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CHORD THEOREMS ON GRAPHS

MOHAMMAD JAVAHERI

(Communicated by Jim Haglund)

Abstract. The chord set of a function f : R → R, denoted by H(f), is the set
of r ∈ R such that there exists x ∈ R with f(x + r) = f(x). It is known that
if f is a continuous periodic function, then it has every chord, i.e. H(f) = R.
Equivalently, if f is a real-valued Riemann-integrable function on the unit
circle C with

∫
C f = 0, then for any r ∈ [0, 1], there exists an arc L of length

r such that
∫
L f = 0. In this paper, we formulate a definition of the chord set

that gives way to generalizations on graphs. Given a connected finite graph
G, we say r ∈ H(G) if for any function f ∈ L1(G) with

∫
G f = 0 there exists

a connected subset A of size r such that
∫
A f = 0. Among our results, we

show that if G has no vertex of degree 1, then [0, l(G)] ⊆ H(G), where l(G) is
the length of the shortest closed path in G. Moreover, we show that if every
vertex of a connected locally finite graph has even degree, then the graph has
every chord.

Introduction

Let G = (V, E) be a connected graph, possibly with loops or multiple edges,
where V denotes the set of vertices and E denotes the set of edges of G. We can
think of G as a measure space (G, µG) by identifying each edge with the interval
[0, 1] with the standard uniform measure. Let L1(G) denote the set of real-valued
functions on G that are Riemann-integrable when restricted to each edge of G.

The identification of each edge of G with the interval [0, 1] also turns G into a
topological space: a subset of G is closed if its intersection with each edge of G
is closed. Let X(G) denote the set of closed and connected subsets of G. Given
r ∈ [0, |E|], we let

Xr(G) = {u ∈ X(G) : µG(u) = r} .

Definition 0.1. The partition set of a connected graph G is the set of real numbers
r such that there exists n ∈ N and a collection {Uα}k

1 ⊂ Xr(G) such that, except
for a finite number of points, every point of G appears in exactly n members of the
collection. We denote the partition set of G by P (G).

The chord set of a connected graph G is the set of real numbers r such that for
every f ∈ L1(G) with

∫
G

fdµG = 0 there exists U ∈ Xr(G) such that
∫

U
fdµG = 0 .

We denote the chord set of G by H(G).
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It is worth mentioning how our definition of a chord set relates to the definition
of the chord set of a function. Recall that the chord set of a function F : R → R is
defined by

H(F ) = {r ∈ R | ∃x ∈ R : F (x + r) = F (x)} .

Let G0 be the graph with one vertex and one loop. Any f : G0 → R induces a
periodic function p on R with period one. If

∫
G0

f = 0, then F (x) =
∫ x

0
p(t)dt

is periodic with period one. Since every continuous periodic function has every
chord (see [3]), we conclude that given any r ∈ [0, 1] there exists x such that∫ x+r

x
p(t)dt = F (x+r)−F (x) = 0. In other words, H(G0) = [0, 1]. See Corollary 0.4

for a generalization of this result to Euler graphs.
The motivation behind the definition of the chord set also comes from the fol-

lowing combinatorial-analysis theorem.

Theorem 0.2. Suppose f is a Riemann-integrable function on I = [0, 1] such that∫
I
f(t)dt = 0. Then for any positive integer k there exists a subinterval J ⊆ I of

size 1/k such that
∫

J
f(t)dt = 0. Moreover, if k is replaced by a number that is not

a positive integer, the conclusion does not necessarily hold.

In particular, P (I) = {1/k : k ∈ N} and H(I) = {0, 1/k : k ∈ N}, where I is
viewed as the connected graph with two vertices and one edge. Stronger versions of
Theorem 0.2 can be found in [1, 5] in relation with the Horizontal Chord Theorem
and the Mountain Climbing Problem. The proof uses a simple continuity argument
as follows. Let us define

F (x) =
∫ x+1/k

x

f(t)dt , x ∈ [0, 1 − 1/k] .

Then

F (0) + F (
1
k

) + . . . + F (1 − 1
k

) =
∫ 1

0

f(t)dt = 0 .

