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FINITENESS PROPERTIES
OF LOCAL COHOMOLOGY MODULES

FOR a-MINIMAX MODULES

JAFAR AZAMI, REZA NAGHIPOUR, AND BAHRAM VAKILI

(Communicated by Bernd Ulrich)

Abstract. Let R be a commutative Noetherian ring and a an ideal of R.
In this paper we introduce the concept of a-minimax R-modules, and it is
shown that if M is an a-minimax R-module and t a non-negative integer such
that Hi

a(M) is a-minimax for all i < t, then for any a-minimax submodule N
of Ht

a(M), the R-module HomR(R/a, Ht
a(M)/N) is a-minimax. As a conse-

quence, it follows that the Goldie dimension of Ht
a(M)/N is finite, and so the

associated primes of Ht
a(M)/N are finite. This generalizes the main result of

Brodmann and Lashgari (2000).

1. Introduction

Let R be a commutative Noetherian ring, a an ideal of R, and M a finitely
generated R-module. An important problem in commutative algebra is determining
when the set of associated primes of the ith local cohomology module Hi

a(M) of
M with support in V (a) is finite (see [11, Problem 4]). A. Singh [21] and M.
Katzman [12] have given counterexamples to this conjecture. However, it is known
that this conjecture is true in many situations; see [1], [2], [9], [10], [13], [14], [15],
[16]. In particular, Brodmann and Lashgari [1, Theorem 2.2] showed that if, for
a finitely generated R-module M and an integer t, the local cohomology modules
H0

a(M), H1
a(M), . . . , Ht−1

a (M) are finitely generated, then the set AssR Ht
a(M)/N is

finite for every finitely generated submodule N of Ht
a(M). For a survey of recent

developments on finiteness properties of local cohomology modules, see Lyubeznik’s
interesting paper [15].

This paper is concerned with what might be considered a generalization of the
above-mentioned result of Brodmann and Lashgari to the class of a-minimax mod-
ules. More precisely, we shall show that:

Theorem 1.1. Let R be a Noetherian ring, a an ideal of R and M an a-minimax
R-module. Let t be a non-negative integer such that Hi

a(M) is a-minimax for all
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i < t. Then for any a-minimax submodule N of Ht
a(M), the R-module HomR(R/a,

Ht
a(M)/N) is a-minimax. In particular, the Goldie dimension of Ht

a(M)/N is
finite, and so the set AssR Ht

a(M)/N is finite.

Recall that an R-module M is said to have finite Goldie dimension (written
G dimM < ∞) if M does not contain an infinite direct sum of non-zero submodules,
or equivalently the injective hull E(M) of M decomposes as a finite direct sum of
indecomposable (injective) submodules. Also, an R-module M is said to have finite
a-relative Goldie dimension if the Goldie dimension of the a-torsion submodule
Γa(M) :=

⋃
n≥1(0 :M an) of M is finite.

We say that an R-module M is a-minimax if the a-relative Goldie dimension of
any quotient module of M is finite. One of our tools for proving Theorem 1.1 is
the following:

Proposition 1.2. Let R be a Noetherian ring and a an ideal of R. Let M be a
finitely generated R-module and N an arbitrary R-module. Let t be a non-negative
integer such that Exti

R(M, N) is a-minimax for all i ≤ t. Then for any finitely
generated R-module L with SuppL ⊆ Supp M , Exti

R(L, N) is a-minimax for all
i ≤ t.

Throughout this paper, R will always be a commutative Noetherian ring with
non-zero identity, and a will be an ideal of R. The ith local cohomology module of
an R-module M with respect to a is defined by

Hi
a(M) = lim

−→
n≥1

Exti
R(R/a

n, M).

We refer the reader to [7] or [3] for the basic properties of local cohomology.

