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BOUNDS FOR HILBERT COEFFICIENTS

JÜRGEN HERZOG AND XINXIAN ZHENG

(Communicated by Bernd Ulrich)

Abstract. We compute the Hilbert coefficients of a graded module with pure
resolution and prove lower and upper bounds for these coefficients for arbitrary
graded modules.

Introduction

Let K be a field, S = K[x1, . . . , xn] the polynomial ring in n variables, and let
N be any graded S-module of dimension d. Then for i � 0, the numerical function
H(N, i) =

∑
j≤i dimK Nj is a polynomial function of degree d; see [1, 4.1.6]. In

other words, there exists a polynomial PN (x) ∈ Z[x] such that

H(N, i) = PN (i) for all i � 0.

The polynomial PN (x) is called the Hilbert polynomial of N . It can be written in
the form

PN (x) =
d∑

i=0

(−1)iei(N)
(

x + d − i

d − i

)

with integer coefficients ei(N), called the Hilbert coefficients of N .
In the first section we will give explicit formulas for the ei(N) in the case where

N has a pure resolution. In the second section we use these formulas and a recent
result of Eisenbud and Schreyer, who succeeded in proving a conjecture by Boij and
Söderberg [2, Conjecture 2.4] asserting that the Betti diagram of a Cohen-Macaulay
module over a polynomial ring is a positive linear combination of Betti diagrams of
modules with pure resolutions. As an application of the Eisenbud-Schreyer theorem
one obtains (as already noted by Boij and Söderberg) a proof of the multiplicity
conjecture of Huneke and Srinivasan; see [6]. The result is now the following: let
M be a graded Cohen-Macaulay S-module of codimension s generated in degree
0. Let βij be the graded Betti-numbers of M and set mi = min{j : βij �= 0} and
Mi = max{j : βij �= 0} for i = 1, . . . s. Then

β0
m1m2 · · ·ms

s!
≤ e0(N) ≤ β0

M1M2 · · ·Ms

s!
.
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As a main result of this paper we present in Theorem 2.1 similar inequalities for all
the Hilbert coefficients of M , where the upper and lower bounds are again expressed
only as functions of the lowest and highest shifts mi and Mi of the minimal graded
free resolution of M .

The Cohen-Macaulay condition is crucial for the multiplicity bounds. Already in
[6] it is noted that the lower bound does not hold without this hypothesis. On the
other hand, the upper bound may hold for arbitrary graded S-modules generated in
degree 0. Indeed, there are many special cases in which the upper bound is proved
in general. A rather complete survey of the multiplicity conjecture can be found in
[4].

The Cohen-Macaulay condition is also crucial for the bounds for the ei(N), since
in the proof we use the explicit formulas for the Hilbert coefficients of modules
with pure resolution obtained in Theorem 1.1. If one drops the Cohen–Macaulay
condition, then the Hilbert coefficients are no longer determined by the shifts in
the resolution.

1. The Hilbert coefficients of a module with pure resolution

Let K be a field and S = K[x1, . . . , xn] the polynomial ring in n variables, and
let N be a finitely generated graded S-module. We say N has a pure resolution of
type (d0, d1, . . . , ds) if its minimal graded free S-resolution is of the form

0 −→ Sβs(−ds) −→ · · · −→ Sβ1(−d1) −→ Sβ0(−d0) −→ 0.

The main result of this section is

Theorem 1.1. Let N be a finitely generated graded Cohen-Macaulay S-module of
codimension s with pure resolution of type (d0, d1, . . . , ds) with d0 = 0. Then the
Hilbert coefficients of N are

ei(N) = β0

∏s
j=1 dj

(s + i)!

∑
1≤j1≤j2···≤ji≤s

i∏
k=1

(djk
− (jk + k − 1)), i = 0, . . . , n − s.

Proof. We first recall a few facts about Hilbert series and multiplicities as described
in [1]. The Hilbert series HN (t) =

∑
i H(N, i)ti is a rational function of the form

HN (t) =
QN (t)

(1 − t)d+1
,

where d = n − s is the dimension of N . The Hilbert coefficients ei = ei(N) of N
can be computed according to the formula

ei =
Q

(i)
N (1)
i!

, i = 0, . . . , d.

On the other hand, by using the additivity of Hilbert functions, the free resolution
of N yields the presentation

HN (t) =
PN (t)

(1 − t)n+1
with PN (t) =

s∑
j=0

(−1)jβjt
dj .