Since F is a continuous function, the Intermediate Value Theorem [4] implies that
there exists x ∈ [0, 1−1/k] such that F (x) = 0, and so

∫
J

f(t)dt = 0 with J = [x, x+
1/k]. To prove the second part of the theorem, let 1/(k+1) < r < 1/k. We define a
function f on I such that

∫
I
f(t)dt = 0 but

∫
J

f(t)dt �= 0 for any subinterval of size
r. Choose intervals Ui, i = 0, . . . , k, of size (1/k−r)/3 such that i/k ∈ Ui. Define a
nonnegative function g on I such that

∫
Ui

g(t) = 1/(k+1) and g(t) = 0 if t /∈
⋃

i Ui.
Let f(t) = g(t) − 1. Then

∫
I
f(t)dt = 0. However, if J ⊂ I is an interval of size r

such that
∫

J
f(t)dt = 0, then we have

∫
J

g(t)dt = r > 1/(k + 1). It follows that J
intersects with at least two of the Ui’s; but then r = µG(J) ≥ 1/k−2(1/k−r)/3 > r,
which is a contradiction.

In the argument above, a crucial property of 1/k with regard to I = [0, 1] is used;
namely, there is a partition of [0, 1] to subintervals of size r = 1/k, i.e. 1/k ∈ P (I).
More generally, we have the following theorem.

Theorem 0.3. For any finite connected graph G,

(0.1) P (G) ⊆ H(G) ,

where P (G) is the closure of P (G) in R.

The proof of Theorem 0.3 appears at the end of §2, where we also show that
Xr(G) is a path-connected metric space in order to be able to use the Intermediate
Value Theorem on Xr(G).
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If G(V, E) admits an Euler Circuit, then P (G) is the set of all rational numbers
in (0, |E|] and so Theorem 0.3 implies that H(G) = [0, |E|].

Corollary 0.4. If G(V, E) is a graph with an Euler Circuit, then it has every
chord, i.e. P (G) = H(G) = [0, |E|] .

In §3, we show that the chord set of a connected finite graph with no vertex
of degree 1 contains the interval [0, l(G)], where l(G) is the length of the shortest
closed path in G. In §4, we generalize Corollary 0.4 to infinite but locally finite
graphs.

1. The space Xr(G)

In addition to being a measure space and a topological space, any graph G is
equipped with a natural metric. The distance between two points in G is the
length of the shortest path connecting them. We extend this metric on G to X(G)
by setting:

dG(A, B) = min{µG(C) : A ∪ B ⊆ C ∈ X(G)} − µG(A ∩ B) , A, B ∈ X(G) .

It is straightforward to check that (X(G), dG) is a metric space. Moreover, X(G)
is connected. In fact, any C ∈ X(G) can be retracted continuously to any x ∈ C,
by which we mean:

Lemma 1.1. For any nonempty C ∈ X(G) and any x ∈ C, there exists a con-
tinuous curve η : [0, µG(C)] → X(G) such that η(0) = C, η (µG(C)) = {x},
µG(η(t)) = µG(C) − t for all t, and η(t1) ⊂ η(t2) whenever t1 > t2.

Proof. Suppose C contains a closed path and let a denote the interior of one of
the edges in the closed path that does not contain x. Then we can retract C to
C\a by removing a continuously from C while staying in X(G). By continuing this
process, we arrive at a set C ′ ∈ X(G) which contains x but no closed paths (it is
possible that C = C ′). Then C ′ has the topology of a tree and it is straightforward
to show that C ′ can be retracted to x. �

The main step in proving Theorem 0.3 is the following theorem.

Theorem 1.2. The metric space (Xr(G), dG) is path-connected for r ∈ (0, |E|).

Proof. Let A, B ∈ Xr(G) and let C be the path-connected component of Xr(G)
that contains A. We first show that there exists an element in C that intersects
with B. Let

(1.1) α = inf
U∈C

dG(B, U) .

Choose C ∈ Xr(G) such that

(1.2) dG(B, C) < α + r .

If B∩C = ∅, then there exists a continuous curve γ : [0, s] → G with µG (γ([0, t])) =
t, for all t ∈ [0, s], such that γ(0) ∈ C and γ(s) ∈ B, where s = dG(B, C)− 2r > 0.
Let

θ = min{r, s} .

Let Ct, t ∈ [0, r], be the retraction of C to γ(0) ∈ C, obtained in Lemma 1.1. Then

Ut = Ct ∪ γ ([0, t]) , t ∈ [0, θ]
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is a well-defined continuous curve in Xr(G) that connects C to Cθ. Now, we have

(1.3) dG(B, Cθ) ≤ dG(B, C) − θ = s + 2r − θ .

