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FAILURE OF RATIONAL APPROXIMATION
ON SOME CANTOR TYPE SETS

ALBERT MAS-BLESA

(Communicated by Mario Bonk)

Abstract. Let A(K) be the algebra of continuous functions on a compact
set K ⊂ C which are analytic on the interior of K, and let R(K) be the
closure (with respect to uniform convergence on K) of the functions that are
analytic on a neighborhood of K. A counterexample of a question posed
by A. O’Farrell about the equality of the algebras R(K) and A(K) when
K = (K1 × [0, 1]) ∪ ([0, 1] × K2) ⊆ C, with K1 and K2 compact subsets of
[0, 1], is given. Also, the equality is proved with the assumption that K1 has
no interior.

1. Introduction

Consider a compact set K of the complex plane. Let A(K) be the algebra of
continuous functions on K which are analytic on the interior of K, and let R(K)
be the closure (with respect to uniform convergence on K) of the functions that
are analytic on a neighborhood of K. Obviously, R(K) ⊆ A(K).

In the 1960s, Vitushkin gave a description in analytic terms of the compact sets
K for which R(K) = A(K) (see [Vi]), but there is still no characterization of these
compact sets in a geometric way. Nevertheless, there have been important advances
in this area recently, as can be seen in the articles of Xavier Tolsa [To1] and [To2]
and the one of Guy David [Da]. In this direction, Anthony G. O’Farrell raised the
following question (private communication):

Question 1.1. Let K1 and K2 be two compact subsets of [0, 1] and define K =
(K1 × [0, 1]) ∪ ([0, 1] × K2) ⊆ C. Is it true that R(K) = A(K)?

It is known that the identity holds if one of the compact sets K1 or K2 has no
interior. For completeness, we include a proof of this fact at the end of the paper.
However, it was not known whether the identity holds or not in general. In this
paper we provide an example of a compact set K which gives a negative answer to
the question. The set K is constructed as follows:
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Let C(1/3) be the ternary Cantor set on the interval [0, 1], i.e.,

C(1/3) =
∞⋂

n=0

2n⋃

j=1

Ij
n,

where I1
0 = [0, 1] and each Ij

n is an interval of length 3−n obtained by dividing the
intervals of length 3−n+1 in three equal parts and excluding the central part. Call
zj
n the center of Ij

n. Consider a sequence δn > 0 such that δn < 3−n−1 and define
Jj

n = (zj
n − δn/2, zj

n + δn/2), where zj
n is the center of Ij

n. Let

Em = [0, 1] \
m⋃

n=0

2n⋃

j=1

Jj
n.

Finally, define Fm = (Em × [0, 1]) ∪ ([0, 1] × Em) ⊆ C and put K =
⋂∞

m=0 Fm.
With this construction of K we will prove the main result of the paper:

Theorem 1.2. For a suitable choice of the sequence δn, R(K) �= A(K).

In the whole paper M1 stands for the 1-dimensional Hausdorff content and
α denotes the continuous analytic capacity (see [Vi]). Remember that, given a
compact set F ⊆ C,

α(F ) = sup |f ′(∞)|,
where the supremum is taken over all continuous functions f : C −→ C which are
analytic on C\F and uniformly bounded by 1 on C. If f satisfies all these properties,
we say that f is admissible for α and F . By definition, f ′(∞) = limz→∞ z(f(z) −
f(∞)).

2. Proof of the main result

In the following two lemmas, we shall obtain some estimates of the Hausdorff
content of [0, 1]2 \ K that will be useful in showing that the algebras R(K) and
A(K) are not equal for a suitable choice of the sequence δn.

Lemma 2.1. Fix n0 ∈ N and δ > 0 such that δ < 3−n0+2. Define J̃j
n = (zj

n −
δ/2, zj

n + δ/2), Rj
n = J̃j

n × [0, δ] and

R =
n0⋃

n=0

2n⋃

j=1

Rj
n.

Then M1(R) < 8δη, where η = 1 − 1
log2 3 > 0.

Proof. Since R is the union of the squares Rj
n for 0 ≤ n ≤ n0 and 1 ≤ j ≤ 2n and

each square has side length δ, we have

M1(R) ≤
n0∑

n=0

2n∑

j=1

δ = δ(2n0+1 − 1) ≤ δ2n0+1.

