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CLASS GROUPS OF GLOBAL FUNCTION FIELDS WITH
CERTAIN SPLITTING BEHAVIORS OF THE INFINITE PRIME

YOONJIN LEE

(Communicated by Wen-Ching Winnie Li)

Abstract. For certain two cases of splitting behaviors of the prime at infinity
with unit rank r, given positive integers m, n, we construct infinitely many
global function fields K such that the ideal class group of K of degree m over
F(T ) has n-rank at least m − r − 1 and the prime at infinity splits in K as
given, where F denotes a finite field and T a transcendental element over F.
In detail, for positive integers m, n and r with 0 ≤ r ≤ m − 1 and a given
signature (ei, fi), 1 ≤ i ≤ r + 1, such that

∑r+1
i=1 eifi = m, in the following

two cases where ei is arbitrary and fi = 1 for each i, or ei = 1 and fi’s are
the same for each i, we construct infinitely many global function fields K of
degree m over F(T ) such that the ideal class group of K contains a subgroup
isomorphic to (Z/nZ)m−r−1 and the prime at infinity ℘∞ splits into r + 1

primes P1, P2, · · · , Pr+1 in K with e(Pi/℘∞) = ei and f(Pi/℘∞) = fi for
1 ≤ i ≤ r + 1 (so, K is of unit rank r).

1. Introduction

Since Gauss, the problem of determining the structure of the class group of
a number field or function field has been one of the central problems in number
theory. In fact, given an integer n, infinitely many number fields and function fields
have class number divisible by n (see for example Nagell [8] for imaginary quadratic
number fields, Yamamoto [14] for real quadratic number fields, and Friesen [2] for
real quadratic function fields). It is known that given integers m and n, infinitely
many number fields and function fields of fixed degree m have class number divisible
by n (see for example Azuhata and Ichimura [1] and Nakano [9] for number fields,
and the author and Pacelli [5, 6, 7, 11, 12] for function fields).

For a better understanding of the structure of the class group, we need to study
the n-rank of the class group, not only the divisibility of the class number by n;
n-rank denotes the largest integer r for which the class group contains a subgroup
isomorphic to (Z/nZ)r. Azuhata and Ichimura [1] proved in 1984 that for any
integers m and n, infinitely many number fields K of degree m over Q have class
groups containing subgroups isomorphic to (Z/nZ)r2 , where r2 > 0 is half the
number of complex embeddings of K into C (i.e., the n-rank of the class group of
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K ≥ r2; we simply call r2 the guaranteed class group n-rank). Nakano [9] improved
Azuhata and Ichimura’s result a year later, increasing the guaranteed n-rank from
r2 to r2 + 1. Although the increase in rank is quite small, the techniques required
for the proof are much more delicate than in [1].

Recently, more general function field analogues of these results developed in
number fields have been proved by Pacelli and the author in several papers such
as [5, 6, 7, 11, 12]. In detail, [11] works on the cases where the prime at infinity
splits completely (with the guaranteed class group n-rank 1) or is totally ramified
(with the guaranteed class group n-rank m− 1), [6] works on the case in which the
prime at infinity is inert (also with the guaranteed class group n-rank m − 1), and
this result is improved in [7] by increasing the guaranteed class group n-rank from
m − 1 to m. The results in [6, 7, 11] are the unit rank 0 (minimum possible unit
rank) or the unit rank m − 1 (maximum possible unit rank). The arbitrary unit
rank case is proved in [12] for the guaranteed class group rank m − r − 1, and this
is improved in [5] by increasing the guaranteed class group n-rank from m − r − 1
to m − r. However, these two results in [5, 12] assume specific splitting behaviors
of the prime at infinity. Therefore, other cases of splitting behaviors of the prime
at infinity are still missing.

In this paper, we work on certain two cases of splitting behaviors of the prime
at infinity of the unit rank r with the guaranteed class group n-rank m − r − 1.
In more detail, for given splitting behaviors of the prime at infinity with the unit
rank r in certain two cases, we construct infinitely many global function fields K
such that the prime at infinity splits in K as given and the ideal class group of
K contains a subgroup isomorphic to (Z/nZ)m−r−1. We use the Newton polygon
method and Kummer’s criterion to control the splitting behavior of the prime at
infinity as used in [5].

