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EXTRAPOLATION SPACES FOR C-SEMIGROUPS

MIAO LI AND QUAN ZHENG

(Communicated by Joseph A. Ball)

Abstract. Let {T (t)}t≥0 be a C-semigroup on X. We construct an extrapo-
lation space Xs, such that X can be continuously densely imbedded in Xs, and
{Ts(t)}t≥0, the extension of {T (t)}t≥0 to Xs, is strongly uniformly continuous
and contractive. Using this enlarged space, we give an answer to the question
asked in [M. Li, F. L. Huang, Characterizations of contraction C-semigroups,
Proc. Amer. Math Soc. 126 (1998), 1063–1069] in the negative.

1. Introduction

Let X be a Banach space, B(X) the space of all bounded linear operators on
X, and C an injective operator in B(X). A family of linear bounded operators
{T (t)}t≥0 ⊂ B(X) is called a C-semigroup if T (·) is strongly continuous and T (0) =
C, T (t + s)C = T (t)T (s) for t, s ≥ 0. Its generator, A, is defined by

Ax = C−1
(

lim
t→0

T (t)x − Cx

t

)
with maximal domain.

A C-semigroup {T (t)}t≥0 is bounded if there is a constant M > 0 such that
‖T (t)‖ ≤ M for all t ≥ 0 and is a contraction C-semigroup if ‖T (t)x‖ ≤ ‖Cx‖ for
all x ∈ X and t ≥ 0.

It is natural that all bounded C0-semigroups are strongly uniformly continuous,
while for C-semigroups this is far from obvious. However, we show in this paper
that for every bounded C-semigroup {T (t)}t≥0 on X, an extrapolation space Xs

can be constructed such that the extension of {T (t)}t≥0 to Xs, {Ts(t)}t≥0, is a
strongly uniformly continuous contraction Cs-semigroup on Xs, where Cs is the
extension of C to Xs. Our extrapolation space is smaller than the one given by
deLaubenfels ([1, 2]).

Moreover, we take up the open problem asked in [4]. The question was: Suppose
that A is the generator of a contraction C-semigroup on X. Does there exist a
restriction of A, A′, which is the generator of a contraction C0-semigroup on R(C)?
If this holds, then (λ − A′)−1R(C) = R(C) for all λ > 0. Hence it is crucial that
R(C) be an invariant subspace for (λ−A)−1 since A′ ⊆ A. So one way to answer the
question in the negative is to give a contraction C-semigroup with generator A, in
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which (λ−A)−1 does not leave R(C) invariant. It is easier to construct a bounded
C-semigroup than a contraction one. Now the extrapolation space is helpful. By
making use of it, we can obtain contraction C-semigroups from bounded ones.

Throughout this paper, for an operator A on X, we write D(A) for its domain,
R(A) for its range, and the closure of R(A) is denoted by R(A). The C-resolvent
set of A, ρC(A) := {λ ∈ C : λ − A is injective and R(C) ⊂ R(λ − A)}, and the
C-resolvent of A is RC(λ, A) := (λ−A)−1C for λ ∈ ρC(A). For Y a subspace of X
and A a linear operator on X, we denote by A|Y the part of A in Y , i.e., A|Y ⊂ A
with maximal domain. For the properties of C-semigroups and of contractions, we
refer to [2, 4].

2. Main results

First we give a positive answer to the question mentioned above under some
additional assumptions. The following result also improves Theorem 3.4 in [4].

Theorem 2.1. Let A = C−1AC, CD(A) = R(C) and D(A) ⊆ R(r − A) for some
r > 0. Then the following are equivalent:

(a) A generates a contraction C-semigroup on X.
(b) (0,∞) ⊆ ρC(A) and λ‖RC(λ, A)x‖ ≤ ‖Cx‖ for λ > 0 and x ∈ X.
(c) A|R(C) generates a contraction C0-semigroup on R(C).

