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FUNCTION SPACES OF CW HOMOTOPY TYPE
ARE HILBERT MANIFOLDS
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(Communicated by Alexander N. Dranishnikov)

ABSTRACT. Let X be a countable CW complex and Y an ANR (for metric
spaces) and let Y X denote the space of continuous maps from X to Y with the
compact-open topology. We show that, under mild restrictions, the following
are equivalent: (1) YX is an ¢2-manifold, (2) YX is an ANR, (3) YX has the
homotopy type of a CW complex. We also give a few interesting examples and
applications.

0. INTRODUCTION

Sakai [14], paragraph following ‘MAIN THEOREM’] showed that if X is a nondis-
crete compactum and Y is a separable completely metrizable ANR with no isolated
points, then the space YX of continuous maps X — Y with the compact open
topology is an ¢£2-manifold.

There are obstructions to generalizing that to noncompact domain spaces. An
evident one is that if YX is an ¢?-manifold, it has to be an ANR. This in turn implies
that YX has the homotopy type of a CW complex; see Milnor [12, Theorem 2]. In
general, these implications are not equivalences. As an example of the latter, the
cone of any metric non-ANR compactum is contractible but is not an ANR.

When X is not a compactum, YX can easily lack the ‘nice’ local properties of
ANRs. For example, taking Y to be the unit circle S', and X the countable planar
CW complex U,z {(z,y) € R?; (z — 2n)? + y* = 1}, we note that Y is not
locally path connected. In particular, it is not an ANR and in fact does not have
the homotopy type of a CW complex, although it is a metrizable topological group.

If X is a countable CW complex and Y is an ANR, then it turns out that Y X
is an ANR if and only if it has the homotopy type of a CW complex. Assuming
Sakai’s conditions on X (discrete) and Y (separable and complete with no isolated
points), the two are equivalent to Y X being an ¢?-manifold.
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1. STATEMENTS OF THE MAIN RESULTS

Recall that a metrizable space Z is an absolute neighborhood retract (ANR) for
metric spaces, which hereafter we refer to simply as an ANR, if for every closed em-
bedding Z <— W, where W is metric, the image of Z is a retract of a neighborhood
in W.

Also, we say that Z has the homotopy type of W if Z and W are homotopy
equivalent, that is, if there exist continuous functions f: Z — W and g: W — Z
such that the composites go f and f o g are homotopic to their respective identities.

Finally, Z is semilocally contractible if each point has a neighborhood that is
contractible within Z.

Theorem 1.1. Let X be a countable CW complex and let Y be an ANR. The
following are equivalent.

(i) The space YX is an ANR.
(ii) The space Y~ has the homotopy type of a CW complex.
(iii) The space YX is semilocally contractible.

The first author has investigated conditions under which Y% has CW homotopy
type; see [15], [16], and [I7]. Here we can say that there exist nontrivial (families
of) examples of infinite complexes X and interesting ANR spaces Y for which the
function space Y has CW homotopy type (and is hence an ANR). This makes the
above theorem nonfrivolous.

On the other hand, there seems to be no hope in trying to completely characterize
the question of CW homotopy type of the function space Y X in terms of properties
of X and Y, as some special cases reduce to very difficult open problems in topology;
the interested reader is referred to [17].

In his paper [2]], the second author considers spaces of functions defined on a
noncompact space equipped with the uniform topology. There he gives a condition
under which such a function space is a topological manifold locally modeled on a
(nonseparable) Hilbert space. In the present paper we prove a result in this direction
for the compact-open topology. Namely, we show that if Y is a separable complete
metric space, except for trivial cases, the equivalent conditions of Theorem [I1] are
equivalent to that YX is such a manifold, where the model is the separable Hilbert
space.

Theorem 1.2. Let X be a countable CW complex and let Y be a separable com-
pletely metrizable space. Assume that dim X > 1 and that Y has no isolated points.
Then YX is an (?-manifold if and only if one (and hence all) of the conditions
(i)-(iii) #n Theorem [l hold.

In general, for a metrizable space E, by an E-manifold we mean a metrizable
space M such that each point of M has an open neighborhood homeomorphic to
some open set in E. If we let E = ¢?, we obtain the notion of an £2-manifold, where
£2 is the separable real Hilbert space of square summable sequences.

