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CONSTRUCTIVE DECOMPOSITION OF A FUNCTION OF TWO
VARIABLES AS A SUM OF FUNCTIONS OF ONE VARIABLE

EVA MILICZKÁ

(Communicated by Alexander N. Dranishnikov)

Abstract. Given a compact set K in the plane, which does not contain any
triple of points forming a vertical and a horizontal segment, and a map f ∈
C(K), we give a construction of functions g, h ∈ C(R) such that f(x, y) =
g(x) + h(y) for all (x, y) ∈ K. This provides a constructive proof for a part of
Sternfeld’s theorem on basic embeddings in the plane. In our proof the set K

is approximated by a finite set of points.

1. Introduction

An embedding ϕ : K → R
k of a compactum (compact metric space) K in the

k-dimensional Euclidean space R
k is called a basic embedding if for each continuous

real-valued function f ∈ C(K) there exist continuous real-valued functions of a
single real variable g1, . . . , gk ∈ C(R) such that f(x1, . . . , xk) = g1(x1)+. . .+gk(xk)
for each point (x1, . . . , xk) ∈ ϕ(K). We also say that the set ϕ(K) is basically
embedded in R

k.
The question of the existence of basic embeddings is related to Hilbert’s 13th

problem [5]: Hilbert conjectured that not all continuous functions of three variables
are expressible as superpositions of continuous functions of a smaller number of
variables.

Ostrand [10] proved that each n-dimensional compactum can be basically embed-
ded in R

2n+1 for n ≥ 1. His result is an easy generalization of results of Arnold [1, 3]
and Kolmogorov [6, 7].

Sternfeld [14] proved that the 2n + 1 is the best possible in a very strong sense:
namely, no n-dimensional compactum can be basically embedded in R

2n for n ≥ 2.
Ostrand’s and Sternfeld’s results thus characterize compacta basically embeddable
in R

k for k ≥ 3. Basic embeddability in the real line is trivially equivalent to em-
beddability. The remaining problem of the characterization of compacta basically
embedded in R

2 was already raised by Arnold [2] and solved by Sternfeld [15]:

Theorem 1.1 (Sternfeld). Let K be a compactum and let ϕ : K → R
k be an em-

bedding. Then
(B) ϕ is a basic embedding
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if and only if
(A) there exists an m ∈ N such that the set ϕ(K) does not contain an array of

length m.

Definition 1.2. An array is a sequence of points {(xi, yi) ∈ R
2 | i ∈ I}, where I =

{1, 2, . . . , m} or I = N, such that each two consecutive points (xi, yi), (xi+1, yi+1)
are different and either x2j−1 = x2j and y2j = y2j+1 for all j or y2j−1 = y2j and
x2j = x2j+1 for all j. If I = {1, 2, . . . , m}, then the length of the array is m − 1.

Using the geometric description (A), Skopenkov [13] gave a characterization of
continua basically embeddable in the plane by means of forbidden subsets resem-
bling Kuratowski’s characterization of planar graphs. In a similar way Kurlin [8]
characterized finite graphs basically embeddable in R × Tn, where Tn is a star
with n-rays. Repovš and Željko [11] proved a result concerning the smoothness
of the functions in the decomposition on basically embedded subsets of the plane
and gave a constructive decomposition on finite graphs in the plane which do not
contain arrays of arbitrary length (i.e. those satisfying (A) of Theorem 1.1).

Sternfeld’s proof of the equivalence (A) ⇔ (B) is not direct but uses a reduction
to linear operators. In particular, it is not constructive. It is therefore desirable
to find a straightforward, constructive proof which will consequently provide an
elementary proof of Skopenkov’s and Kurlin’s characterizations. A constructive
proof of (B) ⇒ (A) is given in [9]. In this paper we give an elementary construction
proving the implication (A) ⇒ (B) provided that m = 2:

Theorem 1.3. Let ϕ : K → R
2 be an embedding of a compactum K in the plane

such that the set ϕ(K) does not contain an array of length two. Then for every
function f ∈ C(ϕ(K)) there exist functions g, h ∈ C(R) such that f(x, y) = g(x) +
h(y) for each point (x, y) ∈ ϕ(K).

So far, no constructive decomposition of f as g + h on compacta in the plane
satisfying (A) of Theorem 1.1 has been found, not even in the simplest case when
the compactum satisfies (A) with m = 2. It turns out that even if a set ϕ(K) ⊆ R

2

satisfies this simplest version of condition (A), a constructive decomposition of a
function f ∈ C(ϕ(K)) is a non-trivial problem. We also believe that our argument
can be modified to obtain a constructive proof (in the sense described below) of the
implication (A) ⇒ (B) for an arbitrary m ∈ N.