Thus we see that PN (t) = QN (t)(1 − t)s. This yields

ei = (−1)s P
(s+i)
N (1)
(s + i)!

, i = 0, . . . , d.(1)
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For any two integers 0 ≤ a ≤ b we set

ga(b) =
∑

1≤i1<i2<···<ia≤b

i1i2 · · · ia.

Then we have

P
(s+i)
N (1) =

s∑
j=0

(−1)jβj

s+i−1∏
k=0

(dj − k)

=
s∑

j=0

(−1)jβj

s+i∑
k=1

(−1)s+i−kgs+i−k(s + i − 1)dk
j

=
s+i∑
k=1

(−1)s+i−kgs+i−k(s + i − 1)
s∑

j=0

(−1)jβjd
k
j .

Hence if we set ak =
∑s

j=0(−1)jβjd
k+s
j for all k ≥ 0 and observe that for all k < s,∑s

j=0(−1)jβjd
k
j = 0 (see [6], where the proof of this fact is given in the cyclic case),

we obtain together with (1) the following identities:

(−1)s(s + i)!ei =
i∑

k=0

(−1)i−kgi−k(s + i − 1)ak, i = 0, . . . , d.(2)

In order to compute the ai we consider for each i the following matrix:

Bi =

⎛
⎜⎜⎜⎜⎜⎝

β1d1 β2d2 · · · βsds

β1d
2
1 β2d

2
2 · · · βsd

2
s

...
...

...
β1d

s−1
1 β2d

s−1
2 · · · βsd

s−1
s

β1d
s+i
1 β2d

s+i
2 · · · βsd

s+i
s

⎞
⎟⎟⎟⎟⎟⎠ .

Replacing the last column of Bi by the alternating sum of its columns we obtain the
matrix B′

i for which detB′
i = (−1)s detBi and whose last column is the transpose

of (0, 0, . . . , ai). It follows that

ai = (−1)s detBi/ detC,(3)

where

C =

⎛
⎜⎜⎜⎝

β1d1 β2d2 · · · βs−1ds−1

β1d
2
1 β2d

2
2 · · · βs−1d

2
s−1

...
...

...
β1d

s−1
1 β2d

s−1
2 · · · βs−1d

s−1
s−1

⎞
⎟⎟⎟⎠ .

Note that detC = β1 · · ·βs−1d1 · · · ds−1 det V (d1, · · · , ds−1), where V (d1, · · · , ds−1)
is the Vandermonde matrix for the sequence d1, d2, . . . , ds−1. Hence we obtain

detC = β1 · · ·βs−1d1 · · · ds−1

∏
1≤i<j≤s−1

(dj − di).
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On the other hand we have

det Bi = β1 · · ·βsd1 · · · ds det

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1
d1 d2 · · · ds

...
...

...
ds−2
1 ds−2

2 · · · ds−2
s

ds+i−1
1 ds+i−1

2 · · · ds+i−1
s

⎞
⎟⎟⎟⎟⎟⎠ .

According to the subsequent Lemma 1.2 we have

det

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1
d1 d2 · · · ds

...
...

...
ds−2
1 ds−2

2 · · · ds−2
s

ds+i−1
1 ds+i−1

2 · · · ds+i−1
s

⎞
⎟⎟⎟⎟⎟⎠ = fi(d1, . . . , ds) ·

∏
1≤j<k≤s

(dk − dj),

where for each integer k ≥ 0 we set

fk(g1, . . . , gs) =
∑

gc1
1 · · · gcs

s .

Here the sum is taken over all integer vectors c = (c1, . . . , cs) with ci ≥ 0 for all i
and |c| =

∑s
i=1 ci = k.

Thus by (3) we have

ai = (−1)sβsdsfi(d1, . . . , ds)
s−1∏
j=1

(ds − dj).

Now we use the fact that βs = β0

∏s−1
j=1 dj/

∏s−1
j=1(ds−dj) (see [5] or [2]) and obtain

ai = (−1)sβ0d1 · · · dsfi(d1, . . . , ds).

This result together with (2) yields the formulas

ei = β0
d1 · · · ds

(s + i)!

i∑
j=0

(−1)i−jgi−j(s + i − 1)fj(d1, . . . , ds).(4)

Expanding the products in the sum

∑
1≤j1≤j2···≤ji≤s

i∏
k=1

(djk
− (jk + k − 1))

yields

∑
1≤j1≤j2···≤ji≤s

i∏
k=1

(djk
− (jk + k − 1)) =

i∑
j=0

(−1)i−jgi−j(s + i − 1)fj(d1, . . . , ds).