Let q be a power of an odd prime p, and let F be the field with q elements. Let
k be the rational function field, and fix a transcendental element T of k so that
k = F(T ). If K is a finite algebraic extension field of k, then we denote by OK the
integral closure of F[T ] in K. Let ℘∞ be the prime at infinity (or the infinite place)
of K defined by the negative degree valuation, ord∞(g) = − deg(g) for g ∈ K×.
For a prime P lying above ℘∞, we denote the ramification index of P by e(P/℘∞)
and the relative degree of P by f(P/℘∞), and ClK denotes the ideal class group of
OK . If K/k is an extension of degree n, then for some positive integer t, ℘∞ splits
in K as

℘∞OK = P
e1
1 P

e2
2 · · ·Pet

t ,

where Pi is a place in K of relative degree fi and ramification index ei with∑t
i=1 eifi = n. Sorting the pairs (ei, fi), 1 ≤ i ≤ t, in lexicographical order, the

2t-tuple (e1, f1, e2, f2, · · · , et, ft) is called the signature of K/k.
The main results are the following two theorems:

Theorem 1.1. Let m, n be any positive integers, not both even, let r be any
integer, 0 ≤ r ≤ m − 1, and let (ei, fi), 1 ≤ i ≤ r + 1, be a given signature, where∑r+1

i=1 eifi = m, ei is arbitrary and fi = 1 for each i. Let q be a power of an odd
prime relatively prime to m and n with q > r. Let F be the finite field of q elements.

For the given m, n as above and signature (ei, fi), 1 ≤ i ≤ r + 1, there exist
infinitely many global function fields K of degree m over k = F(T ) such that
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1) the prime at infinity ℘∞ splits into r + 1 primes P1, P2, · · · , Pr+1 in K with
e(Pi/℘∞) = ei and f(Pi/℘∞) = 1 for 1 ≤ i ≤ r + 1 (thus, K is of unit rank r)
and

2) ClK contains an abelian subgroup isomorphic to (Z/nZ)m−r−1.

Theorem 1.2. Let m, n be any positive integers, not both even, let r be any
integer, 0 ≤ r ≤ m − 1, and let (ei, fi), 1 ≤ i ≤ r + 1, be a given signature
where

∑r+1
i=1 eifi = m, ei = 1 and the fi’s are the same for each i, fi = f (so,

m = f(r + 1)). Let q be a power of an odd prime relatively prime to m and n such
that q > f, (n, q−1) = 1, for any prime divisor P of f, P | (q−1) and (r+1) | q−1

P ,
and if 4 | f, then q ≡ 1 (mod 8) and (r + 1) | q−1

4 . Let F be the finite field of q
elements.

For given m, n as above and signature (ei, fi), 1 ≤ i ≤ r +1, there exist infinitely
many global function fields K of degree m over k = F(T ) such that

1) the prime at infinity ℘∞ splits into r + 1 primes P1, P2, · · · , Pr+1 in K with
e(Pi/℘∞) = 1 and f(Pi/℘∞) = f for 1 ≤ i ≤ r +1 (so, K is of unit rank r) and

2) ClK contains an abelian subgroup isomorphic to (Z/nZ)m−r−1.

Notice that for given m and n, there are infinitely many q satisfying the con-
ditions of Theorem 1.2. For instance, for given m and n, let q be one of the
infinitely many primes such that q ≡ 1 (mod mn(n − 1)) (Dirichlet’s Theorem)
and q > f; then q satisfies all the conditions of Theorem 1.2. In detail, if q ≡ 1
(mod mn(n − 1)), then (q, m) = 1, (q, n) = 1 and (q, n − 1) = 1. As m = f(r + 1) |
(q − 1), for any prime divisor P of f, P | (q− 1) and (r + 1) | q−1

P , and (r + 1) | q−1
4

if 4 | f. If 4 | f, then 4 | m, so q ≡ 1 (mod 8) since 2 | n(n − 1) and q ≡ 1
(mod mn(n − 1)).

For the proof of Theorem 1.1 and Theorem 1.2, we construct a polynomial

f(X) =
m−1∏
i=0

(X − Bi) + Dn,

where B0, · · · , Bm−1 and D are polynomials in F[T ] with certain conditions given
in Section 2. The same type of polynomial f(X) was also used in [5, 6, 11, 12].
If θ is a root of f(X), then we will show that K = k(θ) satisfies the conditions of
Theorem 1.1 and Theorem 1.2.