Proof. (a) ⇒ (b) follows from Theorem 3.3 in [4].
(b) ⇒ (c). Define B ⊆ A with D(B) = CD(A). Then B is a densely defined

closable operator on R(C). By (b), ‖(λ − A)x‖ ≥ λ‖x‖ for λ > 0 and x ∈ D(B);
i.e., B is dissipative. This implies that B is also dissipative and R(λ − B) is a
closed subspace of R(C). To show that R(λ − B) = R(C), let x ∈ D(A). Since
D(A) ⊆ R(r − A), x = (r − A)y for some y ∈ D(A) and ACy = CAy due to the
assumption A = C−1AC,

Cx = (r − A)Cy = (r − B)Cy ∈ R(r − B).

This implies that R(C) = CD(A) ⊆ R(r − B), as desired. It now follows from the
Lumer-Phillips theorem that B generates a contraction C0-semigroup on R(C). It
remains to show that B = A|R(C). It is clear that B ⊆ A|R(C), and so R(C) ⊆
R(r − A|R(C)). Also, the injectivity of r − A implies that of r − A|R(C). Thus,
B = A|R(C) follows from the identity that (r − B)−1 = (r − A|R(C))

−1.
(c) ⇒ (a). Let T (t) = S(t)C, where S(t) is the contraction C0-semigroup

generated by A|R(C) on R(C). It is easy to show that T (t) is a contraction C-
semigroup; we only need to show that A is the generator. If x ∈ D(A), then
since ACx = CAx ∈ R(C) by the assumption that A = C−1AC, we know that
Cx ∈ D(A|R(C)) and

T (t)x − Cx

t
=

S(t)Cx − Cx

t
→ A|R(C)Cx = CA|R(C)x = CAx

as t → 0, so an extension of A is the generator. Suppose that λ > 0; if (λ−A)x = 0,
then, since Cx ∈ D(A|R(C)),

(λ − A|R(C))Cx = (λ − A)Cx = C(λ − A)x = 0.
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Thus x = 0; i.e., λ − A is injective. Also, for x ∈ X, let y = R(λ, A|R(C))Cx.
Then Cx = (λ − A|R(C))y = (λ − A)y. This implies that R(C) ⊆ R(λ − A) and
so λ ∈ ρC(A). Then it follows from Corollary 3.12 in [2] that C−1AC = A is the
generator. �

Now we turn to the construction of the extrapolation space. For simplicity, we
only consider bounded C-semigroups.

Let {T (t)}t≥0 be a bounded C-semigroup on X with generator A, so there exists
some constant M > 0 such that ‖T (t)‖ ≤ M for all t ≥ 0. For each x ∈ X, define
‖x‖s = supt≥0 ‖T (t)x‖. Then

(2.1) ‖Cx‖ ≤ ‖x‖s ≤ M‖x‖.

Since C is injective, ‖ · ‖s is a norm on X. Denote by Xs the completion of X with
respect to the norm ‖ · ‖s. Extend T (t) to Xs by defining Ts(t)y = limn→∞ T (t)xn

for all t ≥ 0, with the limit taken in X, whenever {xn} is a sequence in X converging
to y, in Xs. We also denote by Cs the extension of C to Xs. It is not hard to see
that Ts(t) is bounded on Xs for each t ≥ 0, and Cs is injective.

Theorem 2.2. Let Xs, Ts(t), Cs be as above. Then
(a) For all t ≥ 0, R(Ts(t)) is contained in R(T (t)), the closure of R(T (t)) in X.

In particular, R(Ts(t)) ⊆ X and R(Cs) ⊆ R(C), the closure of R(C) in X.
(b) {Ts(t)}t≥0 is a strongly uniformly continuous contraction Cs-semigroup.
(c) Suppose that As is the generator of {Ts(t)}t≥0. Then

(c1) A ⊆ As;
(c2) As = C−1

s ACs;
(c3) A = As|X .