Remark 1.3. Theorem does not generalize to the nonseparable range space Y.
Indeed, there exists a nonseparable AR Y such that YX is not homogeneous for any
compact metric space X. Fix an uncountable set A and let /!(A) be the Banach
space of functions z: A — R such that >, |[2()A)| < co. Define ey € ¢*(A) by
ex(u) = 0 whenever p # X and ex(\) = 1. Define Y as the union Y = (J, .4 [0, ex]
of intervals, regarded as a topological subspace of /1(A). Let X be a compact



FUNCTION SPACES OF CW HOMOTOPY TYPE 753

metric space and for y € Y, denote by ¢, the constant map from X to y € Y.
Then c., has a separable neighborhood (0, e;]* in YX for each A (see Engelking [5]
Theorem 3.4.16]), but every neighborhood of ¢y has an uncountable discrete closed
subset (consisting of constant maps). This implies that Y ¥ is not homogeneous.

For function spaces YX satisfying the hypotheses of Theorem [[L2] the ¢?-mani-
fold structure of YX imposes a certain rigidity on its topology; namely:

Corollary 1.4. Let X and X' be homotopy equivalent countable CW complezes,
each of dimension at least 1, and let Y and Y' be homotopy equivalent separable
completely metrizable ANRs without isolated points. Assume that YX has CW

homotopy type. Then YX and v are homeomorphic.

We discuss only the case where the domain complex X is countable. To see why
this is justified, note first that if YX is an ANR, then it must be metrizable. The
next lemma shows that if YX is metrizable, then essentially X must be countable:

Lemma 1.5. Assume that X is a CW complex and that Y is a space having a
nontrivial path component. If YX is metrizable, then X is countable.

2. PrROOF oF THEOREM [[.IJ] AND LEMMA
For spaces X, Y and subsets A C X, BCY, let
(Y, B)5Y = {f eYX; f(A) C B}.

Then the subsets of the form (Y,V)(%) where K is compact and V is open,
constitute a subbasis for the compact-open topology of Y.

The main ingredient of the proof of Theorem [[Tlis the following characterization
of ANR spaces conjectured by R. Geoghegan and proved by R. Cauty:

Theorem 2.1 (Cauty [2], ‘Théoreme’). A metrizable space Z is an ANR if and
only if every open set of Z has the homotopy type of a CW complez.

An open covering U of Z is called numerable if a locally finite partition of unity
is subordinate to U. Recall that every open covering of a paracompact space is
numerable.

Proof of Theorem [LIl The implication (i) = (ii) is contained in Theorem 2]
while (ii) <= (iii) follows from [16, Theorem 2.2.1(iv)].

To prove (i) = (i), assume that YX has CW homotopy type. By Theorem B1]
it suffices to show that every open set of YX has the homotopy type of a CW
complex. Let B be the collection of open sets of Y of the form I, (Y, V;)(X:Ko)
where n is a positive integer, the K; are compact, and the V; are open sets.

First we show that every member of B has the homotopy type of a CW complex.
Pick W = I_,(Y,V;)XK:) € B. There exists a finite subcomplex L of X such
that |J;_, K; C L. Since the inclusion L C X is a cofibration, the restriction map
R:YX — YL isafibration. Let W' =, (Y, V;)(ZK). Then W = R~ (W') and
we obtain a fibration r = R|y: W — W’.

Since L is a finite CW complex, it is a metrizable compactum. By Mardesié¢
and Segal [9, Theorem 4 on page 38], the space Y~ is an ANR. By Theorem .11
therefore, W’ has the homotopy type of a CW complex.

As just noted, Y has CW homotopy type. By assumption, so has YX. Therefore
by Stasheff [I8, Corollary 13], also the fibers of R have CW homotopy type. Note
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that each fiber of r is also a fiber of R. Thus both the base space W’ and all fibers
of r have CW homotopy type. By Stasheff [I8 Proposition 0], also the total space
W has CW homotopy type.