2. a-Minimax modules and Goldie dimension

For an R-module M , the Goldie dimension of M is defined as the cardinal of
the set of indecomposable submodules of E(M) which appear in a decomposition
of E(M) into a direct sum of indecomposable submodules. We shall use G dimM
to denote the Goldie dimension of M . For a prime ideal p, let µ0(p, M) denote
the 0-th Bass number of M with respect to the prime ideal p. It is known that
µ0(p, M) > 0 if and only if p ∈ AssR M . It is clear by the definition of the Goldie
dimension that

G dimM =
∑

p∈AssR M

µ0(p, M).

Also, for any ideal a of R and any R-module M , the a-relative Goldie dimension of
M is defined as

G dima M :=
∑

p∈V (a)

µ0(p, M).

The a-relative Goldie dimension of an R-module M has been studied in [5].
In [24], H. Zöschinger introduced the interesting class of minimax modules, and

he has in [24] and [25] given many equivalent conditions for a module to be minimax.
The R-module M is said to be a minimax module if there is a finitely generated
submodule N of M , such that M/N is Artinian. It was shown by T. Zink [23]
and by E. Enochs [6] that a module over a complete local ring is minimax if and
only if it is Matlis reflexive. On the other hand, it is known that when R is a
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Noetherian ring, a module is minimax if and only if each of its quotients has finite
Goldie dimension, [23] or [25]. This motivates the definition:

Definition 2.1. Let a be an ideal of R. An R-module M is said to be minimax
with respect to a or a-minimax if the a-relative Goldie dimension of any quotient
module of M is finite; i.e., for any submodule N of M , G dima M/N < ∞.

Remark 2.2. Let a be an ideal of R and let M be an R-module.
(i) If a = 0, then M is a-minimax if and only if M is minimax.
(ii) If M is a-torsion, then M is a-minimax if and only if M is minimax by [5,

Lemma 2.6].
(iii) If M is Noetherian or Artinian, then M is a-minimax.
(iv) If b is a second ideal of R such that a ⊆ b and M is a-minimax, then M is

b-minimax. In particular, every minimax module is a-minimax.

The following proposition is needed in the proof of the main theorem of this
paper.

Proposition 2.3. Let a be an ideal of R. Let

0 → M ′ → M → M ′′ → 0

be an exact sequence of R-modules. Then M is a-minimax if and only if M ′ and
M ′′ are both a-minimax.

Proof. We may suppose for the proof that M ′ is a submodule of M and that
M ′′ = M/M ′. If M is a-minimax, then it easily follows from the definition that
M ′ and M/M ′ are a-minimax. Now, suppose that M ′ and M/M ′ are a-minimax.
Let N be an arbitrary submodule of M , and let p ∈ Ass (M/N) ∩ V (a). Then the
exact sequence

0 → M ′ + N

N
→ M

N
→ M

M ′ + N
→ 0

induces the exact sequence

0 → HomRp
(k(p),

M ′
p

M ′
p ∩ Np

) → HomRp
(k(p),

Mp

Np

) → HomRp
(k(p),

Mp

M ′
p + Np

),

where k(p) = Rp/pRp. Moreover, since AssR M/N ⊆ AssR
M ′+N

N ∪ AssR
M

M ′+N ,
and the sets AssR

M ′+N
N ∩ V (a) and AssR

M
M ′+N ∩ V (a) are finite, it follows that

G dima M/N < ∞, and so M is a-minimax. �

Corollary 2.4. Let a be an ideal of R. Then any quotient of an a-minimax module,
as well as any finite direct sum of a-minimax modules, is a-minimax.