If s > θ, then θ = r, and the inequalities (1.2) and (1.3) imply that dG(B, Cθ) < α,
which contradicts (1.1). Hence, s = θ and dG(B, Cθ) = 2r, i.e. B ∩ Cθ �= ∅.

Next, we fix x ∈ B such that Cx = {C ∈ C : x ∈ B ∩ C} �= ∅. By the discussion
above, we know such an x exists. For each C ∈ Cx, let UC be the connected
component of B ∩ C that contains x and set

T = C\UC =
k⋃

i=1

Ti , B\C =
l⋃

i=1

Bi ,

where each Bi (respectively, Ti) is a connected component of B\C (respectively,
T ). The numbers k = k(C) and l = l(C) are functions of C. Define

ω = ω(C) = k(C) + l(C) ≥ 0 .

We show that if ω(C) > 0, then there exists C ′ ∈ Cx such that ω(C ′) ≤ ω(C) − 1.
Without loss of generality, we can assume there exists y ∈ B1 ∩ UC . Also there
exists z ∈ T1∩UC , since C is connected. Let η : [0, µG(T1)] → G be the retraction of
T1 to z obtained in Lemma 1.1. Similarly, let ν : [0, µG(B1)] → G be the retraction
of B1 to y. Let

Vt = (C\ (T1\η(t))) ∪ ν (µG(B1) − t) , t ≤ min{µG(B1), µG(T1)} .

Then Vt is a continuous curve in Xr(G) connecting C to C ′ = Vλ, where λ =
min{µG(B1), µG(T1)}. If λ = µG(B1), then l(C ′) ≤ l(C) − 1. On the other hand,
if λ = µG(T1), then k(C ′) ≤ k(C) − 1. In either case:

(1.4) ω(C ′) = k(C ′) + l(C ′) ≤ ω(C) − 1 .

Now replace C by C ′ and repeat the process above. In a finite number of steps
we get C ′ ∈ C with ω(C ′) < 1. But then k(C ′) = 0 and so B = C ′ ∈ C. This
concludes the proof of Theorem 1.2. �

Now we are ready to present the proof of Theorem 0.3.

Proof of Theorem 0.3. Since the chord set is a closed subset of R, it is sufficient to
prove P (G) ⊆ H(G). Let r ∈ P (G) and f ∈ L1(G) such that

∫
G

f = 0. We will
show that there exists U ∈ Xr(G) such that

∫
U

f = 0.
Let If : Xr(G) → R be the integration map defined by

If (A) =
∫

A

fdµG .

We show that If is continuous on Xr(G) (the topology on Xr(G) is induced by the
metric dG). Suppose Ai → A in Xr(G). Then

|Ig(Ai) − Ig(A)| =
∣∣∣∣
∫

Ai⊕A

g dµG

∣∣∣∣ → 0 ,

and so If is continuous at every A ∈ Xr(G). Now, since r ∈ P (G), there exists a
collection {Uα}k

1 ⊂ Xr(G) such that almost every point of G appears in exactly n
members of the collection. Hence,

(1.5)
k∑

α=1

If (Uα) =
k∑

α=1

∫
Uα

fdµG = n

∫
G

fdµG = 0 .
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If ∃α, If (Uα) = 0, then we are done. Otherwise, equation (1.5) implies that ∃α, β :
Uα < 0 < Uβ . By Theorem 1.2, there exists a continuous path γ : [0, 1] → Xr(G)
such that γ(0) = Uα and γ(1) = Uβ . Now the function If ◦ γ is continuous and
γ(0) < 0 < γ(1). It follows from the Intermediate Value Theorem [4] that there
exists t ∈ (0, 1) such that If ◦ γ(t) = 0; i.e. for U = γ(t) ∈ Xr(G) we have
If (U) = 0. This completes the proof of Theorem 0.3. �

2. The chord set of finite graphs

In this section, we prove the following theorem.

Theorem 2.1. Suppose G is a finite connected graph (possibly with loops and
parallel edges) with no vertex of degree 1. Let l(G) be the length of the shortest
closed path in G. Then

[0, l(G)] ⊆ H(G) .

A closed path is called a semi-simple closed path if i) no two consecutive edges
along the path are the same and ii) every edge is repeated at most twice along the
path. We say a graph G admits a double covering by semi-simple closed paths if
there are semi-simple closed paths Ci , i = 1, . . . , k, that altogether cover every
edge of G exactly twice. In other words, every edge in G either belongs to exactly
two Ci’s but is repeated once in each one of them, or it belongs to only one of the
Ci’s but is repeated twice. We allow repetitions among the Ci’s; i.e. it is possible
that Ci and Cj contain the same edges and i �= j.