Finally we show that every open set of YX has the homotopy type of a CW
complex. Let U C YX be an arbitrary open set. Then U is covered by the collection
of open sets B' = {V € B;V C U}. By definition of B, the collection B’ is
closed under finite intersections. Since U is metrizable, the open cover B’ of U is
numerable and each of its members is of CW homotopy type. Then, by tom Dieck [3]
Theorem 4] (note that the assumption there is on finite intersections), U has the
homotopy type of a CW complex. O

Proof of Lemma [L3l Assume that X is uncountable and let {ey; A € A} be the
collection of all (open) cells of X. By assumption, Y admits a path v: I — Y
such that v(0) # ~(1). Let ¢ € YX denote the constant map with the value v(0).
We claim that V¥ is not first countable at ¢. Assuming the contrary there exists a
countable neighbourhood basis at ¢ which we denote by {U,, }2° ;. As YX is metriz-
able, necessarily (.~ , U, = {c}. As c is constant, there is no loss of generality in
assuming that U,, = (Y, V,,)X*%») where the V,, are open neighborhoods of (0)
in Y and the K,, are finite subcomplexes of X. Set K = |J;—,; K,,. Then K is a
countable subcomplex of X and hence, by assumption, a proper subcomplex of X.
Fix a point p € X \ K. By the Urysohn lemma, there exists ¢: X — I such that
©(p) =1 and o(K) = {0}. Let f =~ o¢. Obviously f(K,) = {7(0)} C V,; hence
f € U,, for all n. But f # ¢, a contradiction. O

3. PROOF OF THEOREM AND COROLLARY [I.4]

The proof of Theorem can be obtained by translating the proof of the Main
Theorem in [I4] to our setting. We first recall the result of Toruriczyk [19] [20]
characterizing ¢?-manifolds. To state this result we make some definitions con-
cerning approximations of maps. Given an open cover U of M we say that maps
fyg: N — M are U-close if for each z € N the points f(z) and g(z) belong to a
common member of U. If moreover f and g are joined by a homotopy h: NxI — M
with A({z} x I') contained in some member of U for each € N, the maps f and g
are said to be U-homotopic and h is called a U-homotopy. In the above, assume that
M is a metric space and let € > 0. If I/ is the collection of all open sets of diameter
< €, we say e-close, e-homotopic, and e-homotopy to mean U-close, U-homotopic,
and U-homotopy, respectively.

Let D denote the topological sum @ -, I". We say that the space M satisfies
the DAP (Discrete Approximation Property) if for any map f: D — M and any
open cover U of M, there exists a map g which is U-close to f such that the family
{g(I") }nen of images is discrete in M.

Theorem 3.1 (Toruticzyk). A separable completely metrizable space M is an (-
manifold if and only if it is an ANR and has the DAP.

We use the following criterion, which is easily derived from [4, Remark 2], to
check for the DAP.

Lemma 3.2. Let (M,d) be a locally path connected metric space and let My C
My C --- C M be an increasing sequence of subsets of M. If M satisfies (i) and
(ii), then M satisfies the DAP.
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(i) For anye >0 and f: I"™ — M, there existi > 1 and g: I"™ — M; such that
g is e-homotopic to f.

(ii) For any € > 0 there exists § > 0 such that for any i > 1 and f: I™ — M;,
there exists j > 1 and g: I — M which is e-homotopic to f and satisfies

a(f(I"),g(I")) = 6.

Notation 3.3. Let X be a countable CW complex and let Y, Z be spaces. Assume
that Z is locally compact. In this situation, a function f: Z x X — Y is continuous
if and only if the adjoint f: Z — Y, defined by f(z)(z) = f(z,x), is continuous.

In view of this, we shall use the same symbol to denote f and f.

Proof of Theorem [L2 If the function space YX is an ¢2-manifold, then it is an
ANR; that is, the condition (i) in Theorem [T holds. Conversely, assume that ¥~
is an ANR. We shall show that Y¥ is an ¢2-manifold. By Theorem B.1] it is enough
to show that YX satisfies the DAP.

Express X as X = Ufno:l K,,, where each K,, is a finite subcomplex of X
and dim K; > 1. We can take distinct points x1,x2,... and xo, in K; such that
Z; — Too as 1 tends to infinity. Notice that YX contains a homeomorphic copy of
Y as a retract, which means that Y is an ANR since YX is by assumption. Using

[11, Lemma 2.1] we can choose an admissible metric d of ¥ with respect to which

(1) for every € > 0 there exists 6 > 0 such that every two J-close maps from
any space to Y are e-homotopic,

(2) every path component of Y has diameter > 1,

(3) diamY < oo.

Let F denote the function space YX. We can define an admissible metric d of F by

ZQ"’SUpd (f (), g(x)).