Proof. The assertion follows from the definition and Proposition 2.3. �

Corollary 2.5. Let a be an ideal of R. Let M be a finitely generated R-module
and N an a-minimax R-module. Then Exti

R(M, N) and TorR
i (M, N) are a-minimax

modules for all i. In particular, the R-modules Exti
R(R/a, N) and TorR

i (R/a, N)
are a-minimax for all i.
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Proof. As R is Noetherian and M is finitely generated, it follows that M possesses
a free resolution

F• : · · · → Fn → Fn−1 → · · · → F1 → F0 → 0,

whose free modules have finite ranks.
Thus Exti

R(M, N) = Hi(HomR(F•, N)) is a subquotient of a direct sum of
finitely many copies of N . Therefore, it follows from Corollary 2.4 that Exti

R(M, N)
is a-minimax for all i ≥ 0. By using a similar proof as above we can deduce that
TorR

i (M, N) is a-minimax for all i ≥ 0. �

Proposition 2.6. Let a be an ideal of R. Let M be an a-minimax R-module such
that AssR M ⊆ V (a). Then Hi

a(M) is a-minimax for all i ≥ 0.

Proof. If i = 0, then H0
a(M) = Γa(M) is a submodule of M , and so by Propo-

sition 2.3, Γa(M) is a-minimax. As AssR M/Γa(M) ⊆ AssR M , it easily follows
from AssR M ⊆ V (a) that M = Γa(M). Consequently, by [3, Corollary 2.1.7(ii)],
Hi

a(M) = 0 for all i > 0, and so Hi
a(M) is a-minimax for all i ≥ 0, as required. �

We are now ready to state and prove the main result of this section, which will
be used in the main result of Section 4.

Theorem 2.7. Let a be an ideal of R. Let M be a finitely generated R-module and
N an arbitrary R-module. Let t be a non-negative integer such that Exti

R(M, N) is
a-minimax for all i ≤ t. Then for any finitely generated R-module L with Supp L ⊆
Supp M , Exti

R(L, N) is a-minimax for all i ≤ t.

Proof. Since Supp L ⊆ Supp M , according to Gruson’s Theorem [22, Theorem 4.1],
there exists a chain

0 = L0 ⊂ L1 ⊂ · · · ⊂ Lk = L,

such that the factors Lj/Lj−1 are homomorphic images of a direct sum of finitely
many copies of M . Now consider the exact sequences

0 → K → Mn → L1 → 0

0 → L1 → L2 → L2/L1 → 0
...

0 → Lk−1 → Lk → Lk/Lk−1 → 0,

for some positive integer n.
Now from the long exact sequence

· · · → Exti−1
R (Lj−1, N) → Exti

R(Lj/Lj−1, N) → Exti
R(Lj , N)

→ Exti
R(Lj−1, N) → · · ·

and an easy induction on k, it suffices to prove the case when k = 1.
Thus there is an exact sequence

(∗) 0 → K → Mn → L → 0

for some n ∈ N and some finitely generated R-module K.
Now, we use induction on t. First, HomR(L, N) is a submodule of HomR(Mn, N);

hence in view of the assumption and Corollary 2.4, Ext0R(L, N) is a-minimax. So
assume that t > 0 and that Extj

R(L′, N) is a-minimax for every finitely generated
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R-module L′ with SuppL′ ⊆ Supp M and all j ≤ t − 1. Now, the exact sequence
(∗) induces the long exact sequence

· · · → Exti−1
R (K, N) → Exti

R(L, N) → Exti
R(Mn, N) → · · · ,

so that, by the inductive hypothesis, Exti−1
R (K, N) is a-minimax for all i ≤ t.

On the other hand, according to Corollary 2.4, Exti
R(Mn, N) ∼=

n
⊕ Exti

R(M, N) is
a-minimax. Therefore, it follows from Proposition 2.3 that Exti

R(L, N) is a-minimax
for all i ≤ t, and the inductive step is complete. �

Corollary 2.8. Let a be an ideal of R, and let t be a non-negative integer. Then,
for any R-module M the following conditions are equivalent:

(i) Exti
R(R/a, M) is a-minimax for all i ≤ t.

(ii) For any ideal b of R with b ⊇ a, Exti
R(R/b, M) is a-minimax for all i ≤ t.

(iii) For any finitely generated R-module N with Supp N ⊆ V (a), Exti
R(N, M)

is a-minimax for all i ≤ t.
(iv) For any minimal prime ideal p over a, Exti

R(R/p, M) is a-minimax for all
i ≤ t.