The main part of our proof (Theorem 2.2) consists of finding an approximate
decomposition of a given function f as g +h. The functions g, h are defined on the
projections of a finite approximation V of ϕ(K). Then they are linearly extended
to R. Apart from two steps where we assert the existence of certain constants, this
part of the proof is constructive. The existence of an exact decomposition f = g+h
follows by an elementary iterative procedure (Theorem 2.1).

In [11], the authors give the standard decomposition f = g + h on finite graphs
in the plane. According to the results of [13, 4], a finite graph can be basically
embedded in the plane if and only if it can be embedded in a special graph Rn for
some n. The authors of [11] inductively define an embedding ϕ : Rn → R

2. For a
given function f ∈ C(ϕ(Rn)), they define the maps g, h ∈ C(R) inductively again,
starting from a well chosen subset of ϕ(Rn). Although the sets in the plane we
are dealing with do not contain arrays of length two, they can still be “arbitrarily
bad”. In particular, we are not able to choose a suitable subset on which we could
start a similar construction of the functions g and h. However, we do use a similar



CONSTRUCTIVE DECOMPOSITION OF A FUNCTION OF 2 VARIABLES 609

approach in the construction of the sequences of approximations which converge to
the required functions g and h.

The proof of our result resembles, in a certain way, the proofs of Arnold [1, 3],
Kolmogorov [6, 7] and Ostrand [10]. As in these proofs, we construct a sequence
of finite families of squares. However, there the squares (or cubes in higher dimen-
sions) are related only to the dimension of the set in question; here the squares are
constructed using the property that the set does not contain an array of length two.

The paper is organized as follows: in Section 2 we formulate and prove the two
statements, Theorem 2.1 and Theorem 2.2, which directly imply the main result,
Theorem 1.3. Then we give the statements, Lemma 2.5 and Lemma 2.6, required
in the proof of Theorem 2.2. Lemma 2.5 is proved in this section, and the proof
of Lemma 2.6 is postponed to Section 3. Finally, in Section 4 we roughly explain
where the proof breaks down in the case of an arbitrary m.

2. Proof of the main result—Theorem 1.3

It is convenient to omit the embedding ϕ from the notation ϕ(K) ⊆ R
2 and

assume that K is a subset of R
2.

We denote points in the plane by (x, y), with x, y ∈ R; intervals in R by [x; x′],
[x; x′), (x; x′), with x, x′ ∈ R; and segments in R

2 by [z; z′], with z, z′ ∈ R
2.

We define the distance in R
2 as |(x, y) − (x′, y′)| = max{|x − x′|, |y − y′|} for

(x, y), (x′, y′) ∈ R
2. By p, q : R

2 → R, we denote the vertical and horizontal orthog-
onal projections: p(x, y) = x, q(x, y) = y.

The main result, Theorem 1.3, clearly follows from the following two theorems.

Theorem 2.1. Let X ⊆ R
2 be a compact subset of the plane. Assume that there ex-

ists a positive integer k ∈ N such that for each function f ∈ C(X) and each positive
real ε > 0 there exist functions g, h ∈ C(R) satisfying the following requirements:

(1) |f(x, y) − g(x) − h(y)| < ε for each point (x, y) ∈ X,
(2) ||g|| ≤ k||f ||, ||h|| ≤ k||f ||.

Then there exist functions g, h ∈ C(R) such that f(x, y) = g(x) + h(y) for each
point (x, y) ∈ X.

The above result is obtained by a slight modification of a part of Theorem 4.13
in [12]; we include the proof for the sake of completeness.

Proof. Let k and f be given. Let f1 = f . Pick a sequence {εn}∞n=1 of positive
reals such that

∑∞
n=1 εn < ∞. Assume that n ≥ 1 and fn is constructed. Choose

functions gn, hn ∈ C(R) such that ||fn − gn − hn|| < εn, ||gn|| ≤ k||fn|| and
||hn|| ≤ k||fn||. Let fn+1 = fn − gn − hn.

Since ||gn+1|| ≤ k||fn+1|| = k||fn−gn−hn|| < kεn for each n, the series
∑∞

n=1 gn

uniformly converges to a function g ∈ C(R). Similarly
∑∞

n=1 hn = h ∈ C(R). We
can easily see that g + h = f1 = f . �

The proof of the following theorem is postponed to the end of this section.