Hence the desired formulas for the ei follow from (4). �

It remains to prove
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Lemma 1.2. For all k ≥ s − 1 ≥ 0 one has

det

⎛
⎜⎜⎜⎜⎜⎝

1 . . . 1
d1 . . . ds

...
...

ds−2
1 . . . ds−2

s

dk
1 . . . dk

s

⎞
⎟⎟⎟⎟⎟⎠ = fk−s+1(d1, . . . , ds) ·

∏
1≤i<j≤s

(dj − di).

Proof. Given integers 1 ≤ r ≤ s and k ≥ s we define the matrix

A(k)
r = (a(k)

ij ) i=1,...,s−r+1
j=1,...,s−r+1

with

a
(k)
ij =

{
fi−1(d1, . . . , dr−1, dr−1+j), for i ≤ s − r, j = 1, . . . , s − r + 1
fk−r+1(d1, . . . , dr−1, dr−1+j), for i = s − r + 1, j = 1, . . . , s − r + 1.

Notice that A
(k)
1 is the matrix whose determinant we want to compute, while A

(k)
s

is the 1 × 1 matrix with entry fk−s+1(d1, . . . , ds−1, ds).
Next observe that for each integer � > 0 and all j > 1 one has

f�(d1, . . . , dr−1, dr−1+j) − f�(d1, · · · , dr−1, dr)

= (dr−1+j − dr) · f�−1(d1, . . . , dr, dr−1+j).

Hence if we subtract the first column from the other columns of A
(k)
r and then

expand this new matrix with respect to the first row (which is (1, 0, · · · , 0)), we see
that

detA(k)
r = (dr+1 − dr)(dr+2 − dr) · · · (ds − dr) detA

(k)
r+1.

From this we obtain that

detA
(k)
1 = det A(k)

s ·
∏

1≤i<j≤s

(dj − di) = fk−s+1(d1, . . . , ds−1, ds) ·
∏

1≤i<j≤s

(dj − di),

as desired. �

For i = 0, 1, 2 the formulas for the Hilbert coefficients read as follows:

e0(N) = β0

∏s
i=1 di

s! ;

e1(N) = β0

∏s
i=1 di

(s+1)!

∑s
i=1(di − i);

e2(N) = β0

∏s
i=1 di

(s+2)!

∑
1≤i≤j≤s(di − i)(dj − j − 1).

In the special case that N has a d-linear resolution, our formulas yield

ei(N) = β0

(
d + s − 1

s + i

)(
s + i − 1

i

)
.

Remark 1.3. The assumption made in Theorem 1.1 that d0 should be zero is not
essential. It is only made to simplify the formulas for the Hilbert coefficients. While
for the multiplicity we have e0(N) = e0(N(a)) for any shift a, the other Hilbert
coefficients transform as follows: if N has a pure resolution of type (d0, d1, . . . , ds),
then N(d0) has a pure resolution of type (0, d1 − d0, . . . , ds − d0) whose Hilbert
coefficients we know by Theorem 1.1.



492 JÜRGEN HERZOG AND XINXIAN ZHENG

On the other hand we have PN (x) = PN(d0)(x − d0), from which one deduces
that

d∑
i=0

(−1)iei(N)
(

x + d − i

d − i

)
=

d∑
i=0

(−1)iei(N(d0))
(

x − d0 + d − i

d − i

)
.(5)

Hence if we want to express the ei(N) by the ei(N(d0)), we have to express the
right-hand side polynomial as a linear combination of the binomials

(
x+d−i

d−i

)
. To

do this, first notice that(
x − d0 + k

k

)
=

{ ∑k
j=0(−1)k−j

(
d0

k−j

)(
x+j

j

)
, if d0 > 0,∑k

j=0

(−d0+k−j−1
k−j

)(
x+j

j

)
, if d0 < 0.

Substituting these expressions for
(
x−d0+k

k

)
in the right-hand side of (5) and com-

paring coefficients, we obtain

ed−j(N) =

{ ∑d
i=j

(
d0

i−j

)
ed−i(N(d0)), if d0 > 0,∑d

i=j(−1)i−j
(−d0−i−j−1

i−j

)
ed−i(N(d0)), if d0 < 0.

2. Upper and lower bounds

Given a sequence d1, d2, . . . , ds of integers. We set

hi(d1, . . . , ds) =
∑

1≤j1≤j2···≤ji≤s

i∏
k=1

(djk
− (jk + k − 1))

for i = 0, . . . , n− s, where h0(d1, . . . , ds) = 1. This definition will simplify notation
in the following discussions.