TEK,,

We define a subset F; of F, Where i1 >1, by

Fi={f €F; f(zs) = f(a;) for all j >}
Then obviously F; C F; ;. We shall show that the sequence Fy C Fy C - - - satisfies
the conditions (i) and (ii) in Lemma [3:2] which will conclude the proof
To verify the condition (i), take any f: I — F and £ > 0. By (1) we can take
6 > 0 such that every two d-close maps into Y are e-homotopic. By compactness
of I, there exists ¢ > 1 such that

d(f(s,zk), f(8,200)) <0 (kK >4, s€I™).

Since Y is an ANR, by the homotopy extension theorem [I3| Theorem 5.1.3] and
the choice of §, there exists an e-homotopy h: I"™ x X x I — Y such that h(s,z,0) =
fls,x)(seI™ € X) and h(s,zp, 1) = f(s,20) (s € I, i < k < 00). We define
g: I — F by g(s)(z) = h(s,z,1)(s € I", z € X). Then we have g(I") C F,.
Moreover, if we set H(s,t)(z) = h(s,z,t), then H: I" x I — F is a homotopy
connecting f with g. Then we have

M

d(H(s,t), H(s, 1)) 27" sup d(h(s,z,t),h(s,z,t"))

1 €K,

m

A\

[M]8
N
3
)

3
I
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for s € I" and t,¢' € I. This shows that H is an e-homotopy. The condition (i) is
verified.

It remains to verify the condition (ii). Take any € > 0. By (1), there exists
0 < § < 1/8 such that every two 10d-close maps into Y are e-homotopic. Take
any ¢ > 1land f: I" — F;. Put K = f(I" x {z;;1 < j <o0}) CY. Since K is
compact, there exist N > 1 and y1,...,yny € K such that

N
K c | B(yx,29),
k=1

where B(y,r) denotes an open ball in Y. Since each path component of ¥ has
diameter > 1 > 80 by (2), we can choose a point z;, € B(yg, 60) \ B(yg,40) for each
1 < k < N. Then, by the choice of § and the homotopy extension theorem, we
have e-homotopies hy: Y x I — Y (1 < k < N) such that hi(y,0) =y, he(y,1) =
zi (y € B(yk,46)) and such that hx(y,t) = y(y ¢ B(yx,6d)). Again using the
homotopy extension theorem, we have an e-homotopy h: X XY x I — Y such
that h(z,y,0) =y, h(zitr, y,t) = hi(y,t) (1 <k < N) and such that h(zj,y,t) =
y(i+ N < j < o). Finally, we define g: I — F by

g(S)(Z):h(l’,f(S,l‘),l) (SEIn,l‘EX).

Then, similarly as in the proof of (i), f,g: I™ — F are e-homotopic via a homotopy
H: I" xI — F defined by H(s,t)(z) = h(z, f(s,z),t). It is easy to see that g € F;
ifwelet j =4+ N+ 1.

Take any s,s’ € I". We claim that d(f(s),g(s’)) > &, which means that
d(f(I™),g(I™)) > & and hence the condition (ii) is met. First we consider the case
where d(f(s,Tx0), f(8',2s0)) > 25. In this case, we have d(f(s,Zo0),9(8", To0)) >
26, since g(s',Too) = M(Too, f(§',20),1) = f(s',2x0). Since zo, € Ki, we eas-
ily see that d(f(s),g(s')) > 6 as claimed. Second we consider the case where
d(f(s,Te0), f(8',200)) < 2d. Take k such that f(s,2s) € B(yk,20). Then f(s', zs0)
€ B(yk,40) and hence hi(f(s’,25),1) = zi. Then we have

g(sla xi+k) = h(xi+k7 f(sla xi+k)7 ]-)
= Zk ¢ B(yk,46).
On the other hand, we see that
f(svxi-‘rk‘) = f(Sa ﬂfoo) S B(yka 25)

since f(s) € F; C Fi . Thus we obtain d(f(s,2i1x),9(s"; ziyx)) > 20. In view of
xivk € K1, we see that d(f(s), g(s')) > ¢ as claimed. This completes the proof. O

We refer the reader to Maunder [I0, Theorem 6.2.25] for a proof of

Lemma 3.4. If X is homotopy equivalent to X' and Y is homotopy equivalent to
Y’, then the function spaces YX and V' are homotopy equivalent. O

We recall the fact that two homotopy equivalent £2-manifolds are homeomorphic
(see Bessaga-Petczyniski [1l page 316]). Now Corollary [[4limmediately follows from
Lemma [3.4] and Theorem
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4. APPLICATIONS

Combining Theorem and the results of [I6], we have several consequences of
interest. A space X is semilocally path connected at x € X if the path component
containing = contains a neighborhood of z. If this holds for every z in X (that is,
each path component is open), the space X is called semilocally path connected.