Theorem 2.2. Suppose that a compactum K ⊆ R
2 contains no array of length two

and that f ∈ C(K) is a continuous function on K. Then for each ε > 0 there exist
functions g, h ∈ C(R) satisfying the following requirements:

(1) |f(x, y) − g(x) − h(y)| < ε for each point (x, y) ∈ K,
(2) ||g|| ≤ ||f ||, ||h|| ≤ 2||f ||.



610 EVA MILICZKÁ

The construction of the approximations g and h in Theorem 2.2 mimics the
following construction of the functions g, h which works for certain types of sets K
(for example finite graphs, considered in [11]). In particular, this idea is used in
the proof of Lemma 2.6. Let Kx be the set of all points (x, y) ∈ K which have a
neighbor in the vertical direction in K, i.e. Kx = {(x, y) ∈ K|∃(x, y′) ∈ K, y 
= y′}.
The set Ky is defined in a similar way. Assume that both sets Kx and Ky are
closed.

Since K does not contain an array of length two, the functions p and q are
injective on Ky and Kx, respectively, and the sets Kx and Ky are disjoint. For
each point x ∈ p(Ky) let g(x) = f(x, p−1(x)), and for each point x ∈ p(Kx) let
g(x) = 0. Since p(Kx ∪Ky) is closed, we can extend g continuously to R. For each
point y ∈ q(K) pick an arbitrary point (x, y) ∈ K and let h(y) = f(x, y)−g(x). It is
easily seen that h is continuous on q(K), and thus it can be extended continuously
to R.

The function g was constructed on the set p(Kx ∪ Ky) first, and then, using
the fact that p(Kx ∪ Ky) is closed, it was extended continuously to R. In general,
neither p(Kx ∪ Ky) nor q(Kx ∪ Ky) is closed, though, and the set K can be so
“bad” that we cannot find suitable sets like Kx and Ky to begin the construction.
Therefore we construct approximations of K.

Definition 2.3. Let α > 0 be a positive real. Two points z1, z2 ∈ R
2 are said to

form an α-vertical pair if |p(z1) − p(z2)| < α and an α-horizontal pair if |q(z1) −
q(z2)| < α. A sequence of points {z1, z2, . . . , zk} from R

2 such that zi 
= zj for all
i 
= j, with the exception that possibly z1 = zk, is said to form an α-array if each
pair of consecutive points zi, zi+1 forms either an α-vertical pair or an α-horizontal
pair or both.

Note that, unlike an array, an α-array can contain two or more consecutive
α-vertical pairs or two or more consecutive α-horizontal pairs.

Definition 2.4. Let α, β > 0 be positive reals and let l ∈ N be a positive integer.
A set X ⊆ R

2 is said to be (α, β, l)-faithful if for each α-array {z0, z1, . . . , zk+1} in
X such that |p(z0) − p(z1)| ≥ β and |q(zk) − q(zk+1)| ≥ β we have k > l.

Clearly, if X is (α, β, l)-faithful, then for each positive α′ ≤ α each subset X ′ ⊆ X
is (α′, β, l)-faithful.

Lemma 2.5. Suppose that a compactum K ⊆ R
2 contains no array of length two.

Then for each β > 0 and l ∈ N there exists an α > 0 such that K is (α, β, l)-faithful.

Proof. Assuming the contrary, there exists a β > 0 and an l ∈ N such that for each
n ∈ N the set K is not (1/n, β, l)-faithful. That is, for each n there is a 1/n-array
{zn

0 , zn
1 , . . . , zn

kn+1} ⊆ K with |p(zn
0 ) − p(zn

1 )| ≥ β, |q(zn
kn

) − q(zn
kn+1)| ≥ β and

kn ≤ l. Without loss of generality we may assume that kn = l for all n. Since K is
compact, there is a subsequence {{zmn

0 , zmn
1 , . . . , zmn

l+1}}n such that for each i the
sequence {zmn

i }n converges to a point zi ∈ K. For each i either p(zi) = p(zi+1) or
q(zi) = q(zi+1) (or both in case zi and zi+1 are equal). Moreover, |p(z0)−p(z1)| ≥ β
and |q(zl) − q(zl+1)| ≥ β. Hence the set {z0, z1, . . . , zl+1}, which is a subset of K,
contains an array of length two, which is a contradiction. �

The proof of the following lemma is postponed until the next section.
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Lemma 2.6. Let f : V → R be a function defined on a finite set of points V ⊆ R
2.

