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CYCLOTOMIC UNITS IN FUNCTION FIELDS
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(Communicated by Wen-Ching Winnie Li)

Abstract. Let k be a global function field over the finite field Fq with a
fixed place ∞ of degree 1. Let K be a cyclic extension of degree dividing

q − 1, in which ∞ is totally ramified. For a certain abelian extension L of k
containing K, there are two notions of the group of cyclotomic units arising
from sign normalized rank 1 Drinfeld modules on k and on K. In this article
we compare these two groups of cyclotomic units.

0. Introduction

Let K be an imaginary quadratic number field and L an abelian extension of Q

containing K. There exist two subgroups of the group of units of L. One is the
group of cyclotomic units of the extension L/Q and the other the group of elliptic
units of the extension L/K. Both have finite indices in the full group of units of L,
which are closely related to the class number of L. The relation between these two
groups was studied by Gillard [Gi] and Kersey [Ke]. In fact, it is shown that some
power of an elliptic unit is a cyclotomic unit.

In this article we consider the analogous problem in the function field setting.
Let k be a global function field over the finite field Fq with a fixed place ∞ of degree
1. Let � be an integer dividing q − 1. Let K be a cyclic extension of k of degree �
in which ∞ is totally ramified, and let L be an abelian extension of both k and K,
such that ∞ splits completely in L/K. In L there exist two notions of the group
of cyclotomic units. One group is over k and the other over K. The latter can be
viewed as an analogue of the group of elliptic units ([ABJ], [Yi1], [Ou]). We will
compare these two groups, adopting the method of [Gi].

We note that in [Gi] there are some misprints. In the statement of Theorem 3,
12fe(f) should be changed to 12eh. The reason for this is that the wrong formula
was used (5 bis) on p. 187; it should be (see [GR], Proposition 7.19, or [Ou], (3.3))

L′(0, χ, K/k) = − 1
6eh

∑
c∈Cl((1))

χ(c) log |δ(c)|.
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Notation. k: a global function field over the finite field Fq of q elements
∞: a fixed place of degree 1 of k
A: the ring of functions in k, which are regular away from ∞
�: an integer dividing q − 1
K := k(m1/�), where m ∈ A has degree prime to �
χK := a fixed generator of the character group of Gal(K/k)
It is clear that ∞ is totally ramified in K/k, so we use the same ∞ to denote

the unique place of K lying over ∞.
B : the integral closure of A in K, which is the same as the ring of functions in

K regular away from ∞
a, b, m, n, f, · · · : ideals of A

A, B, M, N, F, · · · : ideals of B

hk (resp. hK): the class number of k (resp. K), which is the same as the ideal
class number of A (resp. B) since ∞ has degree 1

Fix a sign function sgn : k∞ = K∞ −→ Fq with sgn(0) = 0.
kn : the cylotomic function field over k of conductor n with respect to sgn
KN : the cylotomic function field over K of conductor N with respect to sgn
Gn := Gal(kn/k) and ΓN := Gal(KN/K)
k(1) (resp. K(1)) : the Hilbert class field of k (resp. K)
We choose the sign of m so that K is contained in k(m).
ξ(n) (resp. ξ(N)): ξ-invariant associated to n (resp. N)
en (resp. eN): the lattice function associated to the ideal n (resp. N)
For n �= (1) and N �= (1), λn := ξ(n)en(1), ΛN := ξ(N)eN(1).
For details of this notation we refer to [Ha1], [Yi1].

1. Preparation and statement of main theorem

Let L be an abelian extension of k which is contained in some cyclotomic function
field over k and suppose ∞ splits completely in L/K. Let OL be the integral closure
of A in L. For each ideal class c (resp. C) of A (resp. B) containing an ideal a

(resp. A), let
δ(c) := aξ(a)hk and ∆(C) := Aξ(A)hK ,

where (a) = ahk and (A) = AhK with sgn(a) = sgn(A) = 1.
For σ ∈ Gn, we define the partial zeta function by

Zn(s, σ) :=
∑

σb=σ, (b,n)=(1)

N(b)−s.