Proof. (a) follows immediately from the definition of Ts(t).
(b). First, we show that Ts(t1 + t2)Cs = Ts(t1)Ts(t2) for all t1, t2 ≥ 0. Let

y ∈ Xs. Then there exists {xn} ⊂ X such that xn converges to y in Xs, which
means that T (t)xn converges in X for all t ≥ 0. Also, by the definition of Ts(t) and
(a), we have

CsTs(t1 + t2)y = C lim
n→∞

T (t1 + t2)xn = lim
n→∞

CT (t1 + t2)xn

= lim
n→∞

T (t1)T (t2)xn = T (t1) lim
n→∞

T (t2)xn

= T (t1)Ts(t2)y = Ts(t1)Ts(t2)y

with the four limits taken in X.
Next, for every x ∈ X,

‖Ts(t)x‖s = ‖T (t)x‖s = sup
r≥0

‖T (r)T (t)x‖ = sup
r≥0

‖T (r + t)Cx‖ ≤ ‖Cx‖s = ‖Csx‖s;

therefore, {Ts(t)}t≥0 is a family of contractions since X is dense in Xs.
Finally, we show that {Ts(t)}t≥0 is strongly uniformly continuous. Now let

y ∈ Xs. Then there exists a sequence {xn} ⊂ X satisfying ‖xn − y‖s → 0 as
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n → ∞. Thus

‖Ts(t + h)y − Ts(t)y‖s

≤ ‖Ts(t + h)y − Ts(t + h)xn‖s + ‖Ts(t + h)xn − Ts(t)xn‖s

+‖Ts(t)xn − Ts(t)y‖s

≤ 2‖Cs(xn − y)‖s + sup
r≥0

‖T (t + r + h)Cxn − T (t + r)Cxn‖

≤ 2‖Cs(xn − y)‖s + M‖T (h)xn − Cxn‖.

We already use the contractivity of Ts(t) in the above. Note that the right side is
independent of t, so {Ts(t)}t≥0 is strongly uniformly continuous.

(c1). Suppose that x ∈ D(A). Then by (2.1), we know
∥∥∥Ts(t)x − Csx

t
− CsAx

∥∥∥
s

=
∥∥∥T (t)x − Cx

t
− CAx

∥∥∥
s

≤ M
∥∥∥T (t)x − Cx

t
− CAx

∥∥∥ → 0 as t → 0;

it follows that x ∈ D(As) with Asx = Ax.
(c2). If y ∈ D(As), then ‖Ts(t)y−Csy

t −CsAsy‖s → 0 as t → 0. Since R(Ts(t)) ⊆
X, by the definition of ‖ · ‖s, we have

∥∥∥T (h)(Ts(t)y − Csy)
t

− T (h)CsAsy
∥∥∥ → 0 as t → 0

uniformly in h. Set h = 0. Noting that Cs commutes with As and Ts(t), we have
∥∥∥Ts(t)Csy − CsCsy

t
− CsAsCsy

∥∥∥ → 0 as t → 0.

Since Csy ∈ D(As) ∩ X and AsCsy = CsAsy ∈ X, this means
∥∥∥T (t)Csy − CCsy

t
− CAsCsy

∥∥∥ → 0 as t → 0,

which implies that Csy ∈ D(A) and ACsy = AsCsy = CsAsy, i.e., Asy =
C−1

s ACsy. So we get As ⊆ C−1
s ACs.

On the other hand, C−1
s ACs ⊆ C−1

s AsCs = As since As is the generator.
(c3). If x ∈ D(As) ∩ X and Asx ∈ X, then Cx = Csx ∈ D(A) by (b) and

ACx = AsCx = CsAsx = CAsx, which implies that Asx = C−1ACx. So the claim
follows from the fact that A = C−1AC. �

Remark 2.3. (a) It should be mentioned that the extrapolation space, W , of [1, 2],
is defined only when R(C) is dense; in [3] it is defined when R(C) is dense or ρ(A)
contains a half-line. When R(C) is dense, generating a contraction C-semigroup is
equivalent to generating a strongly continuous semigroup of contractions by Theo-
rem 4.6 in [4]; thus As of Theorem 2.2 is such a generator when R(C) is dense.

(b) Recall the definition of W in [1] or [2]: for x ∈ X, ‖x‖W = supt≥0 ‖T (t)x‖ =
‖x‖s. Since W is a Banach space containing X, and Xs is the completion of X
under the norm ‖ · ‖s, it is clear that Xs is contained in W when R(C) is dense and
W is defined.