Theorem 4.1. For a connected countable CW complex X which is not a point, the
following are equivalent.
(i) (SHYX is an £2-manifold.
(i) (SYH)X has the homotopy type of a CW complex.
(iii) (S1)X is semilocally path connected at some point.
(iv) HY(X;Z) is finitely generated.

Proof. We have (i) <= (ii) by Theorem [[22l Evidently, (ii) implies (iii). To prove
the implication (iii) = (iv), we assume that (iv) does not hold. Since X is
countable, we can express X as X = Ufil K;, where each K; is a finite subcomplex
of X, and Ky C K5 C .... For each i, by obstruction theory, we have a commutative
diagram

(X, S —— HY(X;Z)

jfl lﬁ

[Ki; Sl] ?) Hl(KZ,Z)

In this diagram, the vertical arrows are induced by the inclusion j;: K; C X. Notice
that H'(K;;Z) is finitely generated, whereas H'(X;Z) is not by assumption. Since
ji is a homomorphism, the vertical arrow j; is not injective, which means that
every nonempty fiber of j; contains more than one point. The same is true for jf,
for each i. This fact implies that (S')¥X is not semilocally path connected at any
point, which is the negation of (iii).

Lastly we show that (iv) = (ii). Assume that (iv) holds. This is to say,
Hom(H,(X),Z) = HY(X) = Z4 for some 0 < d < co. By Fuchs [6, §43, Exer-
cise 10], H;(X) admits a decomposition Hy(X) = Z¢ ® H where Hom(H,Z) = 0.
Now we can appeal to [I6, Proposition 4.5.2] to infer (ii).

Alternatively, it follows from the above that the morphisms H'(X) — H(K;)
must be injective for infinitely many . As we can assume the K; to be connected,
this implies that H*(X, K;) = 0 for infinitely many i. Now we can appeal to
Theorem below. O

Theorem 4.2. Let X be a connected countable CW complex which is not a point.
Assume that dim(X \ Kg) < n for some finite subcomplex Ko. If for each finite
subcomplexr K there exists a larger finite subcomplex L such that H (X, L;Z) = 0
for 1 <i < n, then the function space (S™)* is an £>-manifold.

Proof. If n > 2, then (S™)X has the homotopy type of a CW complex by [15, Theo-
rem 2.1]. For n = 1, the circle S! is actually an Eilenberg-MacLane space K(Z,1).
The proof of [I5 Theorem 3.1] can be generalized easily (in fact abbreviated) to
work in this case, too. Theorem completes the proof. ([

Theorem 4.3. Let X be a simply connected, finite-dimensional countable CW
complex. Then the following are equivalent.
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(i) For every ANR'Y, the space Y is an ANR.
(ii) For every CW complex Y, the space YX has CW homotopy type.
(iii) For every finite CW complex Y, the space Y~ is semilocally path connected
at some point.
(iv) X has the homotopy type of a finite CW complez.

Proof. The implication (i) = (ii) follows from Milnor [12, Theorem 2] in conjuc-
tion with Theorem 21 Next, (ii) = (iii) is obvious, while (iv) implies (i) by [12
Theorem 3] in conjunction with Lemma B4 and Theorem [[1]

It remains to show (ili) = (iv). By Hatcher [7, Proposition 4C.1], (iv) is equiv-
alent to H,(X;Z) = @f;nllx H;(X;Z) being finitely generated, since X is simply
connected and finite-dimensional. Assume that (iv) does not hold. Then there
exists n such that H,(X,Z) is not finitely generated. By the universal coefficient
theorem, either H"(X;Z) or H""1(X;Z) is not finitely generated (see Hatcher [T,
Proposition 3F.12]). Fix m such that H™(X;Z) is not finitely generated. Since
X is finite-dimensional, we can take a connected finite CW complex such that
Tm(Y) =Z and 7;(Y) = 0 for 0 < i < dim X, i # m. Express X as X = J.°, K;,
where Kj; is a finite subcomplex of X for each i. By obstruction theory, for each 4
we have a commutative diagram

[X,Y] —— H™(X;7Z)

Lo

(K, Y] —— H™(Ki; Z).

As in the proof of Theorem Bl we conclude that the space Y X is not semilocally
path connected at any point, which means that (iii) does not hold. This completes
the proof. O
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