed

point of G.

Case 3.2. If there exists an arc [a, b] ⊆ X such that L− ⊆ [a, b], then similar to
Case 3.1, we can also get a fixed point of G in Y .

Case 3.3. For any arc [a, b] ⊆ X, neither L+ ⊆ [a, b] nor L− ⊆ [a, b]. This implies
that for each x ∈ X, there exists a unique p(x) ∈ L such that [x, y0]∩L = [y0, p(x)].
For each n ∈ Z, set Xn = {x ∈ X : p(x) ∈ [gn

0 (y0), gn+1
0 (y0)}. Then {Xn : n ∈ Z}

becomes a partition of X. From [6] we know that each Xn is a Borel measurable
set. Let µ be a g0-invariant Borel probability measure. (For the existence of such a
measure, one may consult [7], Corollary 6.9.1). Since g0(Xn) = Xn+1 for all n ∈ Z,
we have µ(Xn) = µ(Xm) for all m, n ∈ Z. This contradicts µ(X) = 1. So this case
will not happen. �

Lemma 2.3. Let X be a 1-arcwise connected continuum and let φ : G×X → X be
an action of G on X. Suppose H is a normal subgroup of G and G/H is a finitely
generated abelian group. If Fix(H) �= ∅, then Fix(G) �= ∅.
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Proof. Since G/H is a finitely generated abelian group, G/H ∼= Zk1 ⊕ · · · ⊕ Zkn
,

where Zki
= Z/ < ki >, for 1 ≤ i ≤ n (ki may be 0). Let Hi be a subgroup

of G/H defined by Hi = Zk1 ⊕ · · · ⊕ Zki
. Let φ : G −→ G/H be the quotient

homomorphism, and let Hi = φ−1(Hi). Then H = H0 � H1 � · · · � Hn = G is a
sequence of normal subgroups of G and

Hi+1/Hi
∼= (Hi+1/H0)/(Hi/H0) = (Zk1 ⊕ · · · ⊕ Zki+1)/(Zk1 ⊕ · · · ⊕ Zki

) ∼= Zki+1 .

So Hi+1/Hi is a cyclic group. Since Fix(H0) = Fix(H) �= ∅, using Lemma 2.2
repeatedly we obtain that Fix(G) �= ∅. �

Lemma 2.4. Let X be a 1-arcwise connected continuum and let φ : G × X → X
be an action of G on X. Suppose that H is a normal subgroup of G and G/H is
abelian. If Fix(H) �= ∅, then Fix(G) �= ∅.

Proof. For any finite subset S of G, we define AS to be the group generated by H
and S, that is, AS =< H, S >. Since AS/H is a finitely generated abelian group, it
follows from Lemma 2.3 that Fix(AS) �= ∅. As Fix(AS) ∩ Fix(AS′) = Fix(AS∪S′),
we know K = {Fix(AS) : S is a finite subset of G} has the finite intersection
property. Since X is compact, we have Y =

⋂
K∈K K �= ∅. Obviously Y ⊆ Fix(G),

so Fix(G) �= ∅. �

Proof of Theorem 1.1. Consider the lower central sequence G = G0 � G1 � · · · �
Gn = {e} of G. Since Gi+1 = [G, Gi], we know Gi/Gi+1 is an Abelian group, for
0 ≤ i ≤ n − 1. Also, because Fix(Gn) = Fix({e}) = X �= ∅, it follows inductively
from Lemma 2.4 that Fix(G) �= ∅. �

Remark 2.5. If the action group G is solvable, then Theorem 1.1 does not hold. For
example, let f and g be the maps on the real line R defined by f(x) = x+1, g(x) =
−x, for all x ∈ R. It is well known that the group < f, g > generated by f and
g is solvable. Let h : (−π

2 , π
2 ) → R be defined by x �→ tanx. Now we define two

homeomorphisms f̃ and g̃ on the closed interval [−π
2 , π

2 ] by
f̃(−π

2 ) = −π
2 , f̃(π

2 ) = π
2 , and f̃(x) = h−1 ◦ f ◦ h(x), for x ∈ (−π

2 , π
2 ),

g̃(−π
2 ) = π

2 , g̃(π
2 ) = −π

2 , and g̃(x) = h−1 ◦ g ◦ h(x), for x ∈ (−π
2 , π

2 ).
Then the group < f̃, g̃ > generated by f̃ and g̃ is isomorphic to the group

< f, g >. So < f̃, g̃ > is a solvable group acting on [−π
2 , π

2 ]. It is obvious that there
is no fixed point for this action.
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