It is easily seen that if G contains a vertex of degree one, then G does not admit
a double covering by semi-simple closed paths. In order to prove Theorem 2.1, we
need to show that the converse is true:

Lemma 2.2. Suppose G is a connected graph such that

(2.1) deg v > 1 , ∀v ∈ V (G) .

Then G admits a double covering by semi-simple closed paths.

Proof. Let S denote the set of all subgraphs of G that admit a double covering
by semi-simple closed paths. The degree condition (2.1) implies that there exists a
simple closed path in G. Since every simple closed path is a semi-simple closed path,
the set S is nonempty. Let K be a maximal element of S; i.e. K is not a subgraph
of any other element of S. Let L be the graph obtained from G by removing the
edges of K. Since K is maximal in S, the subgraph L does not contain any closed
paths. In particular, there are no loops or parallel edges in L. In the sequel, we
prove by contradiction that L contains no edges.

Let α be the longest simple path in L and let u and v be the endpoints of α. It
follows from the degree condition (2.1) and the fact that there are no cycles in L that
u and v are distinct vertices of K. Since K ∈ S, there is a collection M = {Ci}k

1 of
semi-simple closed paths such that every edge of G appears altogether twice along
these paths. In particular, there are semi-simple closed paths γ = Ci and η = Cj

that contain the vertices u and v respectively. If i �= j, then the path β = γ ·α ·η ·←−α
is a semi-simple path, where ←−α means the reverse of α. We can remove γ and η
from the collection M and add β to obtain a larger element in S. This contradicts
our assumption that K was maximal. If i = j, then we partition γ into two paths
γ1 and γ2 such that γ1, γ2 are paths from u to v. Now by removing γ from the
collection M and adding the path γ1 · α · γ2 · α we obtain a larger element of S.
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This again contradicts the definition of K. It follows that L contains no edges; i.e.
K = G and G admits a double covering by semi-simple closed paths. �

For a path P = a1 . . . am and f ∈ L1(G), we define∫
P

fdµG =
m∑

i=1

∫
ai

fdµG .

Now we are ready to present the proof of Theorem 2.1.

Proof of Theorem 2.1. Let r ∈ [0, l(G)] and f ∈ L1(G) such that
∫

G
f = 0. By

Lemma 2.2 and by the definition of double covering, there exist semi-simple closed
paths C1, . . . , Ck such that

(2.2)
k∑

i=1

∫
Ci

fdµG = 2
∫

G

fdµG = 0 .

We note that if C is a semi-simple closed path, then there exists A ∈ Xr(G) such
that

∫
A

f = r
∫

C
f . To see this, suppose the length of C is n and let Fn denote the

cycle of length n. Then there exists a continuous map φ : Fn → C that maps the
edges of Fn to those of C. Moreover, we can choose φ to be measure-preserving
when restricted to each edge of Fn. Since H(Fn) = [0, n], there exists B ∈ Xr(Fn)
such that

(2.3)
∫

B

f ◦ φ(θ)dθ = r

∫
Fn

f ◦ φ(θ)dθ .

On the other hand, we have r ≤ l(G), and so A = θ(B) is connected of size r.
Moreover, we conclude from (2.3) that If (A) =

∫
A

f = r
∫

C
f .

It follows that for each i = 1, . . . , k there exists Ai ∈ Xr(G) such that

(2.4) If (Ai) =
∫

Ai

fdµG = r

∫
Ci

fdµG .

The equations (2.2) and (2.4) imply that
k∑

i=1

If (Ai) = r

k∑
i=1

∫
Ci

fdµG = 0 .

Then the Intermediate Value Theorem implies that there exists a U ∈ Xr(G) such
that If (U) = 0, and so r ∈ H(G). �

3. The chord set of locally finite graphs

By a locally finite graph, we mean a graph that may contain infinitely many ver-
tices but the degree of every vertex if finite. If G(V, E) is a connected locally finite
graph, then V and E are at most countable. Let a1, a2, a3, . . . be an enumeration
of the edges in E. We say f ∈ L1(G) if

∞∑
i=1

∫
ai

|f |dµG < ∞ .