Note that Zn(0, σ) is a rational number. We return to Zn(s, σ) in the last section.
Let n be the conductor of L over k and N the conductor of L over K, that is,

n (resp. N) is the smallest ideal n (resp. N) such that L is contained in kn (resp.
KN). Let n1 be the ideal k ∩ N. Let Γ := Gal(L/K) and G := Gal(L/k) . For
n �= (1) and g ∈ G (resp. N �= (1) and γ ∈ Γ), let

ϕL(g) :=
∏

τ∈Gn, τ |L=g

λτ
n, ΦL(γ) =

∏
τ∈ΓN, τ |L=γ

Λτ
N.

For n = (1) (resp. N = (1)), we let

δL(g) :=
∏

σc|L=g

δ(c), ∆L(γ) :=
∏

σC |L=γ

∆(C),
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where σc and σC are the Artin automorphisms associated to c and C, respectively.

Proposition 1 ([Ou, Chap. 3, Chap. 4]). Let g1, g2, g ∈ G. Then we have
1) δL(g1)/δL(g2) and ϕL(g1)/ϕL(g2) are units in OL.

2)
(

δL(g1)
δL(g2)

)g

= δL(gg1)
δL(gg2)

and ϕL(g1)g = ϕL(gg1).
3) If n is not a prime power, then ϕL(g) is a unit in OL.

The same holds for ∆, Φ and Γ.

Let PL/k (resp. PL/K) be the subgroup of L∗ generated by F∗
q , ϕL(g) and

δL(g)/δL(id) for g ∈ G (resp. ΦL(γ) and ∆L(γ)/∆L(id) for γ ∈ Γ), which we call
the group of cyclotomic numbers over k (resp. over K) in L. Let

CL/k := PL/k ∩ O∗
L, and CL/K := PL/K ∩ O∗

L,

which we call the group of cyclotomic units of L over k and K, respectively. These
are slightly different from the group of cyclotomic units defined in [ABJ] or [Yi1].

Let S be the set of all prime ideals of A, which are ramified in L/k but unramified
in L/K. For p ∈ S denote by Tp the inertia group in L/k at p. Decompose S into
a disjoint union S =

⋃
i∈I Si, where two ideals in S lie in the same Si if and only if

they have the same inertia groups. Let J be a subset of I and J1 its complementary
subset. Let L0

J (resp. L1
J ) be the subfield of L fixed by the subgroup TJ ⊂ G (resp.

TJ1) generated by Tp for any p ∈ Si with i ∈ J (resp. i ∈ J1). Let f0J (resp. fJ ) be
the conductor of L0

J (resp. L1
J) over k. Let

θJ :=

{
Nk

f0J
/L0

J
(λf0J

) if f0J �= (1),

Nk(1)/L0
J
δ(1) if f0J = (1),

and for i = 1, ..., � − 1,

β
(i)
J (σ) := χi

K(σ)
∑

τ∈G
f1
J

, τ |
L1

J
=σ

Zf1J
(0, τ ),

where σ ∈ Gal(L/k) and f1J is the least common multiple of n1 and fJ .
Let

mJ :=
[L : L0

I ]
2

[L : L0
J ][L : L1

J ]
,

β
(i)
J :=

∑
σ∈G

β
(i)
J (σ)σ−1, βJ =

�−1∏
i=1

β
(i)
J

and
γJ :=

∏
p|n1, p�f0J

(1 − σ−1
p ),

where σp is the Frobenius automorphism of p in L0
J/k. Let αJ := γJβJ . But

βJ ∈ Q(ζ)[G], where ζ is a primitive �-th root of 1. To proceed we need the
following lemma.

Lemma 2. βJ ∈ Q[G].

Proof. Let η ∈ Gal(Q(ζ)/Q). We extend the action of η to Q(ζ)[G] in an obvious
way. Then it is not hard to see that η fixes βJ , which implies that βJ ∈ Q[G]. �
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Theorem 3. If L/K is ramified, then

Φ
[L:L0

I ]2

L = ε
∏
J⊂I

θ−�2αJmJ

J

with ε ∈ F∗
q . If L/K is unramified and

∑
σ∈G n(σ)σ ∈ Z[G] satisfies

∑
n(σ) = 0,

then ∏
σ∈G

∆L(σ)n(σ)[L:L0
I ]2 = ε

(∏
J⊂I

θ−�2rJαJmJ

J

)∑
n(σ)σ

,

with ε ∈ F∗
q , where

rJ =

{
hK

hk
if f0J = (1)

hK if f0J �= (1).

Note that hK is divisible by hk.