Finally, we note that the existence of infinitely many such fields K is a conse-
quence of the existence of one such field because of the finiteness of the class number
(for details, refer to [11]).

2. Preliminaries

Let L be the set of all prime divisors of n, and define n0 =
∏

l∈L l. Let m0

be the least common multiple of the orders of all the roots of unity contained in
any function field of degree m. Let E and W denote, respectively, the group of
units and the group of roots of unity in the field K. For an element r in F[T ], let
|r| = qdeg(r). Given polynomials B0, · · · , Bm−1, D ∈ F[T ], define

f(X) =
m−1∏
i=0

(X − Bi) + Dn,

and let θ be a root of f(X). Set K = k(θ). The next two lemmas and proposition
show that with an appropriate choice of B0, · · · , Bm−1 and D, the field K satisfies
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the conditions of Theorem 1.1 and Theorem 1.2. The proof of the following lemma
is in [11, Lemma 7].

Lemma 2.1. Suppose there exist monic irreducible polynomials p1, · · · , pm−1 with
|pi| ≡ 1 (mod m0n0) and polynomials B1, · · · , Bm−1, and D in F[T ] such that

(2.1) f(0) ≡ 0 (mod p1 · · · pm−1),
(2.2) (f ′(0), p1 · · · pm−1) = 1, and
(2.3)

(
Bi

pi

)
l
�= 1,

(
Bi

pj

)
l
= 1 for i �= j, 1 ≤ i, j ≤ m − 1, for each l ∈ L.

For each l ∈ L, the subgroup of K×/WK×l generated by the classes of θ−B1, θ−
B2, · · · , θ − Bm−1 is an elementary abelian group of rank m − 1.

The following standard lemma is used for the proof of Proposition 2.3.

Lemma 2.2. Let G be a finite abelian group of exponent n such that dimZ/lZ Gn/l ≥
r for all l dividing n. Then G contains a subgroup isomorphic to Z/nZ⊕· · ·⊕Z/nZ
of rank r.

Proposition 2.3. Suppose that the polynomials B0, · · · , Bm−1 and D further sat-
isfy the following two conditions:

(2.4) θ − B0, θ − B1, · · · , θ − Bm−1 are pairwise relatively prime.
(2.5) The unit rank of K is r (equivalently, the prime at infinity splits into r +1

primes in K).
Then ClK contains an abelian subgroup isomorphic to (Z/nZ)m−r−1.

Proof. The proof is very similar to [11, Proposition 1]. �

To prove Theorem 1.1 and Theorem 1.2, we will show that it is possible to choose
irreducible polynomials p1, · · · , pm−1, polynomials B0, · · · , Bm−1, and D ∈ F[T ] so
that conditions (2.1) - (2.5) are satisfied and f(X) is irreducible.

3. Choosing polynomials

In this section, we explain how to choose polynomials for each case of Theo-
rem 1.1 and Theorem 1.2.

Choosing polynomials: Theorem 1.1. We choose distinct irreducible polyno-
mials pi, s in F[T ], 1 ≤ i ≤ m − 1, such that

(1) |pi| ≡ 1 (mod m0n0), for 1 ≤ i ≤ m − 1, and |s| ≡ 1 (mod m).

Note that there are infinitely many such primes pi and s. Because m and n are
relatively prime to the characteristic of F, the primes whose norms are congruent
to 1 modulo an integer m are exactly those primes which split completely in k(ζm),
where ζm is a primitive m-th root of unity.

Since |pi| ≡ 1 (mod m0n0), we have l | (|pi|−1) for all l ∈ L. Let gi, 1 ≤ i ≤ m−1,
be a primitive root mod pi that satisfies the congruence

(2) g2
i + (m − 2)gi + 1 �≡ 0 (mod pi).

This is possible since |pi| − 1 > 3. Since m | (|s| − 1), we also have that

(3) Xm − 1 ≡
m−1∏
i=0

(X − ai) (mod s),

where the ai’s are distinct mod s for 1 ≤ i ≤ m − 1.
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We choose an irreducible polynomial D in F[T ] so that

(4) D ≡
{

1 (mod s),
(−1)m+1 (mod pi) for 1 ≤ i ≤ m − 1.

We have q > r, so let τ1, τ2, · · · , τr+1 be distinct elements in F, and let

(5) cj =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

τ1 if 0 ≤ j ≤ e1 − 1,
...