The inequality δ < 3−n0+2 is equivalent to n0 < 2 − log3 δ. Then, using the fact
that log3 δ = log2 δ/ log2 3, we can deduce that

δ2n0+1 < δ23−log3 δ = δ23− log2 δ
log2 3 = 8δ1− 1

log2 3 = 8δη.

�
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Figure 1. This is a picture of the compact set F2. The rectangles
inside [0, 1]2 are the holes of F2, and the bold lines on the sides of
[0, 1]2 correspond to the subset of the real line

⋃2
n=0

⋃2n

j=1 Jj
n.

As we will see in the proof of the following lemma, the important fact of the
preceding one is that M1(R) is bounded by something that tends to zero as δ
decreases rather than the exact value of the bound.

Lemma 2.2. For every ε > 0 there exists a sequence δn such that

M1([0, 1]2 \ K) < ε.

Proof. Put G = [0, 1]2 \ K. Consider the crosses P k
n for k = 1, . . . , 4n defined in

the following way (see Figure 1 to understand the construction):

P 1
0 = (J1

0 × [0, 1]) ∪ ([0, 1] × J1
0 ),

P 1
1 = (J1

1 ×[0, 1/3]) ∪ ([0, 1/3]×J1
1 ), P 2

1 = (J2
1 ×[0, 1/3]) ∪ ([2/3, 1]×J1

1 ),

P 3
1 = (J1

1 ×[2/3, 1]) ∪ ([0, 1/3]×J2
1 ), P 4

1 = (J2
1 ×[2/3, 1]) ∪ ([2/3, 1]×J2

1 ),

P 1
2 = (J1

2 ×[0, 1/9]) ∪ ([0, 1/9]×J1
2 ), P 2

2 = (J2
2 ×[0, 1/9]) ∪ ([2/9, 1/3]×J1

2 ),

P 3
2 = (J3

2 ×[0, 1/9]) ∪ ([2/3, 7/9]×J1
2 ), P 4

2 = (J4
2 ×[0, 1/9]) ∪ ([8/9, 1]×J1

2 ),

P 5
2 = (J1

2 ×[2/9, 1/3]) ∪ ([0, 1/9]×J2
2 ), . . . .
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It is clear that G ⊆
⋃∞

n=0

⋃4n

k=1 P k
n . By construction, we also have M1(P 1

n ∩ G) =
M1(P k

n ∩ G) for all k = 1, . . . , 4n. Therefore,

M1(G) ≤
∞∑

n=0

4nM1(P 1
n ∩ G).

Denote by Xn the horizontal strip of the cross P 1
n and Yn the vertical one. Because

of the symmetry of the compact set K and the subadditivity of M1,

M1(P 1
n ∩ G) ≤ 2M1(Xn ∩ G).

Observe that G is a countable union of rectangles and on Xn all those rectangles
have sides of length less than or equal to δn. So, the set 3n(Xn ∩G) := {3nx : x ∈
Xn ∩G} can be included by a translation in a set R :=

⋃n0
n=0

⋃2n

j=1 Rj
n like the one

of the preceding lemma if we take δ = 3nδn and n0 ∈ N such that 3−n0+1 ≤ δ <
3−n0+2. Applying the lemma, we obtain

M1(Xn ∩ G) < 3−n8(3nδn)η = 3n(η−1)8δη
n

with η = 1 − 1
log2 3 , and then

M1(G) ≤ 8
∞∑

n=0

4nM1(Xn ∩ G) < 8
∞∑

n=0

4n3n(η−1)δη
n.

Given ε > 0, it is easy to find a decreasing sequence δn that makes the last sum
less than ε, because η > 0. �

Proof of Theorem 1.2. As Vitushkin proved [Vi] (see also [Ga], Theorem VIII.8.2),
R(K) = A(K) if and only if α(D \ K) = α(D \ intK) for every bounded open set
D.