Proof. In view of Theorem 2.7, it is enough to show that (iv) implies (i). To do
this, let p1, . . . , pn be the minimal primes of a. Then, by assumption, the
R-modules Exti

R(R/pj , M) are a-minimax for all j = 1, 2, . . . , n. Hence by
Corollary 2.4,

⊕n
j=1 Exti

R(R/pj , M) ∼= Exti
R(

⊕n
j=1 R/pj , M) is a-minimax. Since

Supp(
⊕n

j=1 R/pj) = SuppR/a, it follows from Theorem 2.7 that Exti
R(R/a, M) is

a-minimax, as required. �

3. a-Cominimax modules and local cohomology

Let R be a Noetherian ring, a an ideal of R and M an R-module. Recall that
M is said to be a-cofinite if M has support in V (a) and Exti

R(R/a, M) is a finitely
generated R-module for each i (see [8]). This motivates the following definition:

Definition 3.1. Let R be a Noetherian ring and a an ideal of R. We say that
an R-module M is a-cominimax if the support of M is contained in V (a) and
Exti

R(R/a, M) is a-minimax for all i ≥ 0.

Example 3.2. (i) Let a be an ideal of R and let M be an a-minimax R-module such
that SuppM ⊆ V (a). Then it follows from Corollary 2.5 that M is a-cominimax.
In particular, every minimax R-module with support in V (a) is a-cominimax.

(ii) Let a be an ideal of R. Then every a-cofinite R-module is a-cominimax. In
particular, any Noetherian module with support in V (a) is a-cominimax.

(iii) Let a be an ideal of R and let N be a pure submodule of an R-module M .
Then M is a-cominimax if and only if N and M/N are a-cominimax. In fact, P.M.
Cohn’s characterization of purity (see [20, Theorem 3.65]) implies that the sequence

0 → Exti
R(R/a, N) → Exti

R(R/a, M) → Exti
R(R/a, M/N) → 0

is exact for all i (see also the proof of [18, Proposition 2.7]). Hence the result follows
from Proposition 2.3.
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Proposition 3.3. Let a be an ideal of R. Let

0 → M ′ → M → M ′′ → 0

be an exact sequence of R-modules such that two of the modules are a-cominimax.
Then so is the third one.

Proof. The exact sequence

0 → M ′ → M → M ′′ → 0

induces a long exact sequence

· · · → Exti
R(R/a, M) → Exti

R(R/a, M ′′) → Exti+1
R (R/a, M ′)

→ Exti+1
R (R/a, M) → · · · .

Now the result follows easily from Proposition 2.3. �
Corollary 3.4. Let a be an ideal of R. Let f : M → N be a homomorphism
between two a-cominimax modules such that one of the three modules Kerf , Imf
and Cokerf is a-cominimax. Then all three of them are a-cominimax.

Proof. The result follows from Proposition 3.3 and the following exact sequences:

0 → Kerf → M → Imf → 0,

0 → Imf → N → Cokerf → 0. �
Proposition 3.5. Let a be an ideal of R. Let M be an R-module such that
Supp M ⊆ V (a) and 0 :M a has finite Goldie dimension. Then M has finite Goldie
dimension.

Proof. Since 0 :M a has finite Goldie dimension and SuppM ⊆ V (a), it follows
from Bourbaki’s Theorem (see [4, Exercise 1.2.27]) that AssR M is finite. On the
other hand, for any p ∈ AssR M we have

HomRp
(k(p), Mp) ∼= HomRp

(k(p), 0 :Mp
aRp),

as k(p)-vector spaces, where k(p) = Rp/pRp. Therefore µ0(p, M) is finite, and so
G dimM < ∞. �
Corollary 3.6. Let a be an ideal of R, and let M be an a-cominimax R-module.
Then M has finite Goldie dimension. In particular the set of associated primes of
M is finite.