Let N be any finitely generated graded Cohen-Macaulay S-module of projective
dimension s and graded Betti numbers βij . For each i = 1, . . . s, the minimal and
maximal shifts of N in homological degree i are defined by mi = min{j : βij �= 0}
and Mi = max{j : βij �= 0}.

When N is generated in degree 0 and has a pure resolution of type (d1, . . . , ds),
we have mi = Mi = di for all i, and Theorem 1.1 tells us that

ei(N) = β0
d1d2 · · · ds

(s + i)!
hi(d1, . . . , ds) for i = 0, 1, . . . , n − s.

In analogy to the multiplicity bounds proved by Eisenbud and Schreyer [3], we now
state

Theorem 2.1. Let N be a finitely generated graded Cohen-Macaulay S-module of
codimension s generated in degree 0. Then

β0
m1m2 · · ·ms

(s + i)!
hi(m1, . . . , ms) ≤ ei(N) ≤ β0

M1M2 · · ·Ms

(s + i)!
hi(M1, . . . , Ms)

for i = 0, 1, . . . , n − s.

Proof. For the proof of the theorem we make essential use of a theorem of Eisen-
bud and Schreyer [3, Theorem 0.2], whose statement was conjectured by Boij and
Söderberg in [2, Conjecture 2.4]. The theorem says that each normalized Betti dia-
gram of a graded module is a rational convex linear combination of pure diagrams.
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For any strictly increasing sequence of integers d = (d0, d1, . . . , ds), the matrix
π(d) defined by

π(d)i,j =

⎧⎨
⎩

(−1)i+1
∏

k �=i
k �=0

dk−d0
dk−di

, if j = di,

0, if j �= di,

is called a pure diagram.
Let D = (βij/β0) be the normalized Betti diagram of N , and let m = (m1, . . . ,

ms) and M = (M1, . . . , Ms) be the sequences of minimal and maximal shifts of N .
We denote by Πm,M the set of all pure diagrams π(d) with mi ≤ di ≤ Mi. Then

D =
∑

π(d)∈Πm,M

cπ(d)π(d) with cπ(d) ∈ Q and
∑

π(d)∈Πm,M

cπ(d) = 1.

It follows that

ei(N) = β0 ·
∑

π(d)∈Πm,M

cπ(d)ei(π(d)).(6)

Let
∏i

k=1(djk
−(jk +k−1)) be one of the summands in hi(d). We claim that either∏i

k=1(djk
− (jk + k − 1)) = 0, or else djk

− (jk + k − 1) > 0 for k = 1, . . . , i. The
claim will then imply that

ei(π(d)) ≤ ei(π(d′))(7)

whenever we have di ≤ d′i for i = 1, . . . , s.

In order to prove the claim, suppose that
∏i

k=1(djk
− (jk + k − 1)) �= 0. Since

di ≥ i for all i, we must then have that dj1 − j1 > 0. Assume that not all factors
djk

−(jk+k−1) are positive and let � be the smallest integer with dj�
−(j�+�−1) < 0.

Then � > 1 and dj�−1 − (j�−1 + � − 2) > 0. It follows that

dj�−1 − (j�−1 + � − 2) − (dj�
− (j� + � − 1)) ≥ 2

or equivalently
j� − j�−1 ≥ dj�

− dj�−1 + 1.

This is a contradiction, since d1 < d2 < · · · < ds.
Now (6) and (7) imply that

ei(π(m)) = min{ei(π(d)) π(d) ∈ Πm,M}

≤ ei(N)
β0

≤ max{ei(π(d)) π(d) ∈ Πm,M} = ei(π(M)),

as desired. �
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[2] M. Boij and J. Söderberg, Graded Betti numbers of Cohen-Macaulay modules and the multi-
plicity conjecture, arXiv:math/0612047.

[3] D. Eisenbud and F. Schreyer, Betti numbers of graded modules and cohomology of vector
bundles, arXiv:0712.1843. New Version: Preprint, 2008.

[4] C.A. Francisco and H. Srinivasan. Multiplicity conjectures. In Syzygies and Hilbert Functions,
ed. I. Peeva, Lect. Notes in Pure and Appl. Math., Chapman and Hall, New York, 2007.
MR2309929

http://www.ams.org/mathscinet-getitem?mr=1251956
http://www.ams.org/mathscinet-getitem?mr=1251956
http://www.ams.org/mathscinet-getitem?mr=2309929
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