Let ε, δ, α > 0 be positive reals such that |f(z) − f(z′)| < ε for all pairs z, z′ ∈ V
with |z − z′| < δ and the set V is (α, δ, [||f ||/ε])-faithful. Then there exist functions
G : p(V ) → R and H : q(V ) → R satisfying the following requirements:

(1) (a) |f(x, y) − G(x) − H(y)| ≤ 4ε for each point (x, y) ∈ V ,
(b) |G(x1) − G(x2)| ≤ ε, for each α-vertical pair (x1, y1), (x2, y2) ∈ V ,
(c) |H(y1) − H(y2)| ≤ 2ε for each α-horizontal pair (x1, y1), (x2, y2) ∈ V ;

(2) ||G|| ≤ ||f ||, ||H|| ≤ 2||f ||.

Proof of Theorem 2.2. Since f is continuous on the compact set K, the function
f is uniformly continuous. Therefore there exists a positive real δ > 0 such that
|f(z) − f(z′)| < ε/8 for all points z, z′ ∈ K with |z − z′| < δ. According to
Lemma 2.5, there exists an α > 0 such that the set K is (α, δ, [8||f ||/ε])-faithful.
Since the set K is (α′, δ, [8||f ||/ε])-faithful for each α′ ≤ α, we may assume that
α < δ. Pick a point from each non-empty intersection K ∩ ([iα/2; (i + 1)α/2) ×
[jα/2; (j + 1)α/2)), i, j ∈ Z. Denote by V the union of these points. Since V is a
subset of K, the set V is (α, δ, [8||f ||/ε])-faithful. According to Lemma 2.6, there
exist functions G : p(V ) → R and H : q(V ) → R satisfying items (1a) – (1c) and (2)
of that lemma.

Let p(V ) = {x1, . . . , xk}, with xi < xi+1 for all i. Define g on p(V ) by letting
g(xi) = G(xi) for each i. On each interval [xi; xi+1] such that |xi−xi+1| < α, extend
g linearly between the values g(xi) and g(xi+1). If an interval [xi; xi+1] is such that
|xi − xi+1| ≥ α, then there exists an interval of the form I = [jα/2; (j + 1)α/2)
such that xi < jα/2 < (j + 1)α/2 ≤ xi+1 and p−1(I) ∩ K = ∅. On the interval
[xi; jα/2] extend g as a constant, equal to g(xi). If the interval [(j + 1)α/2; xi+1]
is non-degenerate, i.e. if (j + 1)α/2 < xi+1, then extend g on this interval as a
constant equal to g(xi+1). On the interval [jα/2; (j +1)α/2] extend g linearly from
g(xi) to g(xi+1). On the intervals (−∞; x1] and [xk;∞) extend g as a constant.

Let q(V ) = {y1, . . . , yl} with yi < yi+1 for all i. Let h(yi) = H(yi) for each i.
Extend h to R in a similar way as g.

By (1) of Lemma 2.6 and the assumption that α < δ, it follows that |f(x, y) −
g(x)−h(y)| < ε. The bounds on the norms of the functions g and h follow from (2)
of Lemma 2.6. �

3. Proof of Lemma 2.6

We call a pair of points z1, z2 ∈ V distant if |z1−z2| ≥ δ; otherwise we call them
close. Evidently |f(z1) − f(z2)| < ε holds for every close pair of points z1, z2 ∈ V .

In this proof we use the idea given below the statement of Theorem 2.2 in
Section 2. The analogue of the set Kx is the set of all points from V which belong
to distant α-vertical pairs (i.e. it is the set {u ∈ V |∃w ∈ V s.t. u, w is a distant α-
vertical pair}), while the analogue of the set Ky is the set of all points from V which
belong to distant α-horizontal pairs. Accordingly, we define G to be approximately
0 on the first set and approximately f on the second set. In the rest of the points we
only require that the difference between the values of G in the vertical projection
of each α-vertical close pair does not exceed ε. We define H as f − G.

For technical reasons we start by defining a function γ : V → R with the prop-
erties listed below. The function G shall be approximately γ.
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(i) (a) |γ(w1)−γ(w2)| ≤ ε for each α-vertical close pair and each α-horizontal
close pair w1, w2 ∈ V ,

(b) |f(w) − γ(w)| ≤ ε for each w ∈ V which belongs to a distant α-hori-
zontal pair,

(c) |γ(w)| ≤ ε for each w ∈ V which belongs to a distant α-vertical pair;
(ii) ||γ|| ≤ ||f ||.