If C = C(1/3)×C(1/3), we know that α(C) > 0 because dim(C) > 1, where dim(·)
denotes the Hausdorff dimension. Observe that C ⊆ ∂K and it does not depend
on the chosen sequence δn. This implies that α(∂K) ≥ α(C), so it is guaranteed a
minimum of continuous analytic capacity on the boundary of K for any sequence
δn.

Observe also that α([0, 1]2 \ intK) = α((0, 1)2 \ intK) because ∂([0, 1]2) is negli-
gible (see [Ga], chapter VIII). Therefore,

α(C) ≤ α(∂K) ≤ α([0, 1]2 \ intK) = α((0, 1)2 \ intK).

On the other hand, by the preceding lemma we can find a sequence δn such that
M1([0, 1]2 \ K) ≤ α(C)/2. If we take α ≤ M1 into account, we can deduce that

α((0, 1)2 \ K) ≤ M1([0, 1]2 \ K) ≤ α(C)/2 < α(C) ≤ α((0, 1)2 \ intK).

These inequalities show that the necessary condition for R(K) = A(K) in Vi-
tushkin’s theorem does not hold for D = (0, 1)2. So, for that sequence δn we have
R(K) �= A(K). �

3. A(K) = R(K) when K1 has no interior

Now, as we said at the beginning of the paper, we proceed to give an affirmative
answer to question 1.1 with the assumption that K1 has no interior. We need an
auxiliary lemma that we guess is already known, so we only sketch the proof.
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Lemma 3.1. Fix δ > 0 and n ∈ N. Let R be a rectangle with sides of length δ
and nδ and put R =

⋃n
j=1 Qj, where Qj are squares of side length δ with pairwise

disjoint interiors. Let Ej ⊆ Qj and suppose there exists C0 > 0 such that α(Ej) ≥
C0δ for all j. Then, there exists a constant C1 > 0 depending only on C0 such that

n∑

j=1

α(Ej) ≤ C1α(
n⋃

j=1

Ej).

Hint of the proof. Given admissible functions fj for α and Ej , one can find a func-
tion f admissible for α and

⋃n
j=1 Ej such that

∑
j |f ′

j(∞)| = C1|f ′(∞)| by using
Vitushkin’s localization scheme with a modified triple zero lemma (see [Ve] or [Vi]),
where one uses the fact that the sets Ej are aligned. Then, one can prove the
lemma by taking supremums. �

From now on, we shall denote by C an absolute constant that may change its
value at different occurrences.

Theorem 3.2. Let K1, K2 ⊆ [0, 1] be two compact sets and define K = (K1 ×
[0, 1]) ∪ ([0, 1] × K2). Suppose that K1 has no interior. Then, R(K) = A(K).

Proof. By Vitushkin’s theorem, it is known that R(K) = A(K) if and only if there
exists an absolute constant C > 0 such that α(Q \ intK) ≤ Cα(Q \K) for all open
squares Q.

Fix a square Q of side length l > 0. We can suppose that Q \ K is not empty,
so there exists a square F ⊆ Q \ K. Let πx and πy be the projections onto the
horizontal and vertical coordinate axes respectively. Then, πy(F ) ⊆ πy(Q) \ K2

and we can find an interval Fy ⊆ πy(F ) of length l/n for n big enough.
On the other hand, if we split πx(Q) into intervals Ij , for j = 1, . . . , n, with

pairwise disjoint interiors and length l/n, we can also find intervals F j
x ⊆ (πx(Q) \

K1) ∩ Ij for j = 1, . . . , n, because K1 has no interior. Therefore,
⋃n

j=1(F
j
x × Fy) ⊆

Q \ K and α(F j
x × Fy) ≥ C0 l/n.

Now we are ready to use the preceding lemma with the squares Qj = Fy × Ij ,
the subsets Ej = F j

x × Fy and δ = l/n, and we obtain

l ≤ C

n∑

j=1

α(F j
x × Fy) ≤ Cα(

n⋃

j=1

(F j
x × Fy)) ≤ Cα(Q \ K).

We can finally deduce that

α(Q \ intK) ≤ α(Q) = C l ≤ Cα(Q \ K)

for every open square Q, so R(K) = A(K). �

We are grateful to Anthony O’Farrell for the communication of another proof of
Theorem 3.2 which uses annihilating measures instead of Vitushkin’s theorem.
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