Proof. This is immediate from Proposition 3.5. �
Proposition 3.7. Let a be an ideal of R. Let M be an R-module such that Hi

a(M)
is a-cominimax for all i. Then Exti

R(R/a, M) is a-minimax for all i.

Proof. The case i = 0 is clear, so let i > 0 and do induction on i. We first reduce
to the case Γa(M) = 0. To do this, let M̄ = M/Γa(M). Then we have the long
exact sequence

· · · → Exti
R(R/a, Γa(M)) → Exti

R(R/a, M) → Exti
R(R/a, M̄) → · · ·

and the isomorphism Hi
a(M) ∼= Hi

a(M̄) for i > 0. So in view of Proposition 2.3, we
may assume that M is a-torsion free. Let E be the injective envelope of M and
put L = E/M . Then HomR(R/a, E) = 0, and we therefore get the isomorphisms
Hi

a(L) ∼= Hi+1
a (M) and Exti

R(R/a, L) ∼= Exti+1
R (R/a, M) for all i ≥ 0. Now the

assertion follows by induction. �
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Proposition 3.8. Let a be an ideal of R. Let M be an R-module such that
Exti

R(R/a, M) is a-minimax for all i. If t is a non-negative integer such that
Hi

a(M) is a-cominimax for all i �= t, then Ht
a(M) is a-cominimax.

Proof. We use induction on t. Let M̄ = M/Γa(M). Then Hi
a(M) ∼= Hi

a(M̄) for all
i > 0. If t = 0, then Hi

a(M̄) is a-cominimax for all i. Hence by Proposition 3.7,
Exti

R(R/a, M̄) is a-minimax for all i. It follows that Γa(M) is a-cominimax. So
let t > 0 and suppose that the result has been proved for t − 1. Since Γa(M) is
a-cominimax, the exact sequence

· · · → Exti
R(R/a, Γa(M)) → Exti

R(R/a, M) → Exti
R(R/a, M̄) → · · ·

allows us to assume that M is a-torsion free. Let E be the injective envelope of M
and put L = E/M . Then HomR(R/a, E) = 0 and Γa(E) = 0, and we therefore get
the isomorphisms Hi

a(L) ∼= Hi+1
a (M) and Exti

R(R/a, L) ∼= Exti+1
R (R/a, M) for all

i ≥ 0. Now the assertion follows by induction. �

Corollary 3.9. Let a be an ideal of R and M an a-minimax R-module. If t is a
non-negative integer such that Hi

a(M) is a-cominimax for all i �= t, then Ht
a(M) is

a-cominimax.

Proof. This follows from Corollary 2.5 and Proposition 3.8. �

Corollary 3.10. Let a be a principal ideal of R and M an a-minimax R-module.
Then Hi

a(M) is a-cominimax for all i ≥ 0.

Proof. Since H0
a(M) is a submodule of M , it turns out that H0

a(M) is a-cominimax
by Proposition 2.3 and Example 3.2(i). Also Hi

a(M) = 0 for all i > 1. Therefore,
the result follows from Corollary 3.9. �

4. Finiteness of associated primes

It will be shown in this section that the subjects of the previous sections can be
used to prove a finiteness result about local cohomology modules. In fact, we will
generalize the main result of Brodmann and Lashgari to a-minimax modules. The
main result is Theorem 4.2. The following theorem will serve to shorten the proof
of the main theorem.

Theorem 4.1. Let a be an ideal of R and let M be an R-module. Let t be a non-
negative integer such that Hi

a(M) is a-cominimax for all i < t, and Extt
R(R/a, M)

is a-minimax. Then for any a-minimax submodule N of Ht
a(M) and for any finitely

generated R-module L with Supp L ⊆ V (a), the R-module HomR(L, Ht
a(M)/N) is

a-minimax.

Proof. The exact sequence

0 → N → Ht
a(M) → Ht

a(M)/N → 0

provides the following exact sequence:

HomR(L, Ht
a(M)) → HomR(L, Ht

a(M)/N) → Ext1R(L, N) → · · · .