τi if
∑i−1

k=1 ek ≤ j ≤
∑i

k=1 ek − 1,
...

τr+1 if
∑r

k=1 ek ≤ j ≤
∑r+1

k=1 ek − 1 = m − 1.

Next, let βi be positive integers such that deg(Dn)
m < β1 < β2 < · · · < βr+1, and

choose Bi ∈ Fq[T ] for 0 ≤ i ≤ m − 1 such that

(6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) B0 ≡
{

g−1
i (mod pi) for 1 ≤ i ≤ m − 1

a0 (mod s),
(ii) for 1 ≤ i ≤ m − 1,

Bi ≡

⎧⎪⎨
⎪⎩

1 (mod pj) if i �= j

gi (mod pi)
ai (mod s),

(iii) deg(Bj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

β1 if 0 ≤ j ≤ e1 − 1
...
βi+1 if

∑i
k=1 ek ≤ j ≤

∑i+1
k=1 ek − 1

...
βr+1 if

∑r
k=1 ek ≤ i ≤

∑r+1
k=1 ek − 1 = m − 1,

(iv) the leading coefficient of Bi is ci for each i, 0 ≤ i ≤ m − 1,

(v) Dn + (−1)mB0B1 · · ·Bm−1 �≡ 0 (mod s2),
(vi) (Bi − Bj , D) = 1 for 0 ≤ i, j ≤ m − 1, i �= j.

Infinitely many Bi’s satisfying the conditions (i) through (iv) in Eq. (6) exist by
the strong version of Dirichlet’s Theorem for function fields [13, p. 40], which asserts
that in any arithmetic progression, there exist irreducible polynomials of each large
degree. For (v) in Eq. (6), it is easy to see that Dn + (−1)mB0B1 · · ·Bm−1 ≡ 0
(mod s); so if s � (Dn +(−1)mB0B1 · · ·Bm−1)/s, then we have (v), but if not, for a
fixed D there are only finitely many Bi’s such that s |(Dn+(−1)mB0B1 · · ·Bm−1)/s,
so we need only discard those finitely many Bi’s. For a fixed D, there are also only
finitely many Bi’s which do not satisfy (vi) in Eq. (6); thus those finitely many Bi’s
need to be discarded.

Choosing polynomials: Theorem 1.2. We choose polynomials pi, s in F[T ] as
in Eq. (1), a primitive root gi mod pi as in Eq. (2) and hence get ai as in Eq. (3),
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1 ≤ i ≤ m − 1. We also choose monic polynomials Bi for 1 ≤ i ≤ m − 1 such that

(7) Bi ≡

⎧⎪⎨
⎪⎩

1 (mod pj) if i �= j

gi (mod pi)
ai (mod s).

We choose an irreducible monic polynomial D′ so that

D′ ≡
{

1 (mod s),
(−1)m+1 (mod pi) for 1 ≤ i ≤ m − 1,

(8)

(Bi − Bj , D
′) = 1 for 1 ≤ i, j ≤ m − 1, i �= j.(9)

Infinitely many D′ satisfying the conditions in (8) exist by the strong version
of Dirichlet’s Theorem for function fields [13, p. 40], which asserts that in any
arithmetic progression, there exist polynomials of each large degree. We need only
discard finitely many not satisfying (9).

Then we choose B0 in F[T ] such that
(10)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) B0 ≡
{

g−1
i (mod pi) for 1 ≤ i ≤ m − 1

C0 (mod s)
(ii) deg(B0) > deg(Bi) − 1 for 1 ≤ i ≤ m − 1
(iii) deg(B0) ≡ −1 (mod n)
(iv) m

n (deg(B0) + 1)
> max{deg(D′), deg(s2p1 · · · pm−1

∏
i �=j,0≤i,j≤m−1 (Bi − Bj))}

(v) (B0 − Bj , D
′) = 1 for 1 ≤ j ≤ m − 1

(vi) (D′)n + (−1)mB0B1 · · ·Bm−1 �≡ 0 (mod s2).

Again, infinitely many B0 satisfying conditions (i) through (iv) in Eq. (10) exist
by the strong version of Dirichlet’s Theorem mentioned above, and we need only
discard finitely many not satisfying (v) and (vi) by the exact same reason as in
Eq. (6).