2. Proof of the main theorem

Let vk be the normalized valuation of k at ∞, and vK be the normalized valuation
of K at ∞. Then vK(a) = �vk(a) for a ∈ k. We choose an extension v1 (resp. v2) of
vk (resp. vK) to k̄ = K̄ so that v2(α) = �v1(α), which we also denote by vk (resp.
vK). Let χ be a character of Γ. Let χ0, ..., χ�−1 be the characters of G extending
χ. Assume that χ0 is real, that is, χ0 is trivial on the inertia group at ∞, and
χi = χi

Kχ0.
Let

Σ0
J (χ) :=

{
1

[L:L0
J ]

∑
σ∈G χ0(σ)vk(σ(θγJ

J )) if f0J �= (1)
1

hk[L:L0
J ]

∑
σ∈G χ0(σ)vk(σ(θγJ

J )) if f0J = (1)

Σi
J (χ) :=

1
[L : L1

J ]

∑
σ∈G

χ0(σ)β(i)
J (σ)

and

Σ(χ) :=
∑
σ∈Γ

χ(σ)vK(ΦL(σ)) if N �= (1)

Σ(χ) :=
1

hK

∑
σ∈Γ

χ(σ)vK(∆L(σ)) if N = (1).

To prove Theorem 3, it suffices to show that

[L : L0
I ]

2Σ(χ) = �2
∑
J⊂I

∑
σ∈Γ

χ(σ)vK(σ(θαJ

J )) =
∑
J⊂I

∑
σ∈G

χ0(σ)vk(σ(θαJ

J ));

that is, it suffices to show that

Σ(χ) =
∑
J⊂I

(
�−1∏
i=0

Σi
J (χ)

)
.

Considering χ as a character of G(L0
J/k) or G(L1

J/k) if possible, we have

Σ0
J (χ) =

⎧⎨
⎩

∏
p|n1 p�f0J

(1 − χ0(p))
∑

σ∈G
f0
J

χ0(σ)vk(σ(λf0J
)) if f0J �= (1)∏

p|n1
(1 − χ0(p))

∑
σ∈G(1)

χ0(σ)vk(σ(δ(1))) if f0J = (1)
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if χ0 is trivial on G(L/L0
J) and 0 otherwise, and

Σi
J (χ) =

∑
σ∈G

f1
J

χi(σ)Zf1J
(0, σ)

if χi is trivial on G(L/L1
J) and 0 otherwise.

Remark. For p ∈ S let tp be a generator of Tp. Then

χi(tp) = χ0(tp)χi
K(tp) = ζiχ0(tp),

since p is ramified in K/k, where ζ �= 1 is an �th root of 1. Thus χi is trivial on
Tp for some i > 0 if and only if χ0 is not. Thus

∏�−1
i=0 Σi

J(χ) �= 0 if and only if the
union of Si, for i ∈ J is exactly the set of p ∈ S such that χ0(tp) = 1. For each χ
this can happen for a unique J .

Thus Theorem 3 is equivalent to

Proposition 4. Let χ be a character of Γ, nontrivial if N = (1). For the subset J
of I as above, we have

Σ(χ) =
�−1∏
i=0

Σi
J (χ).

Let fi be the conductor of χi for i = 0, 1, ..., � − 1, and let F be the conductor
of χ as a character over K. We have the following properties of L-series (cf. [Yi1],
[Yi2], [Ou]):

(1) LK(s, χ) =
�−1∏
i=0

Lk(s, χi).

For a nontrivial character χ, we have

Lk(0, χ0) =
1

q − 1

∑
σ∈G(kf0/k)

χ0(σ)vk(λσ
f0

) if f0 �= (1),(2)

Lk(0, χ0) =
1

hk(q − 1)

∑
σ∈G(k(1)/k)

χ0(σ)vk(δ(σ)) if f0 = (1),(2′)

LK(0, χ) =
1

q − 1

∑
σ∈G(KF/K)

χ(σ)vK(λσ
F) if F �= (1),(3)

LK(0, χ) =
1

hK(q − 1)

∑
σ∈G(K(1)/K)

χ(σ)vK(∆(σ)) if F = (1),(3′)

Lk(0, χi) = Bχi
:=

∑
σ∈G(kfi

/k)

χ̄i(σ)Zfi
(0, σ), i = 1, ..., � − 1.(4)

Suppose that χ is nontrivial. Then

(5) Σ(χ) = (q − 1)
∏
P|N

(1 − (χ(P))LK(0, χ).