Since by Corollary 2.5, Ext1R(L, N) is a-minimax, so in view of Proposition 2.3 it
is thus sufficient for us to show that the R-module HomR(L, Ht

a(M)) is a-minimax.
To this end, in view of Corollary 2.8, it is enough for us to show that the R-module
HomR(R/a, Ht

a(M)) is a-minimax.
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We use induction on t. When t = 0, the R-module HomR(R/a, M) is a-minimax,
by assumption. Since

HomR(R/a, H0
a(M)) ∼= HomR(R/a, Γa(M)) ∼= HomR(R/a, M),

it follows that HomR(R/a, H0
a(M)) is a-minimax.

Now suppose, inductively, that t > 0 and that the result has been proved for
t−1. Since Γa(M) is a-cominimax, it follows that Exti

R(R/a, Γa(M)) is a-minimax
for all i ≥ 0. On the other hand, the exact sequence

0 → Γa(M) → M → M/Γa(M) → 0

induces the exact sequence

Extt
R(R/a, M) → Extt

R(R/a, M/Γa(M)) → Extt+1
R (R/a, Γa(M)).

Hence, by Proposition 2.3 and the assumption, the R-module Extt
R(R/a, M/Γa(M))

is a-minimax. Also since H0
a(M/Γa(M)) = 0 and Hi

a(M/Γa(M)) ∼= Hi
a(M) for

all i > 0, it follows that Hi
a(M/Γa(M)) is a-cominimax for all i < t. There-

fore we may assume that M is a-torsion free. Let E be an injective envelope
of M and put M1 = E/M . Then also Γa(E) = 0 and HomR(R/a, E) = 0.
Consequently, Exti

R(R/a, M1) ∼= Exti+1
R (R/a, M) and Hi

a(M1) ∼= Hi+1
a (M) for

all i ≥ 0 (including the case i = 0). The induction hypothesis applied to M1

yields that HomR(R/a, Ht−1
a (M1)) is a-minimax. Hence HomR(R/a, Ht

a(M)) is
a-minimax. �

Now we are prepared to prove the main theorem of this section, which is a
generalization of the main result of Brodmann and Lashgari.

Theorem 4.2. Let a be an ideal of R and let M be an a-minimax R-module. Let
t be a non-negative integer such that Hi

a(M) is a-minimax for all i < t. Then for
any a-minimax submodule N of Ht

a(M), the R-module HomR(R/a, Ht
a(M)/N) is

a-minimax. In particular, the Goldie dimension of Ht
a(M)/N is finite, and so the

set AssR Ht
a(M)/N is finite.

Proof. Apply Theorem 4.1 and Corollary 2.5. �
Nhan, in [19, Proposition 5.5], established the following corollary in the case R

is local. The following result provides a slight generalization of [19, Proposition 5.5]
and [1, Theorem 2.2].

Corollary 4.3. Let R be a Noetherian ring, a an ideal of R and M a finitely gen-
erated R-module. Let Obj(N ) (resp. Obj(A)) denote the category of all Noetherian
(resp. Artinian) R-modules and R-homomorphisms. Let t be a non-negative in-
teger such that Hi

a(M) ∈ Obj(N ) ∪ Obj(A) for all i < t. Then the R-module
HomR(R/a, Ht

a(M)) is a-minimax, and so the set AssR Ht
a(M) is finite.

Proof. Apply Theorem 4.1 and the fact that the class of a-minimax modules con-
tains all Noetherian and Artinian modules. �
Corollary 4.4. Let (R, m) be a local (Noetherian) ring, a an ideal of R and M a
finitely generated R-module. Assume that a contains an M -filter regular sequence
of length t. Then Ht

a(M) has finite Goldie dimension.

Proof. According to Melkersson [17, Theorem 3.1], Hi
a(M) is Artinian for all i < t.

Hence, it follows from Corollary 4.3 that HomR(R/a, Ht
a(M)) is a-minimax, and so

G dimHt
a(M) is finite. �
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