We choose γ in F such that xf − γ is irreducible in F[x]; such a γ can always be
found, which will be shown later in Lemma 5.4 and Corollary 5.5. Furthermore,
since (n, q − 1) = 1, there exists α in F such that αn = (−γ)r+1.

We define

(11) D = D′ + αT zs2p1 · · · pm−1

∏
i �=j,0≤i,j≤m−1

(Bi − Bj),

where z = m
n (deg(B0) + 1) − deg(s2p1 · · · pm−1

∏
i �=j,0≤i,j≤m−1(Bi − Bj)). We

note that from (iv) of Eq. (10), we have that z is a positive integer and deg(D) =
m
n (deg(B0)+1). Notice that since (Bi−Bj , D

′) = 1 for all i �= j with 0 ≤ i, j ≤ m−1
by (v) of Eq. (10), it follows that (Bi−Bj , D) = 1 for all i �= j with 0 ≤ i, j ≤ m−1,
and D satisfies the same congruences in Eq. (8) as does D′. It is easy to verify
that D also satisfies the conditions (v), (vi) of Eq. (10). We notice that D has the
leading coefficient α.
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4. Verification of divisibility conditions

Lemma 4.1. For each case of Theorem 1.1 and Theorem 1.2 with polynomials
B0, · · · , Bm−1 and D as chosen in Section 3, conditions (2.1) - (2.3) in Lemma 2.1
are satisfied.

Proof. We use the condition that m and n are not both even for Theorem 1.1 and
Theorem 1.2, and we also use conditions (i), (ii) of Eq. (6), which are common to
Theorem 1.1 and Theorem 1.2. The proof is the same as in [11, Lemma 3]. �
Lemma 4.2. For each case of Theorem 1.1 and Theorem 1.2, with polynomials
B0, · · · , Bm−1 and D as chosen in Section 3, θ − B0, θ − B1, · · · , θ − Bm−1 are
pairwise relatively prime; that is, condition (2.4) in Proposition 2.3 is satisfied.

Proof. The proof is the same as in [11, Lemma 4] by using condition (v) of Eq. (6),
which is common to Theorem 1.1 and Theorem 1.2. �
Lemma 4.3. For each case of Theorem 1.1 and Theorem 1.2, with polynomials
B0, · · · , Bm−1 and D as chosen in Section 3, f(X) is irreducible.

Proof. The proof is the same as in [6, Lemma 4.3] by using conditions (i), (ii), (v)
of Eq. (6), which are common to Theorem 1.1 and Theorem 1.2. �

5. The infinite prime

Now, in each case of Theorem 1.1 and Theorem 1.2, it remains only to verify the
splitting behaviors of the prime at infinity ℘∞ as the given signature.

Proposition 5.1. Under the assumptions of Theorem 1.1, for a given signature
(ei, fi), 1 ≤ i ≤ r + 1, where

∑r+1
i=1 eifi = m, ei is arbitrary and fi = 1 for each

i, the prime at infinity ℘∞ splits into r + 1 primes P1, P2, · · · , Pr+1 in K with
e(Pi/℘∞) = ei and f(Pi/℘∞) = 1 for 1 ≤ i ≤ r + 1. That is, condition 1) of
Theorem 1.1 and condition (2.5) of Proposition 2.3 are satisfied.

Proof. Let
(12)

f(X) =
m−1∏
i=0

(X−Bi)+Dn = Xm−σ1X
m−1+· · ·+(−1)m−1σm−1X+(−1)mσm+Dn,

where

σj = σj(B0, B1, · · · , Bm−1) =
∑

0≤i1<i2<···<ij≤m−1

Bi1Bi2 · · ·Bij

is the jth elementary symmetric polynomial in the indeterminates B0, B1, · · ·, Bm−1

for 1 ≤ j ≤ m. Let k∞ = F(( 1
T )) be the completion field of k at ℘∞.

Using the Newton Polygon method, we show that there are at least r + 1 primes
lying above ℘∞ in K.