(c) Ts(t) from Theorem 2.2 is a nonincreasing C-semigroup:

‖Ts(r)x‖s = sup
t≥0

‖T (t)T (r)x‖ = sup
t≥r

‖T (t)Cx‖,
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which is nonincreasing as a function of r. This implies that erA, at least formally
a strongly continuous semigroup generated by A, is a contraction on

⋃
t≥0 R(T (t)),

defined by erAT (t)x ≡ T (t + r)x.
(d) As a consequence of (c), when

⋃
t≥0 R(T (t)) is dense, As of Theorem 2.2 gen-

erates a strongly continuous semigroup of contractions. This is a weaker hypothesis
than R(C) being dense.

Now we use the extrapolation space to give a negative answer to the question
mentioned in the Introduction.

Example 2.4. Let X = c0(N) and C0 be the right shift on X, that is,

C0 : (x1, x2, x3 · · · ) → (0, x1, x2, x3, · · · ).
Next let

A =
(

i C−1
0

0 −i

)
with D(A) = X × R(C0)

and

C =
(

C0 0
0 C0

)
.

It is not hard to show that A generates a bounded C-semigroup on X × X given
by

T (t) =
(

eitC0
1
2i (e

it − e−it)
0 e−itC0

)
,

but {T (t)}t≥0 is not contractive. For every λ �= 0, if x2 �∈ R(C0), then

(λ − A)−1C

(
x1

x2

)
=

(
(λ − i)−1C0x1 + (λ + i)−1(λ − i)−1x2

(λ + i)−1C0x2

)
�∈ R(C).

So (λ − A)−1 does not leave R(C) invariant. Since ‖C0x‖ = ‖x‖, for all x ∈ X, so
Xs = X, and ‖ ·‖s is a topologically equivalent renorming of X. Thus Ts(t) = T (t),
(λ−A)−1 = (λ−As)−1. Therefore (R(Cs))s is not an invariant space of (λ−As)−1.
Thus no restriction of As generates a contraction C0-semigroup on (R(Cs))s.

Remark 2.5. (a) The result is true for any injective C0 ∈ B(X), X an arbitrary
complex Banach space, satisfying R(C0) �= X and 0 �∈ σa(C0); i.e., C0xn → 0
implies xn → 0.

(b) Although As of Example 2.4 does not generate a strongly continuous semi-
group on R(C), there does exist a subspace, Y , between R(C) and Xs, on which
As generates a strongly continuous semigroup, namely, Y = X × R(C0).

We end this paper with some open questions:
1. Is every contraction C-semigroup a nonincreasing C-semigroup (meaning

t → ‖T (t)x‖ is nonincreasing, for all x ∈ X)? This is true for C being isometric;
that is, ‖Cx‖ = ‖x‖ for all x ∈ X, since in this case,

‖T (t+s)x‖ = ‖CT (t+s)x‖ = ‖T (t+s)Cx‖ = ‖T (t)T (s)x‖ ≤ ‖CT (s)x‖ = ‖T (s)x‖.
We conjecture that it is not true in general cases.

2. If A generates a contraction C-semigroup on X, does there exist a closed
subspace Y such that R(C) ⊆ Y ⊆ X and A|Y generates a strongly continuous
semigroup of contractions? Example 2.4 of this paper shows that the answer is no
if Y is replaced by R(C), but as remarked above in the section on Example 2.4, the
answer is yes (in Example 2.4) with a different choice of Y .
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3. Does every generator of a bounded C-semigroup have an extension, possibly
on a larger space, that generates a strongly continuous semigroup of contractions?
If 2 is true, then it and Theorem 2.2 would imply the answer is yes; when R(C) is
dense or ρ(A) contains a half-line, it is known ([1, 2, 3]) that the answer is yes.

4. Is there a minimal Banach space in which X is embedded on which an
extension of A generates a bounded, strongly continuous semigroup? Even when
R(C) is dense, so that an extension as in 3 exists, it is not known if a minimal one
exists. In contrast, the interpolation space is maximal (see Chapter V in [2]).

5. Does Xs = W always (when R(C) is dense, so that both are defined)? Or is
there an example where W is strictly larger than Xs?
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