If f ∈ L1(G), then
∫

G
fdµG is defined by

∫
G

fdµG =
∞∑

i=1

∫
ai

fdµG .
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Clearly this definition is independent of the enumeration of the edges of G. In
this section, we prove two theorems on locally finite graphs which are analogous
to Corollary 0.4 and Theorem 2.1. Note that no infinite graph can have an Euler
Circuit. So to generalize Corollary 0.4 to infinite graphs, recall that if the degree
of every vertex in a finite connected graph is even, then the graph admits an Euler
Circuit. In this section, we first prove the following theorem.

Theorem 3.1. Let G be a connected and locally finite graph with no vertex of odd
degree. If f ∈ L1(G) such that

∫
G

f = 0, then for any r ≥ 0, there exists U ∈ Xr(G)
such that

∫
U

f = 0.

Proof. The proof is by contradiction. Suppose that for every U ∈ Xr(G), If (U) �=
0. Then the function If (U) =

∫
U

f has a fixed sign, say positive, on Xr(G).
Let v ∈ G be a fixed vertex. Define Gk to be the maximal subgraph consisting

of the vertices of distance at most k from v. Then Gk is a connected finite graph
with an even number of odd-degree vertices v1, . . . , vm (it is possible that m = 0).
Since every vertex in G has even degree, each vi must be exactly at distance k
from v. We construct a new graph G′

k by connecting v2j−1 to v2j via an edge
aj for j = 1, . . . , m/2. Every vertex in G′

k has even degree and, moreover, G′
k

is connected. It follows that G′
k is an Euler graph. Using the Euler Circuit of

G′
k, one can partition G′

k to connected closed subsets J1, J2, . . . , Jl such that each
intersection Ji ∩Jj , 1 ≤ i < j ≤ l, consists of at most a finite number of points and

(3.1) ∀j < l : |Jj | = r , 0 < |Jl| ≤ r .

For k large enough, without loss of generality, we can assume v ∈ J1 and v1 ∈ Jl.
Define

S = {1 ≤ j ≤ l − 1|Jj ⊆ Gk} , T = {j /∈ S|Jj ∩ Gk �= ∅} .

Also let
Ek =

⋃
j∈T

Jj .

Next, let Xr(G, v) denote the set of connected subsets of G of size r containing
v. Then Xr(G, v) is a compact set, and so If |Γr

has a positive lower bound that
we denote by ε. It follows from the positivity of If on Xr(G) that

(3.2)
∑
j∈S

∫
Jj

fdµG =
∑
j∈S

If (Jj) ≥ If (J1) ≥ ε .

Since Jj � Gk for all j ∈ T , we have distG(v, x) ≥ k − r for all x ∈ Ek. In other
words,

(3.3) distG(v, Ek) ≥ k − r .

It follows from the integrability of f and (3.3) that
∫

Ek∩Gk
fdµG converges to zero

as k → ∞, which together with (3.2) implies that

(3.4)
∫

Gk

fdµG =
∑
j∈S

∫
Jj

fdµG +
∫

Ek∩Gk

fdµG ≥ ε

2
,

for k large enough. This contradicts the assumption that
∫

G
f = 0, and the theorem

follows. �

We now state and prove the analogue of Theorem 2.1 for connected locally finite
graphs.
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Theorem 3.2. Suppose G(V, E) is a connected locally finite graph such that

deg v > 1 , ∀v ∈ V .

Then [0, 1] ⊂ H(G).

Proof. As in the proof of Theorem 3.1, we assume If is positive on Xr(G), where
r ∈ [0, 1], and we derive a contradiction. Recall that Xr(G, v) is the set of connected
closed subsets of G of size r that contain v. Also ε is the lower bound of If on
Xr(G, v). We need the following lemma:

Lemma 3.3. Suppose If is positive on Xr(G) and bounded below by ε on Xr(G, v),
where r ∈ [0, 1]. If C is a semi-simple closed path in G, then

∫
C

fdµG > 0. If
moreover C contains v, then

∫
C

fdµG ≥ ε.

We postpone the proof of this lemma and continue with the proof of Theorem 3.2.
Define Gk to be the maximal subgraph consisting of the vertices of distance at most
k from v, where k ∈ N. Then Gk is a connected finite graph with a finite number
of vertices of degree 1. Let v1, . . . , vm be the set of vertices of Gk of degree 1 (it is
possible that m = 0). Since the degree of every vertex in G is greater than 1, each
vi must be exactly at distance k from v. We construct a new graph G′

k by attaching
a loop at each vertex vi and extend f by zero to G′

k. Since G′
k is connected and

the degree of every vertex in G′
k is greater than 1, we conclude from Lemma 2.2

that G′
k admits a double covering by a collection Uk of semi-simple closed paths.