The points to consider in the construction of the Newton polygon of f(X) are
P0 = (0,− deg((−1)mσm+Dn)), Pi = (i,− deg(σm−i)) for 1 ≤ i ≤ m−1, and Pm =
(m, 0). From the degree conditions of Bi given in (iii) of Eq. (6), it follows that for
every i with 1 ≤ i ≤ e1, the line segment P0Pi has the slope deg(σm)−deg(σm−i)

i =
iβ1
i = β1. The line segment P0Pm has the slope

e1β1 + e2β2 + · · · + er+1βr+1

m
>

(e1 + e2 + · · · + er+1)β1

m
= β1,
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and this implies that the line segment P0Pi for 1 ≤ i ≤ e1 lies strictly below
the secant line P0Pm, and so P0Pe1 with slope β1 forms one edge of the Newton
polygon. Furthermore, for every i with e1 ≤ i ≤ e1 + e2, the line segment Pe1Pi

has the slope deg(σm)−deg(σm−i)
i = iβ2

i = β2. Similarly, we can see that the Newton
polygon for f(X) with respect to ℘∞ consists of strictly increasing r + 1 distinct
line segments, where the slope of each line segment is βi for 1 ≤ i ≤ r + 1 with
β1 < β2 < · · · < βr+1, and the x-increment of each slope is ei, 1 ≤ i ≤ r+1. It thus
follows that at least r + 1 roots of f(X) in k̄∞ have distinct ord∞, which implies
that those r + 1 distinct roots are in k∞. Hence, there exist at least r + 1 infinite
primes P1, P2, · · · , Pr+1 lying above ℘∞.

According to the Newton Polygon obtained as above, by Kummer’s Criterion
[10, Proposition 8.2] or [3, Theorem 23], we know that f̄(X) mod ( 1

T ) can be
factored in the completion field k(θ)∞ as follows:

(13) f̄(X) ≡ f̄1(X)f̄2(X) · · · f̄r+1(X) mod (1/T ).

Since the x-increment of each slope of the Newton polygon is ei, f̄i(X) is of degree
ei for each i = 1, 2, · · · , r + 1, and

∑r+1
i=1 ei = m.

Since deg(Dn)
m < β1 < β2 < · · · < βr+1, we have deg(Dn) < deg(σm). Hence,

substituting XT β1 for X in f(X) = 0 and dividing both sides by Tmβ1 , we can see
that

f̄(X) ≡
m−1∏
i=0

(X − Bi) mod
(

1
T

)
.

For each i, all the roots of f̄i(X) in Eq. (13) have the same valuations as the slope
βi of each line segment of the Newton polygon. Furthermore, ord∞(Bj) = −βi for∑i−1

k=1 ek ≤ j ≤
∑i

k=1 ek − 1. Therefore, we have

f̄i(X) ≡
∏

∑i−1
k=1 ek≤j≤

∑i
k=1 ek−1

(X − Bj) mod
(

1
T

)

for i = 1, 2, · · · , r + 1.
Let Pi be the prime corresponding to each f̄i(X). We claim that the ramification

index of Pi is ei and the relative degree of Pi is 1 for each i = 1, 2, · · · , r + 1. For
each fi with i = 1, 2, · · · , r + 1, substituting XT βi for X in f̄i(X) = 0, we have
that

f̄i(XT βi) ≡
∏

∑i−1
k=1 ek≤j≤

∑i
k=1 ek−1

(XT βi − Bj) mod
(

1
T

)

= T eiβi

∏
∑i−1

k=1 ek≤j≤
∑

i
k=1 ek−1

(X − Bj

T βi
) = 0.

(14)

Dividing both sides of Eq. (14) by T eiβi , since
Bj

T βi
≡ cj mod ( 1

T ) for j with∑i−1
k=1 ek ≤ j ≤

∑i
k=1 ek − 1, we have that

f̄i(X) ≡
∏

∑i−1
k=1 ek≤j≤

∑i
k=1 ek−1

(X − cj) mod
(

1
T

)

= (X − τi)
ei .

(15)
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According to Kummer’s Criterion, it thus follows that ℘∞ splits into r+1 primes,
P1, P2, · · · , Pr+1 in K with e(Pi/℘∞) = ei and f(Pi/℘∞) = 1 for 1 ≤ i ≤ r + 1
as asserted. �

Lemma 5.4 shows that we can choose γ in F such that xf − γ is irreducible in
F[x]. For details, we need the following lemmas. Lemma 5.2 is in [4, Ch VIII,
Theorem 9.1], and Lemma 5.3 can be verified easily.

Lemma 5.2. Let k be a field, l an integer ≥ 2, and a ∈ k, a �= 0. Assume that for
any prime p with p | l, we have a �∈ kp, and if 4 | l, then a �∈ −4k4. Then xl − a is
irreducible in k[x].