To construct γ, we define two abstract labeled graphs (V+, E+, l+) and (V−, E−,
l−), where both l+ and l− assign non-negative real values to the edges. The vertex
set V+ of the first graph is the set of all points w ∈ V with f(w) ≥ 0 with one
vertex w+ added, i.e. V+ = {w ∈ V | f(w) ≥ 0} ∪ {w+}. The vertex set V− of
the second graph is the set of all points w ∈ V with f(w) < 0 with one vertex w−
added, i.e. V− = {w ∈ V | f(w) < 0} ∪ {w−}. We define f(w+) = ||f || + ε and
f(w−) = −||f || − ε.

The labeled edge set E+ consists of edges
• w1w2, where w1, w2 is a close α-vertical pair or a close α-horizontal pair,

with label l+(w1w2) = ε
• w+w, where w belongs to a distant α-horizontal pair, with label l+(w+w) =

f(w+) − f(w) = ||f || + ε − f(w).
The edges E− are defined analogously. The edges of the form w−w are labeled by
−f(w−) + f(w) = ||f ||+ ε + f(w), and the remaining edges are labeled by ε. Note
that

(3.1)
|f(w1) − f(w2)| ≤ l+(w1w2) for all w1w2 ∈ E+ ,
|f(w1) − f(w2)| ≤ l−(w1w2) for all w1w2 ∈ E− .

Let d+ : V+ → [0;∞] be the function assigning to each vertex connected to w+

by a path in E+ its weighed distance from w+ and assigning to each other vertex
the value ∞. For each vertex w ∈ V+ let

γ(w) = max {||f || + ε − d+(w), 0} .

The function d− : V− → [0;∞] is defined analogously, and γ on V− is defined as
γ(w) = min {−||f || − ε + d−(w), 0}.

Let us show that the function γ satisfies (ia) – (ic) and (ii).
(ia) Let w1, w2 be a close α-vertical pair or a close α-horizontal pair in V . If

both w1 and w2 are in V+ or both w1 and w2 are in V−, then it follows directly
from the definition of γ that |γ(w1) − γ(w2)| ≤ ε. So, let w1 ∈ V+ and w2 ∈ V−.
By an inductive argument we show that

(3.2) 0 ≤ γ(w) ≤ f(w) for all w ∈ V+ ,
f(w) ≤ γ(w) ≤ 0 for all w ∈ V− .

The points w1, w2 form a close pair; therefore |f(w1) − f(w2)| < ε. So |γ(w1) −
γ(w2)| = γ(w1) − γ(w2) ≤ f(w1) − f(w2) < ε.

(ib) Let w belong to a distant α-horizontal pair in V . For example, let w ∈ V+.
Since w is connected to w+ by an edge labeled by ||f || + ε − f(w), this expression
is an upper bound on d+(w). On the other hand, equation (3.1) implies that the
sum of the labels on each path connecting w+ to w is at least ||f ||+ ε− f(w), and
(ib) follows.

(ic) Let w belong to a distant α-vertical pair in V . For instance, let w ∈ V+.
If w is not connected to w+ by a path, then, by definition, γ(w) = 0. So, let
w+w1w2 . . . wk with wk = w be a path such that d+(w) is equal to the sum of its
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labels. (Note that except for w+w1 this path does not contain any other edge of the
form w+w because this would yield a cycle.) By the definition of E+, the vertex w1

belongs to some distant α-horizontal pair w0, w1 in V . By assumption the vertex
wk = w belongs to some distant α-vertical pair wk, wk+1. The path w1w2 . . . wk is
such that each of it edges corresponds to a close α-vertical or α-horizontal pair in V .
Hence the vertices w0, w1, . . . , wk+1 form an α-array which satisfies the requirements
of Definition 2.4. By assumption the set V is (α, δ, [||f ||/ε])-faithful, so k > [||f ||/ε].
Each of the edges w1w2,. . ., wk−1wk is labeled by ε, so d+(w) = l+(w+w1) + (k −
1)ε > ||f || − f(w1) + ε + ([||f ||/ε] − 1)ε ≥ ||f ||. Hence ||f || + ε − d+(w) < ε, so
|γ(w)| < ε.

Item (ii) follows directly from equation (3.2).
The functions G and H are constructed in the following way. For each point

x ∈ p(V ) fix an arbitrary point (x, yx) ∈ V and define G(x) = γ(x, yx). For each
point y ∈ q(V ) fix an arbitrary point (xy, y) ∈ V and let H(y) = f(xy, y)−γ(xy, y).