For i ≤ m, let Ci ∈ Uk be the unique path in the collection Uk that contains the
attached loop at vi.

Similar to the proof of Theorem 3.1, we cover each Ci with a collection of con-
nected closed subsets of G′

k satisfying conditions (3.1). Having done this covering
for each i ≤ m, we arrive at a collection U1, . . . , Uα, V1, . . . , Vβ of closed and con-
nected subsets of G′

k with the following properties:
i) Ui ∈ Xr(G) for all i ≤ α,
ii) µG(Vi) ≤ r and distG(v, Vi) ≥ k − 1 for all i ≤ β.

Since distG(v, Vi) ≥ k − 1, we conclude from the integrability of f on G that

(3.5) lim
k→∞

β∑
i=1

∫
Vi

fdµG = 0 .

Let Vk = Uk\{Ci : i ≤ m}. Either v ∈ Ui for some i ≤ α, or v ∈ C for some
C ∈ Vk, and so

(3.6)
α∑

i=1

If (Ui) +
∑

C∈Vk

If (C) ≥ ε .

Now consider the equality below:

2
∫

Gk

fdµG =
m∑

i=1

∫
Ci

fdµG+
∑

C∈Vk

If (C) =
α∑

i=1

If (Ui)+
β∑

i=1

∫
Vi

fdµG+
∑

C∈Vk

If (C) .

Taking the limit as k → ∞, the left-hand side converges to 0 while the right-hand
side is bounded from below by ε by (3.5) and (3.6). This is a contradiction, and
the theorem follows. �

It is left to prove Lemma 3.3.
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Proof of Lemma 3.3. We first prove that if g : R → R is a locally integrable periodic
function with period L and F : R → R is defined by

(3.7) K(x) =
∫ x+r

x

g(t)dt ,

then

(3.8)
∫ L

0

K(x)dx = r

∫ L

0

g(t)dt .

Define the auxiliary function h(x, y) = g(y) on R2. Let D be the region

D = {(x, y) ∈ R2 | x ∈ [0, L] , y ∈ [x, x + r]} .

We have ∫
D

h(x, y)dydx =
∫ L

0

∫ x+r

x

g(y)dydx =
∫ L

0

K(x)dx .

On the other hand, by Fubini’s Theorem:∫
D

h(x, y)dxdy =
∫ r

0

∫ y

0

g(y)dxdy +
∫ L

r

∫ y

y−r

g(y)dxdy +
∫ L+r

L

∫ L

y−r

g(y)dxdy

=
∫ r

0

yg(y)dy + r

∫ L

r

g(y)dy +
∫ L+r

L

(L + r − y)g(y)dy

=
∫ r

0

yg(y)dy + r

∫ L

r

g(y)dy +
∫ r

0

(r − y)g(y)dy

= r

∫ L

0

g(y)dy ,

where we used the change of variables y → y − L and that g(y) = g(y − L) by
periodicity of g to simplify

∫ L+r

L
(L + r − y)g(y)dy. This completes the proof of

equation (3.8).
Now let C be a semi-simple closed path in G of length L and let φ : FL → C

be as in the proof of Theorem 2.1; i.e. FL is the cycle of length L and φ maps
the edges of FL onto those of C continuously such that the restriction of φ on each
edge of FL is measure-preserving. We can think of FL as the interval [0, L] on R
by identifying 0 and L. Let

g(t) = f ◦ φ(t) , t ∈ [0, L] ,

and extend g to R such that g(t + L) = g(t) for all t ∈ R. Let K be defined as in
(3.7). Note that K(x) = If (φ([x, x + r])) > 0 for all x, since If is assumed to be
positive on Xr(G). Then equation (3.8) implies that∫

C

fdµG =
∫ L

0

g(t)dt =
1
r

∫ L

0

K(x)dx > 0 .

Finally, we consider the case where v ∈ C. Without loss of generality, assume that
φ(1) = v (recall that we have identified FL with [0, L]). Then K(x) ≥ ε for all
x ∈ [1 − r, 1]. Equation (3.8) implies that, in this case,∫

C

fdµG =
∫ L

0

g(t)dt =
1
r

∫ L

0

K(x)dx ≥ 1
r

∫ 1

1−r

K(x)dx ≥ 1
r
· r · ε ≥ ε .

This completes the proof of Lemma 3.3. �
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