Lemma 5.3. For a given positive integer d, a ∈ F∗ is a dth power of some element
in F if and only if a

q−1
g = 1 in F, where g = (q − 1, d).

Lemma 5.4. Let r be any positive integer and q be a power of odd prime > f such
that for any prime divisor P of f, we have P | (q − 1) and (r + 1) | q−1

P , and if
4 | f, then we have q ≡ 1 (mod 8) and (r + 1) | q−1

4 . Let γ be such that γ
q−1

P �= 1
for any prime P | f and γ

q−1
4 �= 1 if 4 | f.

Then xf − ζiγ is irreducible in F[x] for each 0 ≤ i ≤ r, where ζ denotes a
primitive (r + 1)st root of unity in F (since (r + 1) | (q − 1), we have (q, r + 1) = 1,
so char F � (r + 1); therefore ζ ∈ F).

Proof. To show the irreducibility of xf − ζiγ for each 0 ≤ i ≤ r, by Lemma 5.2 it is
enough to show that

(i) ζiγ �∈ FP for every prime P | f,
(ii) ζiγ �∈ −4F4 if 4 | f.

Using Lemma 5.3, (i) is equivalent to (ζiγ)
q−1

P �= 1, and this follows from the
following: ζ

q−1
P = 1 since (r + 1) | q−1

P , and γ
q−1

P �= 1 for any prime P | f by our
assumption.

To show (ii), we assume that 4 | f, so q ≡ 1 (mod 8), which implies that −4 is
a fourth power in F. This is because −1 is a fourth power in F and 2 is a square
in F. It thus suffices to show that ζiγ is not a fourth power in F. We see that ζ
is a fourth power in F by Lemma 5.3 since (r + 1) | q−1

4 . Furthermore, γ is not a
fourth power in F because γ

q−1
4 �= 1. Condition (ii) is thus satisfied as well. �

One explicit way to find such a γ is as follows:

Corollary 5.5. Let γ be a primitive (q − 1)st root of unity with the other assump-
tions the same as in Lemma 5.4. Then xf − ζiγ is irreducible in F[x] for each
0 ≤ i ≤ r.

Proposition 5.6. Under the assumptions of Theorem 1.2, for a given signature
(ei, fi), 1 ≤ i ≤ r + 1, with

∑r+1
i=1 eifi = m, ei = 1, and the fi’s the same for each

i, fi = f, the prime at infinity ℘∞ splits into r + 1 primes P1, P2, · · · , Pr+1 in K
with e(Pi/℘∞) = 1 and f(Pi/℘∞) = f for 1 ≤ i ≤ r + 1. That is, condition 1) of
Theorem 1.2 and condition (2.5) of Proposition 2.3 are satisfied.

Proof. Let f(X) be written as in Eq. (12), d = deg(D) and β = deg(B0)+1. Recall
that d = mβ

n , so β = dn
m . We then note that deg (σi) < iβ for every i = 1, 2, · · · , m
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since β > deg(Bi) for every 0 ≤ i ≤ r − 1 from (ii) of Eq. (10). Substituting XT β

for X in f(X) = 0 and then dividing both sides of Eq. (12) by Tmβ, we have that

f̄(X) = Xm −
( σ1

T β

)
Xm−1 +

( σ2

T 2β

)
Xm−2 + · · · + ((−1)mσm + Dn)

Tmβ
= 0.

Since deg (σi) < iβ for i = 1, 2, · · · , m, it follows that σi

T iβ ≡ 0 mod ( 1
T ) for

i = 1, 2, · · · , m. Thus f̄(X) ≡ Xm +αn (mod 1
T ), where α is the leading coefficient

of D. As αn = (−γ)r+1 and m = (r + 1)f,

f̄(X) ≡ X(r+1)f + (−γ)r+1

≡ (Xf − γ)(Xf − ζγ)(Xf − ζ2γ) · · · (Xf − ζrγ),

where ζ denotes a primitive (r + 1)st root of unity.
Lemma 5.4 shows that xf − ζiγ is irreducible over F for 1 ≤ i ≤ r +1. According

to Kummer’s Criterion, it follows that ℘∞ splits into r+1 primes, P1, P2, · · · , Pr+1

in K with e(Pi/℘∞) = 1 and f(Pi/℘∞) = f for 1 ≤ i ≤ r + 1 as asserted. �
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