In order to prove item (1a) of Lemma 2.6, consider an arbitrary point (x, y) ∈ V .
Then

(3.3) |f(x, y) − G(x) − H(y)| = |f(x, y) − γ(x, yx) − f(xy, y) + γ(xy, y)| .

The points (x, y), (x, yx) form an α-vertical pair (in fact a vertical pair), and the
points (x, y), (xy, y) form an α-horizontal pair (in fact a horizontal pair).

If both pairs are close pairs, then item (ia) and the fact that |f(x, y)−f(xy, y)| <
ε imply that the expression in equation (3.3) is at most 3ε.

Let (x, y), (x, yx) be a distant pair. From (ic) it follows that |γ(x, y)| ≤ ε and
|γ(x, yx)| ≤ ε.

If (x, y), (xy, y) is a close pair, then |f(x, y)−f(xy, y)| < ε and, by (ia), it follows
that |γ(xy, y) − γ(x, y)| ≤ ε. Therefore |γ(xy, y)| ≤ 2ε and (3.3) is at most 4ε.

If (x, y), (xy, y) is a distant pair, then, by (ib), we have |f(xy, y) − γ(xy, y)| ≤ ε
and |f(x, y) − γ(x, y)| ≤ ε, so |f(x, y)| ≤ 2ε. Hence (3.3) is at most 4ε.

If the pair (x, y), (x, yx) is close and the pair (x, y), (xy, y) is distant, then (3.3)
can be rewritten as |(f(x, y)−γ(x, y))+(γ(x, y)−γ(x, yx))+(−f(xy, y)+γ(xy, y))|
and we obtain the bound 3ε.

In order to prove (1b), consider an α-vertical pair (x, y), (u, v). In this case

(3.4) |G(x) − G(u)| = |γ(x, yx) − γ(u, vu)| .

The points (x, yx), (u, vu) form an α-vertical pair as well. If it is a close pair, then
the expression in equation (3.4) is bounded by ε, by (ia); and if it is a distant pair,
then it is bounded by ε as well, by (ic).

Item (1c) is shown similarly, using the expression

|H(y) − H(v)| = |f(xy, y) − γ(xy, y) − f(uv, v) + γ(uv, v)| .

Item (2) follows directly from (ii).

4. The case of an arbitrary m

Let us roughly explain where the proof of the implication (A) ⇒ (B) of Theo-
rem 1.1 breaks down in the case of an arbitrary m. The analogue of the faithfulness
property in the case when a given set K contains no array of length m, m > 2, is the
following. A set X ⊆ R

2 is (m, α, β, l)-faithful if for each α-array {z0, z1, . . . , zk+1}
in X with the property that there are indices 0 ≤ i1 < j1 ≤ i2 < j2 ≤ . . . ≤ im <
jm ≤ k+1 such that |p(zi1)−p(zj1)| ≥ β, |q(zi2)−q(zj2)| ≥ β, |p(zi3)−p(zj3)| ≥ β,
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. . ., |q(zim
)− q(zjm

)| ≥ β for an even m and |p(zim
)− p(zjm

)| ≥ β for an odd m, or
a similar series of inequalities but starting with |q(zi1)− q(zj1)| ≥ β, we have k > l.

However, we cannot prove an analogue of Lemma 2.5, not even in the case when
the set K contains no array of length m = 3. For instance, there can be a sequence
of 1/n-arrays {{zn

0 , zn
1 , . . . , zn

5 }}n, where |p(zn
0 ) − p(zn

1 )| ≥ β, |q(zn
1 ) − q(zn

2 )| ≥ β,
|p(zn

4 ) − p(zn
5 )| ≥ β, and zn

0 → z0, zn
1 → z1, zn

2 → z2, zn
3 → (z1 + z2)/2, zn

4 → z1,
zn
5 → z0 as n → ∞. Hence this sequence converges to an array of length two and

not three. So this does not lead to a contradiction as in the proof of Lemma 2.5.
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Kosta for endless conversations on the topic and invaluable advice. The author
would also like to thank the anonymous referee for valuable suggestions and com-
ments.

References

1. V. I. Arnold, On functions of three variables, Dokl. Akad. Nauk 114 (1957), 679–681.
MR0111808 (22:2668)

2. , Problem 6, Math. Education 3 (1958), 273.
3. , On the representation of continuous functions of three variables by superpositions of

continuous functions of two variables, Mat. Sb. (N.S.) 48 (1959), no. 90, 3–74. MR0121453
(22:12191)
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