Here χ(P) is 0 if p divides the conductor of χ and χ(σP) otherwise.
Note that, for g �= (1) and f0 = (1),∑

σ∈Gg

χ0(σ)v∞(λσ
g) =

∏
p|g

(1 − χ0(p))Lk(0, χ0).
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Then

(6) Σ0
J (χ) = (q − 1)

∏
p|n1

(1 − χ0(p))Lk(0, χ)

and

(7) Σi
J =

∏
p|n1

(1 − χi(p))Lk(0, χi), i = 1, ..., � − 1.

Using the fact that

∏
P|N

(1 − χ(P)) =
∏
p|n1

�−1∏
i=0

(1 − χi(p)),

we get

Σ(χ) =
�−1∏
i=0

Σi
J (χ).

Now assume that χ is trivial and N �= (1). Then J = I in this case.
Case 1: n1 contains at least two prime divisors.
Then so does N. Hence ΦK and θI are units. Thus Σ(χ) = 0 = Σ0

I(χ).
Suppose that n1 is a power of a prime p. Let e, f, r be the ramification index,

inertia degree and the number of primes over p in K, respectively.
Case 2. n1 is a power of a prime p and r > 1.
Then N is not a prime power. So Σ(χ) = 0. On the other hand, Σi

I(χ) contains
the factor (1 − χi

K(p)), which is 0 if f | i and e = 1.
Case 3. n1 is a power of p and r = 1.
Let P be the prime ideal of K lying over p. Then one can show that (cf. [Ha2],

(2.3))

Σ(χ) = hK deg P = fhK deg p,

Σ0
I(χ) = hk deg p

and
�−1∏
i=1

Σi
I(χ) =

(
�−1∏
i=1

(1 − χi
K(p))

)
hK

hk
= f

hK

hk
,

since

χi
K(p) =

{
0 if e > 1
ζi
f if e = 1,

where ζf is a primitive f -th root of 1. Hence we get the result in this case too.

3. Integrality of exponents

Now the question is to know whether �2mJαJ is an element of Z[G]. We want to
determine β

(i)
J (σ). For this we need more information about Zm(0, σ) for an ideal

m and σ ∈ G. It is well-known that (A/m)∗ � Gal(km/ke) ⊂ Gal(km/k). Let X
be the image of F∗

q under this isomorphism. X is called the sign group of G(km/k).
Shu [Sh] constructed a set G′

m of coset representatives of Gm/X and called the
elements of G′

m monic. The following is due to Shu [Sh].

Proposition 5. Let m be an ideal of A and σ ∈ Gm.
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a) The partial zeta function Zm(s, σ) is a rational function in q−s and
(1 − q1−s)Zm(s, σ) is a polynomial in q−s with integer coefficients.

b) For any a �= id ∈ X and any σ ∈ G′
m, we have

Zm(s, σ) − Zm(s, aσ) = qn(σ)q−sj(σ),

for some appropriate nonnegative integers n(σ) and j(σ).

Let

Y = {a ∈ X : χK(a) = 1}.

Corollary 6. For any σ ∈ Gm,
∑

a∈Y Zm(0, aσ) is either qn(σ) + D
� or D

� for some
integer D.

Proof. There exist integers C and D such that Zm(0, σ) equals C
q−1 if σ ∈ G′

m and
D

q−1 otherwise. From Proposition 5 b), C
q−1 − D

q−1 = qn(σ). Then the sum will be
either

C

q − 1
+ (

q − 1
�

− 1)
D

q − 1
= qn(σ) +

D

�

or
D

q − 1
q − 1

�
=

D

�
. �

Write a set of representatives of the quotient group Gf1J
/Y by W . Then

∑
τ∈G

f1J
, τ |

L1
J

=σ

Zf1J
(0, τ ) =

∑
τ∈W, τ |

L1
J

=σ

(∑
a∈Y

Zf1J
(0, aτ)

)
.

Now letting m = f1J in Corollary 6, we see that the sum in the parentheses is
either qn(τ) + D

� or D
� for some integer D. Thus �β

(i)
J ∈ Z[ζ][G] and ��−1βJ ∈ Z[G].

Therefore Φ
��−3[L:LI ]2

L is a cyclotomic number over k.
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